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ABSTRACT In this work, a novel Minimum Variance Distortion less Response (MVDR) beamformer

architecture in which the adaptive weight vector is computed based on modified Column wise Givens

Rotation (CGR) is presented. As compared to the conventional MVDR beamformer, Quadrature Rotation

Decomposition (QRD)-MVDR is suitable for hardware realizations. To improve the real-time performance

requirements of the MVDR Beamformer, a parallel pipe-lined CGR based QRD architecture is employed

in the adaptive weight computation stage of the MVDR Beamformer. A computationally efficient MVDR

beamforming algorithm, which requires to compute only the R matrix in QRD, rather than matrix inverse is

used to develop the architecture. The developed architecture generates the adaptive weight vector in 3.9ns,

and hence a beam can be formed in 0.25msec time. The designed architecture is implemented using

Verilog Register Transfer Level (RTL) coding, and the functional equivalence checking was carried with

the Verasonics Vantage-64 Ultrasound Research Platform (URP). The architecture is also ported on Xilinx

Kintex-7 FPGA based Emulation set up and validated in real-time, targeting medical ultrasound imaging

applications. The developed architecture is compared with the existing architecture implementations. It con-

cludes that the architecture is superior in terms of computational time and can be adapted for ultrafast adaptive

beamforming applications.

INDEX TERMS Adaptive beamforming, accelerated MV-beamformer, MVDR, adaptive weight computa-

tion, FPGA prototype, medical ultrasound, CWGR, parallel architecture.

I. INTRODUCTION

Delay-and-sum (DAS) is a very fundamental technique for

beamforming, given a known direction of arrival (DOA) and

time delays. It sums the delayed signal depending on the

direction of arrival of the signal. Here the system produces

destructive interference in all directions but the not in the

direction of arrival/interest [1]. This beamformer combines

the signal from different channels with fixed and predefined

weights. It is the simplest beamformer for computational

complexity, low resolution, and reduced interference suppres-

sion makes it the worst one for medical imaging. Adaptive

beamformers use adaptive weights, which depend on the

data-adaptive apodization weights. Minimum Variance Dis-

tortionless Response(MVDR) is such an algorithm that uses

The associate editor coordinating the review of this manuscript and

approving it for publication was Yizhang Jiang .

adaptive weights. This algorithm is far better in resolution

when compared to DAS, the expense of which is a very high

computational complexity [2]. Figure 1 shows the conven-

tional Delay and Sum Beamformer structure. The achieved

resolution improvement is due to the suppression of inter-

ference from undesired direction while preserving the signal

from the desired direction. The most expensive/high com-

putational block is the one that calculates the spatial covari-

ance matrix and its inverse for the computation of adaptive

weights. MVDRBeamforming improves the resolution of the

image to a large extent compared to the DAS Method [3].

The implementation issues associated with MVDR is the

calculations involved in the algorithm. QR Decomposition

reduces the computational complexity of the MVDR. This

method does not require the computation of the spatial

covariance matrix and the inverse of it, all this at the

expense of necessary calculations for the QRDecomposition.
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FIGURE 1. Delay and sum beamformer-DAS.

A modified algorithm that further reduces the computational

complexity, which is acceleratedQR-MVbeamformer, as this

method only requires R calculation. Many methods are avail-

able for R calculations, like GR, MSGR, and Fast Toeplitz

orthogonalization, etc. Column Wise Given Rotation is the

best-suggested method as it requires very fewer calculations

compared to the normal Given Rotation and MSGR meth-

ods. The previous articles suggest that only R calculation is

required for computation of the adaptive weight vectors for

MVDR Beamformer, which takes the major computational

complexity for these algorithms. The proposed works use the

QR-MV Beamformering techniques to implement a compu-

tationally superior method compared to native methods. The

major contributions in this article are as follows:

• We present CGR based QRD-MV Beamformer imple-

mentation on Verasonics Ultrasound Research Platform

(URP) and on Xilinx 7 series (Virtex) FPGA.

• We present a novel modified architecture for CGR based

QR Decomposition Algorithm (PCGR-QRD) and MV

Beamformer realization using this QRD Algorithm on

FPGA Platform.

• We compare our experimental results with the contem-

porary implementations in the literature and show sig-

nificant improvement in throughput and resolution at par

with native MVDR Beamformer.

The organization of this article is as follows: Section II

describes the background of MVDR Beamforming,

Section III, the literature survey, Section IV describes the

accelerated MV- beamformer implementation using CGR

Algorithm, Section V describes the proposed architecture.

Section VI describes the experiment setup Section VII deals

with the results and discussions, and Section VIII presents the

conclusions.

II. BACKGROUND OF MVDR BEAMFORMING

TheMVDR is a technique introduced by Capon in 1969. This

algorithm can resolve signals which are separated by antenna

beam width’s fractions [3]. To maximize the signal to noise

ratio, this Beamformer takes the desired signal in the (DOA)-

direction of arrival. Theweight vector of the Beamformer will

calculate the desired signal. MDVRAlgorithm can maximize

the sensitivity of the sensors in only one direction. The Beam-

former significantly reduces the Beamformer’s output power

under a single linear constraint on the array’s response to the

desired signal [4]. The algorithm depends on the steering vec-

tors, which depend on the angle of incidence of the received

signal from the array antenna unit. The direction of the useful

signal must be known, and the output power in the direction

of the desired signal must be minimized, subject to a unit gain

constraint. Figure 2 shows the beamforming concept.

0 ≤ µ ≤
1

2∗λmax
(1)

where λmax is the largest eigen value which is given by the

equation 2 of the array correlation matrix Rxx(k).

Rxx(k) = x(k)XH (k) (2)

The received signal vector is denoted x(k). The weights of the

array are updated according to the equation given below.

w(k + 1) = w(k) + µe∗(k)x(k) (3)

the below equation gives the error signal e(k)

e(k) = d(k) − wH (k)x(k) (4)

To achieve the minimum power of the sensor signals,

which are weighted, the Minimum Variance (MV) beam-

former continually updates the apodization weights under the
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FIGURE 2. Beamforming diagram.

restriction of the signal being transmitted without distortion

from the point of interest. MVDR Beamformer does not

require knowledge of the directions of interference for weight

vector calculations. It only needs the direction of the desired

signal. The MVDR / Capon beamformer can attain a more

prominent resolution than the standard (Bartlett) method,

but since it is a full=rank matrix inversion, this algorithm

has higher complexity. Technical developments in GPU have

started closing this gap and render Capon beamforming

possible in real-time. The linearly constrained minimum

variance (LCMV) beamformer is the most commonly used

criteria in the beamformer for suppressing the interfering sig-

nals and noise. The algorithm was first proposed by Frost [4].

Griffiths and Jim [5] made a practical implementation of

LCMV by suggesting a specific sidelobe canceller (GSC).

Since the Generalized Side Lobe Canceller Algorithm uses an

unconstrained approach instead of a constrained algorithm,

weights can be modified at much higher rates [6]. Separate

unitary transforms, such as Discrete Fourier Transforms

(DFTs), have been used to de-correlate input data to improve

the convergence rate of the original LMS GSC model [7].

Glentis attempted to reduce the computational complexity of

both GSC-LMS and TD-LMS GSC by treating complicated

transmissions as a few real signals and using the algorith-

mic strength reduction method [8], [9]. This discrepancy is

enough that the GSC appears to misinterpret the required sig-

nal element by nullifying instead of retaining a distortion-free

response to it. In reality, almost all beamformer applications

lack the required signal during the training period [10-11],

which allows the beamformer to be more reliable in the array

response to mismatch errors. The beamformed output y[n] at

point n in the scanline can be described as

y[n] =

M−1
∑

m

wm[n]xm[n− δm[n]] (5)

where M is the array size, wmis the complex apodization

weight, xm[n] is the sampled data obtained from array ele-

ment m, and δm[n] is the delay applied to array element m to

focus the beam at point n. Simplifying the equation (5) we get

y[n] = wH [n]x[n] (6)

where x[n] denotes

x[n] =

















x0[n− δ0[n]]

x1[n− δ1[n]]

.

.

.

xM−1[n− δM − 1[n]]

















(7)

w[n] is denotes as

w[n] =

















w∗

0
x∗

1
.

.

.

x∗

M−1

















(8)
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here we denote the complex conjugate by the symbol ∗ and

H denotes the rearrangement of a vector or matrix by the

complex conjugate.

The MVDR beamformer uses the adaptive apodization

weights to minimize the beamformer’s output power while

maintaining the response from the direction of interest as

a constant, which is not maintained in the DAS Beam-

former [12].

E[y2] = wH [n]∗R[n]∗w[n] for min w[n]

provided wH [n]a[n] = 1 (9)

where E denotes the expectation operator, R[n] =

E[x[n]x[n]H ] is the spatial covariance matrix, and a[n] is

the steering vector that characterizes the response from the

focal point. a[n] is set to [11. . . 1]T because the array data are

already time-delayed. This problem can be solved by using

the method of Lagrange multipliers. Assuming that R[n] is

non-singular, we get a solution as

w[n] =
R−1[n]a[n]

aH [n]R−1[n]a[n]
(10)

Due to coherence, the signal from (DOA) direction of interest

and the interfering signals are coherent or highly correlated

because all signals which are received are scaled and delayed

replicas of the transmitted pulse, which may cause signal can-

cellation and generate poor beamformed output. This prob-

lem will be solved using a subarray averaging technique [12],

which makes the MVDR Beamformer a highly computation-

ally complex one, which requires the calculation of R[n] and

its inverse. In real-time applications, the covariance matrix is

obscure and must be assessed from data. The computational

cost included calculating spatial covariance matrix and its

inverse limits the usage of MVDR Beamformer for real-time

applications like Therapeutic Ultrasound Imaging. Whereas

considering the real-time implementation, the complexity of

the covariance matrix generation and its inversion become

a difficult assignment. In sub-array MVDR, to decrease the

size of the spatial covariance matrix, the transducer cluster

is partitioned into overlapping subarrays, and the covariance

matrices for each sub-array is averaged over the array; comes

about producing covariance matrix and its inverse practically

implementable.

III. LITERATURE SURVEY

Our conventional MVDR Beamformer has high computa-

tional cost as we need to calculate the R[n] and its inverse,

which does not allow us to apply this in practical implemen-

tations despite its excellent performance. QR Decomposition

does not require the R[n] and its inverse calculations, which,

when applied on the beamformer, will a better Beamformer

with less computational complexity [12]. The transducer

array is split into ’P’ (P=M-L+1) overlapping sub-arrays,

covariance is generated and averaged across the array. This

method is termed as spatial smoothing [12].

The subarray data vector is given by

xl[n] =

















xl[n]

xl+1[n]

.

.

.

xl+L−1[n]

















(11)

here L is the subarray size, which takes values l = 0, 1, 2. . .

M-L. In order to make the subarray vectors into orthonormal

vectors, we apply a transformation to make the weight calcu-

lation simpler [12]. The subarray data vector in the transform

domain is given by

zl[n] = T [n]xl[n] (12)

The steering vector is given by

a[n] = [1 1 1 . . . ..1]T (13)

The steering vector in transform domain is given by

az[n] = T [n]a[n] (14)

The weight vector in transform domain is given by

wz[n] =
az[n]

aHz [n]az[n]
(15)

The beamformer output [12] is given by

y[n] =
1

M − L + 1

M−L
∑

l=0

WH
z [n]z1[n] (16)

Transformation matrix T[n] has to be calculated by defining

a sub-array data matrix U[n] of size (M-L+1) x L

U [n] =























xM−L[n] xM−L+1[n] . . . . xM−1[n]

xM−L−1[n] xM−L[n] . . . . xM−2[n]

.. .. ..

.. .. ..

.. .. ..

xn[n] x1[n] . . . . xL−1[n]























(17)

QR Decomposition algorithm is applied to the matrix

U [n] = Q[n]S[n] (18)

where Q[n] is MxN Orthogonal matrix and S[n] is an NxN

upper triangular matrix.

UT [n] = QT [n]ST [n] (19)

QT [n] = S−T [n]UT [n] (20)

The transformation matrix can be derived from the above

equations as

T [n] = S−T [n] (21)
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FIGURE 3. MVDR beamformer architecture.

By using all the above equations we get the value of T[n] get

transformed sub array data vector and transformed steering

vector respectively as

zl[n] = S−T [n]xl[n] (22)

az[n] = S−T [n]a[n] (23)

where ST is a lower triangular matrix. We can simply com-

pute az[n]

ST [n]az[n] = a[n] (24)

The beamformer output will now look below when we

apply the forward substitution technique mentioned in the

paper [12]. The QR Based MV Beamformer Block Dia-

gram is explained in Figure 3. The PCGR Algorithm is

explained in the later sections.

y[n] = wHz
1

M − L + 1

M−L
∑

l=0

S−T [n]xl[n] (25)

y[n] = wHz S
−T [n]xmean[n] (26)

The accelerated QR-based MVDR block diagram is given

in Figure 4. We had used a Fast Fourier Transform (FFT)

for converting time-domain data to the frequency domain

and IFFT for back conversion. The algorithm for finding the

output y[n] is described in figure 5.

A. QR DECOMPOSITION ALGORITHMS

QR factorization/QU factorization is the commonly used

terminology for QRDecomposition in Linear Algebra. This is

FIGURE 4. Accelerated QR-based MVDR block diagram.

FIGURE 5. Accelerated QR-based MVDR block diagram.

the process by which a matrix A is decomposed into a

product, which culminates to A = QR of an orthogonal

matrix Q and an upper triangular matrix R. The QR algorithm

is a very powerful algorithm to stably compute the eigen-

values and the corresponding eigenvectors/Schur vectors.

For computing the QR Decomposition, we can use different
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algorithms like Householder transformations/Givens rota-

tions [13], Gram–Schmidt process [14].

The method by which we calculate the U[n] is explained in

the Figure 6.

FIGURE 6. Hardware realisation of U [n].

1) SCHMIDT ORTHONORMALIZATION ALGORITHM

We have a set of input vectors (linearly independent)

v1, v 2, v 3 . . . , v n. The algorithm [15] normalizes the first

input vector

a: u1 = normalize(v1)

For the second u2vector to be orthogonal to the first one,

we need to delete the v2parallel to u1part, which is a simple

projection

b: u2 = normalize(v2 − (v2.v1)u1)

We now have two orthonormal vectors; we now need to delete

the parallel components of each of them and so on, for the

third vector.

When applying this procedure on a system, the uk vectors

are still not precisely orthogonal due to rounding errors. The

lack of orthogonality is particularly bad for the ‘‘classical

Gram – Schmidt’’ and we can claim that the classical Gram –

Schmidt method is numerically unstable [16].

A minor change in the algorithm, which is referred to as

MGS / modified Gram-Schmidt, will stabilize the Gram –

Schmidt method [17]. The algorithm calculates uk according

to the following equations.

u
(1)
k = vk − Proju1(vk ) (27)

u
(2)
k = u

(1)
k − Proju2(u

(1)
k ) (28)

.

.

u
(k−1)
k = u

(k−2)
k − Projuk−1

(u
(k−2)
k ) (29)

The numerical complexity of the latter algorithm is

floating-point operations asymptotically of O(nk2), where n

is the vector dimensionality.

2) GIVENS ROTATIONS

Wallace Givens was the personwho introduced this method to

the world. Afterward, the method was named after him. The

decomposition results are stored in arrays which originally

store A, which will avoid us in using additional arrays in the

givens rotation scheme.

Diverse uses for QR decomposition of Matrices are possi-

ble. It can be used to determine amatrix’s eigenvalues to solve

the so-called QR algorithm. Two rows of the matrix under

transformation rotate on every step of the Givens Rotation

scheme [18]. This transition parameter is chosen such that

one of the entries in the existingmatrix is eliminated. Initially,

the first column entries are removed one by one, so the same

is performed with the second column, etc., till column n − 1.

The matrix which results is R.

There are two main stages in the algorithm: selecting the

rotation parameter, and the second is rotation itself, which

is done over two rows of the current matrix. The entries of

these rows situated to the left of the pivot column are zero;

thus, there is no need for modifications. The inputs in the

pivot column are rotated at the same moment as the rotation

parameter is selected. The second part of the move, therefore,

consists of rotating two-dimensional vectors generated by the

rotated row entries positioned on the right side of the pivot

column [19]. So far as operations are concerned, modifying

a column is equal to multiplying two complex numbers,

one of these complex numbers is modulus 1. Two complex

numbers will result in one subtraction, one addition, and four

multiplication.

G(i, j, θ) =

























1 0 0 .. .. .. .. 0

0 1 0 .. .. .. .. 0

. . . .. .. .. .. .

. . . c .. s . .

. . . .. .. .. .. .

. . . − s .. c .. .

. . . .. .. .. .. .

0 0 0 .. .. .. .. 1

























(30)

where c = cosθ , s = sinθ and as we know c2 + s2 = 1

The product G(i, j, θ)X represents a counter-clockwise

rotation of the vector X in the (i,j) plane of θ radians.

QR decompositions can be computed with a series of Givens

Rotations. Each rotation zeros an element in the sub diagonal

of the matrix and forms the R matrix. The concatenation of

all the Given Rotations forms the orthogonal Q matrix.

We will see an example of Givens Rotation. R calculation

is explained as a flow [20]

we take the 3 × 3 matrix as follows

A =





r1 r2 r3
a1 a2 a3
b1 b2 b3



 (31)

Givens Rotation Algorithm will generate the upper tri-

angular matrix R from the above matrix by eliminating

a1, b1 and b2 in a three-stage of elimination.

Stage 1: The first Givens rotation matrix denoted by

G1 and is defined as [21]

G1 =





c − s 0

s c 0

0 0 1



 (32)
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where

c =
1

√

r21 + a21

(33)

s =
a1

√

r21 + a21

(34)

The matrix G1 is multiplied with input matrix A to eliminate

a1 term. So the resulting matrix is G1∗A

Stage 2: The second givens rotation matrix is denoted by

G2 and is defined as

G2 =





c 0 s

0 1 0

s 0 c



 (35)

where

c =
r1

√

r1
2
+ a21

(36)

s =
b1

√

r1
2
+ a21

(37)

in the step 2 we multiply the matrix G2 with matrix obtained

in stage 1 to eliminate b1. So the resulting matrix is G2∗G1∗A

Stage 3: Givens rotation matrix G3 is defined as

G3 =





1 0 0

0 c s

0 − s c



 (38)

where

c =
a2

√

a2
2
+ b22

(39)

s =
b2

√

a1
2
+ b22

(40)

here in step 3 we multiply the matrix G3 with matrix obtained

in stage 2 to eliminate b2. Resulting matrix is the upper

triangular matrix, our R

R = G3∗G2∗G1∗A (41)

3) MODIFIED SQUARED GIVENS ROTATIONS

QRdecomposition of amatrix A results in twomatrices Q and

R A=QR Where Q is an orthogonal matrix and R is an upper

triangular matrix. The matrix A can be also be decomposed

using Squared Givens Rotation (SGR) [21]as

A = QAD
−1
U U (42)

where QA = QDR

DU = D2
R (43)

U = DRR (44)

DR = diag(R) (45)

DU = diag(U ) (46)

MSGR Algorithm will be explained by taking a 3× 3 matrix

of complex values as below





r

a

b



 =





r1 r2 r3
a1 a2 a3
b1 b2 b3



 (47)

MSGR generates the upper triangular matrix U from the

above matrix by eliminating a1, b1 and b2 in a three stage

process.

Stage 1:

Rotate rows r and a to eliminate element a1.

Introducing u, which is defined [21] by u = r∗

1 r

u = u+ a∗

1a

Similarly introducing v as

v = W
(−
1

2
)

a a (48)

where wa > 0 is a scalar factor.

v = v−
v1

u2
u (49)

Then back conversion from V space is defined as

a = W

1

2
a v (50)

where

Wa = Wa
u1

u2

Stage 2:

Rotate r and b to eliminate b1.r is already in U space. The

row b is translated to V space by

v = Wa

1

2 b (51)

vb is updated as

vb = vb −
vb1

u1
u (52)

Then back conversion from V space from equation 42 is as

follows

b = Wb

1

2 vb (53)

whereWb = Wb
u1

u1

Stage 3:

Rotate a and b in order to eliminate b2. a must be translated

to U-space and b in to V-space.

va = a2
∗a
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Then update ua and vb. Finally, the last row must be trans-

lated to U-space to get matrix U. The MSGR method for a

general case is sited in the paper [21] as below

u = u+ wv∗kvv = v− (
vk

uk
)∗uw = w

uk

uk
(54)

Finally the matrix R is obtained from matrix U.

4) FAST TEOPLITZ ORTHOGONALIZATION

A matrix T is Toeplitz if the elements are constant

on-diagonal. Because a Toeplitz matrix is calculated by a

limit of 2n-1 numbers, here are algorithms that solve Toeplitz

linear equation structures using justO(n2) operations, or even

O(n log2 n) while implementing quick techniques [21].

Consider Martix A

A =









t0 t−1 t−2 .. .. t−n
t1 t0 t−1 .. .. t1−n
t2 t1 t0 .. .. t2−n

tm tm−1 tm−2 .. .. tm−n









(55)

The size of Toeplitz matrix A is (m+1)x(n+1). Shift invari-

ance property of the Toeplitz matrix can be utilized to solve

our problem of QR Decomposition. The paper [21] describes

how the Matrix A can be partitioned, and it suggests two

methods to do it.

Matrix A’s QR Decomposition is given by A=QR

(R−1)
T a = (A−1)

T x, Where R is upper triangular matrix

of order n+1. The calculation of R consists of two stages [35].

A−1 = P−1

[

R−1

0

]

(56)

The above equation describes QR decomposition of mxn

matrix, where P is an orthogonal matrix of order m and R is

an upper triangular matrix of order n [35]. The actual method

is shown below in figure 7

FIGURE 7. Fast teoplitz orthogonalization.

Stage 1 will compute the r−1
k and wk from rk and

w1,w2,. . . .wk−1.

Stage 2will compute rk+1,Uk andVk fromfirst determined

the k th column of R and Vk using equations.

IV. ACCELERATED QRD-MV BEAMFORMER

IMPLEMENTATION USING CGR ALGORITHM

CGR-QRD has less number of multiplications than the GR

implementations in the literature [22]. Hence, it requires

fewer resources to perform the decomposition. Apart from

reduced computational complexity, CGR-QRD can exploit

more fine-grained and coarse-grained parallelisms compared

to other native approaches. The 2D systolic array architecture

for Column wise givens rotation depicts the involvement

of much overlapping in computation and communications

between the processing elements, which is described in

figure 8.

Here in this sectionwe describe theQRD-MVBeamformer

implementation [12] using CGR Algorithm described in the

paper [26]. The process is explained in below

Algorithm 1 Accelerated QRD-MV Beamformer

Input: U[n], a[n]

Input: S[n] = QR Decomposition of U[n] method used is

CGR

Input: az[n]= forward substitute (sT [n], a[n])

Input: wz[n] =
az[n]

azH [n]az[n]
xmean[n] = Column mean(UT [n])

zmean[n] = forward substitute(ST [n], xmean[n])

We need to calculate the upper triangular matrix using

the Column wise given rotation algorithm.

We need to calculate vector x which is Lx = b by using

the forward substitution technique, where L is lower

triangular martix.

We need to calculate the mean of the columns of the

matrix U[n].

Output: y[n] = wHz [n]zmean[n]

Acceleration process is explained in the literature survery

now we will see how we use the Column wise givens rotation

to find the upper triangular matrix and how to is more efficent

that the standard methods.

Consider the non-singular matrix X of size n x n which is

given as

R = QTX (57)

where QQT = I and Q = Qn−1 . . . . . .Q2Q1, I is an Identity

Matirx and Qk = Gkk,k+1 . . . .Gkn−2,n−1, 1 <= k <= n− 1

where Gi,j = diag(Ii−2,Gi,j, Im−1) and

G =

[

c s

−s c

]

c =
Ai−1,j

t
, s

Ai,j

t
and t =

√

A2i−1,j + A2i,j if we denote

GRM as the number of multiplication operators required for

Givens Rotation and CGRM as that of Column Wise Givens

Rotations, we will culminate to the below findings.

CGRM =
2n3 + 3n2 − 5n

2
(58)

GRM =
4n3 − 4n

3
(59)

we take the ratio of 46 and 47,

β =
CGRM

GRM
=

3(2n+ 5)

8(n+ 1)
(60)

If n goes to infinity, β will become
3

4
, ie, if we increase the

size of the matrix, the number of multiplications in CGR will

become
3

4
times that of Givens Rotations, which will reduce
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FIGURE 8. Scheduling of operations for CGR.

the complexity of Operations [22]. Many of the previous

studies have shown successful results in reducing the com-

putational cost, but all of them are often viewed as approx-

imate implementations of the traditional MV beamformer.

Here we propose a computationally superior QRD based MV

beamformer, which is mathematically like the traditional MV

beamformer [12]. The algorithm of the CGR based MVDR

beamformer is explained below.

V. THE PROPOSED ARCHITECTURE- PIPELINED COLUMN

WISE GIVENS ROTATION (PCGR)

We had explained about the QRD based MV beamformer

in the earlier sections. The spatial covariance matrix and its

Inverse is not required for us here, but significant calculations

are still necessary to perform calculations for QR Decom-

position. Results from paper [12] have already described the

method of finding the beamformed output by using U[n] and

S[n] without having to calculate Q[n]. Acceleration method

also is depicted in paper [12] which is adapted in our study

also, and the computations are made superior in our study

were we propose a new architecture for finding the R. The

scheduling of CGR operations for FPGA implementation in

the proposed system is shown in Figure 11 as new scheme

named as PCGR (Pipelined Column Wise Givens Rotation).

Here in this section, we propose a new architecture for

finding the Column Wise Givens Rotation in a superior

method. The architecture of the Givens Generation [23], [24]

is modified with memory elements to store all the interme-

diate values which have enabled us to pipeline the entire

architecture, thereby saving the clock cycles to complete an

Algorithm 2 CGR MVDR Beamformering Algorithm

1: Initializations: FFT defining N=1024 Sensors used

M=32; Subarray Length used L=8;Overlap O=128;

Number of scan lines =61;

2: Operations 3 to 6 to be performed for each scan line: •

We need to perform 1 K Point FFT with N-O Channels

and O old samples, for M Channels. •For a focal

point perform delay compensation for each subband by

multiplying with steering vector calculated for the point.

•Grouping of subbands are required, Subband0(bin0)

to subbandN/2(binN/2) of 0 to M-1 Channels is

explained Bin0=[F0(0),F1(0),F2(0) . . . . . . .FM−1(0)]

Bin1=[F0(1),F1(1),F2(1) . . . . . . .FM−1(1)]

BinN/2=[F0(N ),F1(N ),F2(N ) . . . . . . .FM−1(N )]

•Across each subband group, perform the subarray

averaging and generate the R Matrix using CGR

Algorithm •Compute adaptive weights and output •

Align 1024 frequency bins and feed to IFFT and generate

time domain data for each IFFT frame replace previous

128 samples with new samples.

3: Generate the scan line by repeating the above operations.

4: Align all 61 scan lines and perform dynamic range com-

pression, bilinear interpolaration and generate an Ultra-

sound Frame.

5: Perform steps 1 to 4 to generate a minimum of 30 frames

in one second to get a good ultrasound image.

iteration, the value paid for this is extra flopswhich are used to

store the intermediate values. The modified Given generation
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FIGURE 9. Proposed architecture of the row updation processing
element-RU.

FIGURE 10. Proposed architecture of the given generation processing
element-GG.

architecture is mentioned below in Figure 10, and the Row

updationmodified architecture is shown in Figure 9. The Row

updation architecture [25], [26] is modified with pipelining

features that enable us to save the time of computations. The

new architecture is shown in Figure 11.We use a system clock

of 20 MHz, which is multiplied using the FPGA Clocking

resources to achieve a 200 Mhz clock, which is used to run

the modified algorithm’s adaptive weight calculation.

A. ARCHITECTURE AND THE WORKING

The Architecture of column-wise givens rotation is adopted

from paper [21], which is modified and implemented on

FPGA utilizing the parallel processing capabilities of FPGA.

The proposed architecture, whose work is explained below

for a 4× 4 Matrix, can be extended to any size of the matrix.

Column 1 is given as input to GG1. All the operations in GG1,

as shown in the architecture below, require only column 1.

The outputs obtained have to be stored in memory, as shown

in figure 11. The first column of thematrix becomes zero after

GG1 except for the first element, p3 (obtained from GG1 ),

as shown above.

FIGURE 11. Operation architecture for a 4 × 4 matrix.

Parallelly RU12 can begin the row 1 update for column 2,

followed by row4 update, row3 update, and row2 update for

column 2. The inputs to RU12 is column 2 and column 1,

along with other outputs, which is already stored in memory.

The output obtained is updated in column 2. The first element

of this updated column 2, i.e., X ′

12 has to be stored separately

since it remains unchanged in the final output matrix—the

rest of the elements changes in GG2.

The input to GG2 is this updated column 2. This takes the

place of column 1 as it was given as input to GG1 earlier.

Here, the first element, i.e., X12, has to be made zero so

that the same architecture can be used. As compared to

GG1, the difference is X41 becomes X42, X31 becomes X32,

X21 becomes X22 and X11 becomes X12 which is made zero

already. The outputs of GG2 operations and the updated

column2, also have to be stored in memory, as shown

above. The second column of the final output matrix is

ready here, the first element of which was already obtained

from RU12 and stored earlier. The second element will be

p2 (obtained from GG2 ) and the rest zeros, as shown in

figure 11.

The inputs to RU13 is column 3 and column 1, along

with other outputs, from memory. Just like RU12, RU13,

too, can begin the row 1 update for column 3, parallelly

with GG1 operations, followed by row4 update, row3 update,

and row2 update for column 3. The output obtained is

updated in column 3. The first element of this updated

column 3, i.e.,X ′

13, has to be stored separately since it remains

unchanged in the final output matrix—the rest of the elements

changes in the next update in RU23 and GG3.

The inputs to RU23 is updated column 2 from GG2 in

which X12 was already made zero and updated column 3

from RU13, along with other outputs from the memory of

GG2. The first element of this updated column 3 can be

made zero, but not compulsory, since X12 is already zero.

RU23 can begin the row 2 update for column 3, parallelly with

GG2 operations, followed by row4 update and row3 update
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for column 3. The output obtained is updated in column 3.

The output of the row 2 update, i.e., X ′

23 has to be stored

separately since it remains unchanged in the final output

matrix—the rest of the elements changes in GG3. The input

to GG3 is this updated column 3, with X13 and X23 made zero.

The same architecture can be used as explained above for

GG2. The outputs of GG3 operations, as well as the updated

column3, also have to be stored in memory, as shown above.

The third column of the final output matrix is ready here,

the first and second elements of which were already obtained

from RU13 and RU23 and stored earlier. The third element

will be p1 (obtained from GG3) and the last element zero,

as shown in figure 11.

The inputs to RU14 is column 4 and column 1, along with

other outputs, from the memory of GG1. Just like RU12 and

RU13, RU14, too, can begin the row 1 update for column 4,

parallelly with GG1 operations, followed by row4 update and

row3 update for column 4. The output obtained is updated in

column 4. The first element of this updated column 4, i.e., X ′

14
has to be stored separately since it remains unchanged in the

final output matrix. The rest of the elements changes in the

next update in RU24 and RU34.

The inputs to RU24 is updated column 2 from GG2’s

memory, in which X12 was already made zero and updated

column 4 from RU14, along with other outputs from the

memory of GG2. The first element of this updated column 4,

can be made zero, but not compulsory since X12 is already

zero. RU24 can begin the row 2 update for column 4, par-

allelly with GG2 operations, followed by row4 update and

row3 update for column 4. The output obtained is updated

in column 4. The output of the row 2 update, i.e., X ′

24 has to

be stored separately since it remains unchanged in the final

output matrix—the rest of the elements changes in RU34. The

inputs to RU34 is updated column 3 from GG3, in which X13
and X23 was already made zero, and updated column 4 from

RU24, along with other outputs from the memory of GG3.

RU34 can begin the row 3 update for column 4, parallelly

with GG3 operations, followed by row4 update for column 4.

The output obtained is updated in column 4. The output of the

row 3 update is X ′

34, and the output of row 4 update is X’44.

The resultant matrix is shown below. The architecture of a

4 × 4 Matrix is shown in Figure 11. The architecture was

finding the upper triangular matrix using PCGR shown

in Figure 14. The algorithm of the new architecture is

explained below. The working of the FSM is stated in the

algorithm, which enables us to save the various repeated

multiplications and divisions as we reuse the GG and RU

blocks, the additional hardware required here are the memory

and FIFO blocks.

The architecture is summerized in figure 12.

VI. EXPERIMENT SETUP

The complete experiment setup consists of a Custom

Transceiver 128-Channel Board shown in Figure 15,

High-End FPGA Prototyping Board (DBF Board) and a PC.

Both boards are connected using Board to Board connector.

Algorithm 3 Pipelined Column Wise Givens Rotation -

PCGR
Input: Matrix should be saved to memory intially.

Input: FSM should generate inputs for fetching required

values to FIFO from memory which is given as input to

GG and RU Blocks.

Input: FSM should generate appropriate r/w signal to write

outputs from GG and RU Blocks to memory.

STATE A-Reset STATE

STATE B-Memory reading and writing to FIFO Control

Signals generation

STATE C-Reading from FIFO and GG Execution i=1 to

3 GGi

STATE D-Writing output from GGi to Memory

STATE E-Writing values from Memory to FIFO and

input to RU Block.

STATE F-Execution of RU Block and Writing out to

Memory.

STATE B- if the i <= 3 or else STATE G

STATE G - Output STATE. Output Matrix is written into

Memory.

Output: Upper Triangular Matrix

FIGURE 12. Architecture for finding the upper triangular matrix using
PCGR.

The ultrasound transducer probe is connected to the

Transceiver board using the probe connector. The 128 chan-

nel Ultrasound Transceiver board has high voltage transmit

pulsars to energize up to 128 transducers and 128 channels

analog frontend (AFE) signal conditioning circuits. The

board moreover contains a Xilinx Kintex-7 XC160T FPGA,

which acts as the transmit-receive controller and trans-

mit beamformer for the system. The board also has an

appropriate clock and control tree structures for clock and

power administration. The high voltage transmit pulsars

energizes the transducer cluster through FPGA controlled

(transmit beamformer), and the received echoes are analog

signal conditioned and gushed to a 128 channel Digital

Beamformer (DBF) board to perform receive beamforming.
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FIGURE 13. Ultrasound research platform.

FIGURE 14. The whole setup for the experiment.

The DBF board is engineered based on Xilinx-Kintex-7

410T FPGA, which has sufficient assets for versatile array

signal processing algorithms for QRD-MV Beamformer exe-

cution. The Transceiver board has a high voltage transmitter

section which transmits the ultrasound pulses. The pulses

goes to the probe connected to the board, which produces

echoes after hitting targets from the cyst phantoms. The

echoes are captured and processed by the transceiver analog

front end section and transferred to the Digital Beamformer

Board(DBF). The DBF Board on which we had implemented

the QR-MV Beamformer algorithm. The beamformed data

is transferred to the PC via Gigabit Ethernet and processed

by the custom made software and the ultrasound image is

formed.

The data for second experiment was collected from

verasonicsTM ultrasound research platform [27] shown in

figure 13 and using the phased array 64 element probe and

the data is processed in MATLAB.

The Setup for validating the results consists of a

VerasonicsTM UltrasoundResearch Platform,which is unique

hardware that takes real data from the phantom through their

ultrasound probe and process the data using Beamforming

Algorithms which are in build and form the images using

their image forming tools. This Research Platform has a PC
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FIGURE 15. The setup of the implementation.

FIGURE 16. The custom ultrasound transceiver board.

connected to it, and this unit is a flexible tool for transmitting,

receiving, and processing ultrasound information. Amplifi-

cation, sampling, and filtering operations are performing on

receiving ultrasound data. Finally, the vantage unit stores the

data and handovers to host the computer via PCI express

cable [27]. Another important piece of equipment that helps
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FIGURE 17. Beam pattern of DAS beamformer.

TABLE 1. Computational complexity of accelerated MVDR beamformer.

TABLE 2. PCGR performance summary.

in collecting real data is the target Phantoms. There are dif-

ferent phantoms like Kidney Phantom, Resolution Phantom,

etc.. Resolution Phantom is a rectangular box of dummy

bodies containing numerous cysts. The cyst’s locations are

known and clearly defined. This information is also pro-

vided to the user on the phantom, and this allows the user

to fine-tune/validate his/her algorithm with the resolutions

obtained from the real data.

The real experiment setup is shown in Figure 15.

VII. RESULTS AND DISCUSSIONS

The proposed PCGR Architecture is implemented on

Kintex 7 custom board using Verilog HDL. The RTL Sim-

ulation, Synthesis and Implementation was carried out on

FIGURE 18. Beam pattern of PCGR-MVDR beamformer.

Custom Designed FPGA Boards and results were validated

with results from Ultrasound Research Platform.

A. FPGA IMPLEMENTATION

The implementation of the accelerated QRD-MV beam-

former was completed on the Prototype setup mentioned

earlier in the experimental setup section. We had completed

simulations and implementations to validate Algorithm’s

behavior and performance [30]. We had implemented the

Algorithm onCustom FPGABoard, which is called as Digital

Beamformer Board (DBF), which is connected to PC via

Gigabit Ethernet port, and the data from sensor come from

to this DBF Board through the board to board connector.

The resource utilization for XC7K410T FPGA is detailed

in Table 4 and Table 3. The resource utilization was on the

higher side compared with standard implementations as in

our work we had used pipelining to improve the latency

and clock frequency the price paid for this is the extra

hardware incurred to implement the pipeline. We used Xilinx

LogiCORE IP to implement the Fast Fourier Transform for

the architecture [36] as shown in Figure 3.

B. VALIDATION OF RESULTS

We have used the Verasonics Research Platform to vali-

date our results. The Vantage Research Ultrasound Platform

uses proprietary hardware and software technologies to pro-

vide direct access to raw ultrasound data, while preserving

the ability to perform high-quality real-time imaging with

custom software, at clinically useful frame rates. We had

used P4-2v phased array 64-element phased array probe

for our research. It has a pitch of 0.3mm, Elevation focus

of 50-70mm, sensitivity of -64-95 dB. We used Precision

Multi-purpose Tissue mimicking Resolution Phantom for our

experiment to identify the algorithm’s performance for reso-

lution. The proposed architecture of MVDRwas validated on

real data captured from resolution phantom using Ultrasound

Research PlatformVantage-64. As Figure 20 explains that the
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TABLE 3. Comparison of proposed work with previous works.

TABLE 4. FPGA resource utilization for 32 channel QRD-MV beamformer.

FIGURE 19. Multiple cyst image of DAS beamformer.

CGR -MVDR Beamformer has more resolution compared to

DAS Beamformer in Figure 19.

Simulations and Implementations were performed to val-

idate the idea put forward in this article. The performances

of MV and QRD-MV beamformers are similar; the paral-

lel pipelined architecture has improved the performance of

beamformers in achieving higher frames per second(fps). The

beam pattern of conventional beamformer-DAS and accel-

erated QRD-MVDR beamformer for a single cyst at a zero

degree angle are shown in Figure 17 and Figure 18.

FIGURE 20. Multiple cyst image PCGR based MV beamformer.

The beamwidth becomes narrow in accelerated

QRD-MVDR than conventional by a factor of 0.6 mm.

Images from the Research Platform for DAS beamformer

and accelerated QRD-MV beamformer for multiple cysts are

shown in figure 19 and figure 20, respectively. The cysts are

separated in figure 20 more than figure 19.

C. COMPARISON WITH LITERATURES

Parallelism and Pipelining techniques have been utilized to

make the implementation faster and less complicated by oper-

ations. MVDR and QRD-MVDR beamformers are the same

and one in terms of performances. FPGA Implementation

of the PCGR based QRD on Kintex 7 FPGA is carried to

compare the results with that from the Research Platform. The

resource utilization of PCGRwith previousworks is tabulated

in Table 3. The previous works related to MV-Beamformer

has been compared in the table mentioned above, works

[37]–[39] are taken for comparison here, which has compara-

ble results with our algorithm. The computational complexity

of accelerated MVDR beamformer based on QR decomposi-

tion is shown in Table 1.
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VIII. CONCLUSION

In this work, an accelerated QRDMV beamformer using

the column-wise given rotation algorithm is implemented

on the custom transceiver board Figure 16. We have also

implemented the PCGR based QR-MV Beamformer, which

reduces the computational time, as we modified the architec-

ture of the conventional CGR Algorithm [21] for porting it

on the FPGA. The performance summary of the algorithm is

pictured in Table 2. For hardware optimization, the computa-

tional blocks employed in the PCGR blocks were effectively

reused by adding extra memory and control logic. The archi-

tecture is implemented on Verasonics Ultrasound Research

Platform, in vitro experiments, was carried out and concluded

that the image quality is superior to the standard methods.

It is evident from the implementation that the number of

clock cycles required to form a beam depends on the adaptive

weight vector generation time, and it increases as the number

of channels increases. Real-time performance is investigated

on FPGA Prototype Lab Model and results are comparable

withMATLABMVDRModel ported on Verasonics Vantage-

64 ultrasound research platform.
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