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ABSTRACT
The concept of T-normed fuzzy TM-subalgebras is introduced by applying the notion of t-norm to fuzzy TM-algebra and its
properties are investigated. The ideas based on minimum t-norm are generalized to all widely accepted t-norms in a fuzzy TM-
subalgebra.The characteristics of an idempotent T-normed fuzzy TM-subalgebra are studied. The properties of image and the
inverse image of a T-normed fuzzy TM-subalgebra under homomorphism is discussed. The T-direct product and T-product of
T-normed fuzzy TM-subalgebras are also considered.
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1. INTRODUCTION

Triangular norms (abbreviation t-norms) were first appeared in the
background of statistical metric spaces, introduced by K. Menger
[1] and studied later by Schweizer and Sklar [2,3]. Klement et al.
[4–6] conducted a systematic study on the related properties of
t-norms. The concept of fuzzy sets were introduced by Zadeh [7].
Rosenfeld [8] applied this concept to group theory and introduced
fuzzy subgroups leading to the fuzzification of different algebraic
structures. Alsina et al. [9,10] and Prade [11] suggested to use a
t-norm for fuzzy intersection and its t-conorm for fuzzy union, fol-
lowing some attempts ofHohle [12] in introducing t-norms into the
area of fuzzy logics. This was extended by combining the notions of
fuzzy sets and t-norm to different algebraic structures such as group
[13–17], BCK-algebra [18], BCC-algebra [19], B-algebra [20],
KU-algebra [21,22], BG-algebra [23], and so on, and defined differ-
ent types of product of fuzzy substructures on them.

TM-algebra is a class of logical algebra based on propositional
calculus, introduced by Megalai and Tamilarasi [24]. They have
investigated several characterizations of it and relation between
TM-algebras and other algebras. They [25] applied the concept of
fuzzy set to TM-algebra and studied the properties of the newly
obtained algebraic structure called fuzzy TM-algebra. Some opera-
tions on fuzzy TM-subalgebra were discussed and fuzzy ideals were
also defined. Several fuzzy substructures in TM-algebras were con-
sidered by many researchers (see [26–28]).
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Speaking in terms of t-norm, fuzzy TM-subalgebra was actually
defined using the concept of minimum t-norm. Hence we gener-
alize this concept by taking an arbitrary t-norm. The whole paper
is arranged as follows: Relevant definitions and theorems needed
in sequel are included in Section 2. In Section 3, we introduced
the notion of T-normed fuzzy TM-subalgebra with suitable exam-
ples and the characteristics are studied. An idempotent T-normed
fuzzy TM-subalgebra is defined depending on which whether the
image set of the membership function becomes a subset of the sub-
semigroup of idempotents of the semigroup ([0, 1], T) or not and
its properties are studied. The properties of image and the inverse
image of a T-normed fuzzy TM-subalgebra under homomorphism
are investigated. In Section 4, some properties of the T-product and
T-direct product of T-normed fuzzy TM-subalgebras and the rela-
tionship between them are also considered. The conclusion and a
comparison with the existing results are given in the last section.

2. PRELIMINARIES

We recall some definitions and results that will be required in the
sections that follow:

Definition 1.  [24] ATM-algebra is a triple (X, ∗, 𝜃), whereX (≠ 𝜙)
is a set with  a fixed element 𝜃 and ∗ is a binary operation such that
the conditions

i. x ∗ 𝜃 = x

ii.
(

x ∗ y) ∗ (x ∗ z) = z ∗ y
hold for all x, y, z ∈ X.
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A nonempty subset S of a TM-algebra X is called a TM-subalgebra
of X if x ∗ y ∈ S for all x, y ∈ S.

Definition 2. [29] Let (X1, ∗1, 𝜃1) and (X2, ∗2, 𝜃2) be two TM-
algebras. The direct product X = X1 × X2 is also a TM-algebra
with the binary operation ∗ defined as (x1, x2) ∗ (

y1, y2) =
(

x1 ∗1 y1, x2 ∗2 y2) for all (x1, x2) , (y1, y2) ∈ X1 × X2 and 𝜃 =
(𝜃1, 𝜃2).
Definition 3. [7] A fuzzy set A in a set X is a pair (X, 𝜇A), where
the function 𝜇A: X → [0, 1] is called themembership function ofA.
For 𝛼 ∈ [0, 1], the set U (𝜇A; 𝛼) : = {x ∈ X|𝜇A (x) ⩾ 𝛼} is called an
upper level set of A.

Definition 4. [7] Let A = (X, 𝜇A) and B = (Y, 𝜂B) are fuzzy sets
in X and Y, respectively, and f is a mapping defined from X into Y.
Then f (A) is a fuzzy set in f (X), where 𝜇f (A) is defined by

f (𝜇A) (y) = {sup {𝜇A (x) |x ∈ f –1 (y) ≠ 𝜙}0 if f –1 (y) = 𝜙
for all y ∈ f (X) and is called the image of A under f. A is said to
have sup property if, for every subset P ⊆ X, there exists p0 ∈ P
such that 𝜇A (p0) = sup {𝜇A (p) | p ∈ P . The inverse image f –1 (B)
inX is also a fuzzy set ofX, where 𝜂f –1(B) is defined by f –1 (𝜂B) (x) =𝜂B (f (x)) for all x ∈ X is also a fuzzy set of X.

When X is taken as a TM-algebra, then we have the following defi-
nition:

Definition 5. [25] A fuzzy set A = (X, 𝜇A) of a TM-algebra X is
called a fuzzy TM-subalgebra of X if 𝜇A(x∗ y) ⩾ min{𝜇A(x), 𝜇A(y)},
for all x, y ∈ X.

Theorem 1. [25] Let f ∶ X → Y be a homomorphism from a
TM-algebra X onto a TM-algebra Y. If A = (X, 𝜇A) is a fuzzy TM-
subalgebra of X, then the image f (A) = (

Y, f (𝜇A)) of A under f is a
fuzzy TM-subalgebra of Y.

Now we recall some preliminary ideas on t-norm.

Definition 6. [5] A t-norm is a function T ∶ [0, 1]×[0, 1] → [0, 1]
that satisfies

i. T (x, 1) = x

ii. T
(

x, y) = T
(

y, x)
iii. T

(

x,T (

y, z)) =
iv. T

(

x, y) ⩽ T (x, z) whenever y ⩽ z, for all x, y, z ∈ [0, 1].
A t-norm T on [0, 1] is called a continuous t-norm if T is a contin-
uous function from [0, 1] × [0, 1] to [0, 1] with respect to the usual
topology.

Some examples of t-norm are the following:

i. Lukasiewicz t-norm TLuk
(

x, y) = max {x + y – 1, 0} for all
x, y ∈ [0, 1].

ii. Minimum t-norm Tmin
(

x, y) = min
(

x, y) for all x, y ∈ [0, 1].
iii. Product t-norm TP

(

x, y) = x ⋅ y for all x, y ∈ [0, 1].

iv. Drastic t-norm TD
(

x, y) = ⎧⎨⎩
y if x = 1
x if y = 10 otherwise

for all x, y ∈
[0, 1].

Some useful properties of a t-norm T used in the sequel are the
following:

i. T (x, 0) = 0 for all x in [0, 1].
ii. TD

(

x, y) ⩽ T
(

x, y) ⩽ Tmin
(

x, y) for any t-norm T and all
x, y in [0, 1].

iii. T
(

T(x, y),T (z, t)) = T
(

T(x, z),T (

y, t)) = T (T(x, t),
T
(

y, z)) for all x, y, z and t in [0, 1].
Definition 7. Let T be a t-norm. Denote by ET the set of all idem-
potents with respect to T, that is, ET = {x ∈ [0, 1] |T (x, x) = x}.
A fuzzy set A in X is called an idempotent T-normed fuzzy set if
Im (𝜇A) ⊆ ET.

Definition 8. [16] A t-norm T1 dominates a t-norm T2, or
equivalently, T2 is dominated by T1, and write T1 >> T2 if
T1 (T2(x, y),T2(a, b)) ⩾ T2 (T1 (x, a) ,T1 (y, b)) for all x, y, a,
b ∈ [0, 1].
We can extend these concepts by generalizing the domain of t-norm
to∏n

i=1 [0, 1] to define the function tn-norm.

Definition 9. [16] The functionTn ∶ ∏n
i=1 0, 1→ [0, 1] is defined

by Tn (x1, x2,⋯ , xn) = T
(

xi,Tn–1 (x1,⋯ , xi–1, xi+1,⋯ , xn)) for
all 1 ⩽ i ⩽ n, where n ⩾ 2,T2 = T and T1 = id (identity).

For a t-norm T and every xi, yi ∈ [0, 1], where 1 ⩽ i ⩽ n
and n ⩾ 2, we have Tn

(

T
(

x1, y1) ,T (

x2, y2) ,⋯ ,T (

xn, yn)) =
T
(

Tn (x1, x2,⋯ , xn) ,Tn
(

y1, y2,⋯ , yn)).
3. T-NORMED FUZZY TM-SUBALGEBRA

OF A TM-ALGEBRA

We first apply the notion of t-norm to obtain a new fuzzy substruc-
ture called T-normed fuzzy TM-subalgebra in a TM-algebra.

Definition 10. Let (X, ∗, 𝜃) be a TM-algebra and A = (X, 𝜇A)
be a fuzzy set in X. Then the set A is a T-normed fuzzy TM-
subalgebra over the binary operation ∗ if it satisfies 𝜇A (x ∗ y) ⩾
T {𝜇A (x) , 𝜇A (y)} for all x, y ∈ X.

Example 1. Define a fuzzy set A in the TM-algebra X given in
Table 1, by 𝜇A (𝜃) = 0.5, 𝜇A (a) = 0.3, 𝜇A (b) = 0.7, and 𝜇A (c) =0.6. Then A is a TLuk-normed fuzzy TM-subalgebra of X.

Definition 11. A T-normed fuzzy TM-subalgebra A is called an
idempotent T-normed fuzzy TM-subalgebra of X if Im (𝜇A) ⊆ ET.
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Table 1 Cayley Table

T
(

T
(

x, y), z)

∗ 𝜃 a b c𝜃 𝜃 a c b
a a 𝜃 b c
b b c 𝜃 a
c c b a 𝜃

T
(

T
(

x, y), z)

∗ 𝜃 a b c𝜃 𝜃 a c b
a a 𝜃 b c
b b c 𝜃 a
c c b a 𝜃
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Example 2. Consider a TM-algebra X = {𝜃, a, b, c} defined in
Table 1. Define a fuzzy set A in X by 𝜇A (x) = 0, if x ∈ {𝜃, a} and𝜇A (x) = 0.6, if x ∈ {b, c}. Consider a t-norm Tk defined in [30] by

Tk
(

x, y) = ⎧⎨⎩
min {x, y} ifmax {x, y} = 10 ifmax {x, y} < 1, x + y ⩽ 1 + k
k otherwise

for all x, y ∈ [0, 1]. Take k = 0.6. It is easy to check that 𝜇A (x ∗ y) ⩾
Tk {𝜇A (x) , 𝜇A (y)} for all x, y ∈ X. Also Im (𝜇A) ⊆ ETk . Hence A is
an idempotent Tk-normed fuzzy TM-subalgebra of X when k = 0.6.

Proposition 2. If A is an idempotent T-normed fuzzy TM-
subalgebra of TM-algebra X, then we have the following results for all
x ∈ X:

i. 𝜇A (𝜃) ⩾ 𝜇A (x)
ii. 𝜇A (𝜃 ∗ x) ⩾ 𝜇A (x)
iii. If there exists a sequence xn in X such that lim

n→∞𝜇A (xn) = 1 then𝜇A (𝜃) = 1
Proof. Let x ∈ X.

i. Then by using the two conditions in Definition 1, we get𝜇A (𝜃) = 𝜇A (𝜃 ∗ 𝜃) = 𝜇A ((x ∗ 𝜃) ∗ (x ∗ 𝜃)) = 𝜇A (x ∗ x) ⩾
T {𝜇A (x) , 𝜇A (x)} = 𝜇A (x).

ii. 𝜇A (𝜃 ∗ x) ⩾ T {𝜇A (𝜃) , 𝜇A (x)} = T {𝜇A (x ∗ x) , 𝜇A (x)} ⩾
T {T {𝜇A (x) , 𝜇A (x)} , 𝜇A (x)} = 𝜇A (x) since it is idempotent.

iii. By (i), 𝜇A (𝜃) ⩾ 𝜇A (x) for all x ∈ X, therefore 𝜇A (𝜃) ⩾𝜇A (xn) for every positive integer n. Consider, 1 ⩾ 𝜇A (𝜃) ⩾
lim
n→∞𝜇A (xn) = 1. Hence, 𝜇A (𝜃) = 1.

Theorem 3. Let A1 and A2 be two T-normed fuzzy TM-subalgebras
of X. Then A1 ∩ A2 is a T-normed fuzzy TM-subalgebra of X.

Proof. Let x, y ∈ A1 ∩ A2. Then x, y ∈ A1 and A2. Now,𝜇A1∩A2 (x ∗ y)= min {𝜇A1 (x ∗ y) , 𝜇A2 (x ∗ y)}⩾ min {T {𝜇A1 (x) , 𝜇A1 (y)} ,T {𝜇A2 (x) , 𝜇A2 (y)}}⩾ T {min {𝜇A1 (x) , 𝜇A2 (x)} ,min {𝜇A1 (y) , 𝜇A2 (y)}}= T {𝜇A1∩A2 (x) , 𝜇A1∩A2 (y)} .
Hence, A1 ∩ A2 is a T-normed fuzzy TM-subalgebra of X.

This can be generalized to obtain the following theorem:

Theorem 4. Let {Ai|i ∈ I} be a family of T-normed fuzzy TM-
subalgebras of a TM-algebra X. Then∩i∈IAi is also a T-normed fuzzy
TM-subalgebra of X, where ∩i∈IAi = {< x, infi∈I 𝜇Ai

(x) >∶ x ∈ X}.
Proof. For any x, y ∈ X, we have 𝜇Ai

(x) ⩾ infi∈I 𝜇Ai
(x)

and 𝜇Ai

(

y
) ⩾ infi∈I 𝜇Ai

(

y
)

. Hence for every i ∈ I,

T
(𝜇Ai

(x) , 𝜇Ai

(

y
)

) ⩾ T
(

infi∈I 𝜇Ai
(x) , infi∈I 𝜇Ai

(

y
)

)

, and so

infi∈I T(𝜇Ai
(x) , 𝜇Ai

(

y
)

) ⩾ T
(

infi∈I 𝜇Ai
(x) , infi∈I 𝜇Ai

(

y
)

)

. It
follows that

𝜇∩i∈IAi

(

x ∗ y) = inf
i∈I𝜇Ai

(

x ∗ y)⩾ inf
i∈IT

(𝜇Ai
(x) , 𝜇Ai

(

y
)

)

⩾ T
(

inf
i∈I𝜇Ai

(x) , inf
i∈I𝜇Ai

(

y
)

)

= T
(𝜇∩i∈IAi

(x) , 𝜇∩i∈IAi

(

y
)

)

.

This completes the proof.

Theorem 5. Let T be a t-norm and let A be a fuzzy set in a TM-
algebra X with Im (𝜇A) = {𝛼1, 𝛼2,⋯ , 𝛼n}, where 𝛼i < 𝛼j whenever
i > j. Suppose that there exists an ascending chain of subalgebras
S0 ⊂ S1 ⊂ ⋯ ⊂ Sn = X of X such that 𝜇A (S̃k) = 𝛼k, where
S̃k = Sk\Sk–1 for k = 1,⋯ , n and S̃0 = S0. Then A is a T-normed
fuzzy TM-subalgebra of X.

Proof. Let x, y ∈ X. If x and y belong to the same S̃k, then𝜇A (x) = 𝜇A (y) = 𝛼k and x ∗ y ∈ Sk. Hence 𝜇A (x ∗ y) ⩾ 𝛼k =
min {𝜇A (x) , 𝜇A (y)} ⩾ T

(𝜇A (x) , 𝜇A (y)). Assume that x ∈ S̃i and
y ∈ S̃j for every i ≠ j. Without loss of generality we may assume
that i > j. Then 𝜇A (x) = 𝛼i < 𝛼j = 𝜇A (y) and x∗y ∈ Gi. It follows
that 𝜇A (x ∗ y) ⩾ 𝛼i = min {𝜇A (x) , 𝜇A (y)} ⩾ T

(𝜇A (x) , 𝜇A (y)).
Consequently, A is a T-normed fuzzy TM-subalgebra of X.

Theorem6. Let A be an idempotent T-normed fuzzy TM-subalgebra
of X, then the set I𝜇A = {x ∈ X|𝜇A (x) = 𝜇A (𝜃)} is a TM-subalgebra
of X.

Proof. Let x, y ∈ I𝜇A . Then 𝜇A (x) = 𝜇A (𝜃) = 𝜇A (y) and so,𝜇A (x ∗ y) ⩾ T {𝜇A (x) , 𝜇A (y)} = T {𝜇A (𝜃) , 𝜇A (𝜃)} = 𝜇A (𝜃).
By using Proposition 2, we know that 𝜇A (x ∗ y) ⩽ 𝜇A (𝜃). Hence𝜇A (x ∗ y) = 𝜇A (𝜃) or equivalently x ∗ y ∈ I𝜇A . Therefore, the set
I𝜇A is TM-subalgebra of X.

Theorem 7. If A is a TM-subalgebra of X, then the characteristic
function 𝜒A is a T-normed fuzzy TM-subalgebra of X.

Proof. Let x, y ∈ X. We consider here three cases:

Case (i). If x, y ∈ A, then x ∗ y ∈ A since A is a TM-subalgebra of
X. Then 𝜒A

(

x ∗ y) = 1 ⩾ T {𝜒A (x) , 𝜒A
(

y
)}.

Case (ii). If x, y ∉ A, then 𝜒A (x) = 0 = 𝜒A
(

y
)

. Thus 𝜒A
(

x ∗ y) ⩾0 = min {0, 0} = T {0, 0} = T {𝜒A (x) , 𝜒A
(

y
)}.

Case (iii). If x ∈ A and y ∉ A (or x ∉ A and y ∈ A), then𝜒A (x) = 1, 𝜒A
(

y
) = 0. Thus 𝜒A

(

x ∗ y) ⩾ 0 = T {0, 1} =
T {1, 0} = T {𝜒A (x) , 𝜒A

(

y
)}.

Therefore, the characteristic function 𝜒A is a T-normed fuzzy TM-
subalgebra of X.

Theorem 8. Let A be a non-empty subset of X. If 𝜒A satisfies𝜒A
(

x ∗ y) ⩾ T {𝜒A (x) , 𝜒A
(

y
)}, then A is a TM-subalgebra of X.

Proof. Let x, y ∈ A. Then 𝜒A
(

x ∗ y) ⩾ T {𝜒A (x) , 𝜒A
(

y
)} =

T {1, 1} = 1 so that 𝜒A
(

x ∗ y) = 1, i.e., x ∗ y ∈ A. Hence, A is a
TM-subalgebra of X.

Proposition 9. Let Y be a TM-subalgebra of X and A be a fuzzy set
in X defined by

𝜇A (x) = {𝜆, if x ∈ Y𝜏, otherwise
Pdf_Folio:708
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for all 𝜆, 𝜏 ∈ [0, 1]with 𝜆 ⩾ 𝜏. Then A is a TLuk-normed fuzzy subal-
gebra of X. In particular if 𝜆 = 1 and 𝜏 = 0 then A is an idempotent
TLuk-normed fuzzy subalgebra of X. Moreover, I𝜇A = Y.

Proof. Let x, y ∈ X. We consider here three cases:

Case (i). If x, y ∈ Y, then

TLuk
(𝜇A (x) , 𝜇A (y)) = TLuk (𝜆, 𝜆)= max (2𝜆 – 1, 0)

= {2𝜆 – 1 if 𝜆 ⩾ 120 otherwise⩽ 𝜆= 𝜇A (x ∗ y)
Case (ii). If x ∈ Y and y ∉ Y (or, x ∉ Y and y ∈ Y), then

TLuk
(𝜇A (x) , 𝜇A (y)) = TLuk (𝜆, 𝜏)= max (𝜆 + 𝜏 – 1, 0)= {𝜆 + 𝜏 – 1 if 𝜆 + 𝜏 ⩾ 10 otherwise⩽ 𝜏= 𝜇A (x ∗ y)

Case (iii). If x, y ∉ Y, then

TLuk
(𝜇A (x) , 𝜇A (y)) = TLuk (𝜏, 𝜏)= max (2𝜏 – 1, 0)

= {2𝜏 – 1 if 𝜏 ⩾ 120 otherwise⩽ 𝜏= 𝜇A (x ∗ y) .
Hence, A is an TLuk-normed fuzzy TM-subalgebra of X.

Assume that 𝜆 = 1 and 𝜏 = 0. Then TLuk (𝜆, 𝜆) =
max (𝜆 + 𝜆 – 1, 0) = 1 = 𝜆 and TLuk (𝜏, 𝜏) = max (𝜏 + 𝜏 – 1, 0) =0 = 𝜏. Thus 𝜆, 𝜏 ∈ ETLuk , that is, Im (𝜇A) ⊆ ETLuk . So, A is an idem-
potent TLuk-normed fuzzy TM-subalgebra of X.

Also,

I𝜇A = {x ∈ X|𝜇A (x) = 𝜇A (𝜃)} = {x ∈ X, 𝜇A (x) = 𝜆} = Y.

Therefore, I𝜇A = Y.

Theorem 10. Let A be a T-normed fuzzy TM-subalgebra of X and𝛼 ∈ [0, 1]. Then if 𝛼 = 1, the upper level set U (𝜇A; 𝛼) is either empty
or a TM-subalgebra of X.

Proof. Let 𝛼 = 1. Suppose U (𝜇A; 𝛼) is not empty and let x, y ∈
U (𝜇A; 𝛼). Then 𝜇A (x) ⩾ 𝛼 = 1 and 𝜇A (y) ⩾ 𝛼 = 1. It follows
that 𝜇A (x ∗ y) ⩾ T

(𝜇A (x) , 𝜇A (y)) ⩾ T (1, 1) = 1 so that x ∗ y ∈
U (𝜇A; 𝛼). Hence, U (𝜇A; 𝛼) is a TM-subalgebra of X when 𝛼 = 1.
Theorem 11. If A is an idempotent T-normed fuzzy TM-subalgebra
of X, then the upper level set U (𝜇A; 𝛼) of A is a TM-subalgebra of X.

Proof.Assume that x, y ∈ U (𝜇A; 𝛼). Then𝜇A (x) ⩾ 𝛼 and𝜇A (y) ⩾𝛼. It follows that 𝜇A (x ∗ y) ⩾ T {𝜇A (x) , 𝜇A (y)} ⩾ T (𝛼, 𝛼) = 𝛼 so
that x ∗ y ∈ U (𝜇A; 𝛼). Hence, U (𝜇A; 𝛼) is a TM-subalgebra of X.

Theorem 12. Let A be a fuzzy set in X such that the set U (𝜇A; 𝛼)
is a TM-subalgebra of X for every 𝛼 ∈ [0, 1]. Then A is a T-normed
fuzzy TM-subalgebra of X.

Proof. Let for every 𝛼 ∈ [0, 1], U (𝜇A; 𝛼) is a TM-subalgebra
of X. In contrary, let x0, y0 ∈ X be such that 𝜇A (x0 ∗ y0) <
T {𝜇A (x0) , 𝜇A (y0)}. Let us consider, 𝛼0 =12 [𝜇A (x0 ∗ y0)+ T {𝜇A (x0) , 𝜇A (y0)}]. Then 𝜇A (x0 ∗ y0) <𝛼0 ⩽ T {𝜇A (x0) , 𝜇A (y0)} ⩽ Tmin {𝜇A (x0) , 𝜇A (y0)} and
so x0 ∗ y0 ∉ U (𝜇A; 𝛼0) but x0, y0 ∈ U (𝜇A; 𝛼0). This
is a contradiction and hence 𝜇A satisfies the inequality𝜇A (x ∗ y) ⩾ T {𝜇A (x) , 𝜇A (y)} for all x, y ∈ X.

Theorem 13. Let f ∶ X → Y be a homomorphism of TM-algebras
(X, ∗, 𝜃) onto (Y, ∗1, 𝜃1). If B = (Y, 𝜇B) is a T-normed fuzzy TM-
subalgebra of Y, then the pre-image f –1 (B) = (

X, f –1 (𝜇B)) of B under
f is a T-normed fuzzy TM-subalgebra of X.

Proof.Assume that B is a T-normed fuzzy TM-subalgebra of Y and
let x, y ∈ X. Then

f –1 (𝜇B) (x ∗ y) = 𝜇B ( f (x ∗ y))= 𝜇B ( f (x) ∗1 f (y))⩾ T {𝜇B (f (x) , 𝜇B (f (y)))}= T { f –1 (𝜇B) (x) , f –1 (𝜇B) (y)} .
Therefore, f –1 (B) is a T-normed fuzzy TM-subalgebra of X.

Theorem 14. Let T be a continuous t-norm and let f be an epimor-
phism of TM-algebras (X, ∗, 𝜃) onto (Y, ∗1, 𝜃1). If A is a T-normed
fuzzy TM-subalgebra of X, then f (A) is a T-normed fuzzy TM-
subalgebra of Y.

Proof. Let y1, y2 ∈ Y. Take A1 = f –1 (y1) ,A2 = f –1 (y2) and
A3 = f –1 (y1 ∗1 y2).
Consider the set

A1 ∗ A2 = {x ∈ X|x = a1 ∗ a2 for some a1 ∈ A1 and a2 ∈ A2}.
If x ∈ A1 ∗ A2, then x = x1 ∗ x2 for some x1 ∈ A1 and x2 ∈ A2
and so f (x) = f (x1 ∗ x2) = f (x1) ∗1 f (x2) = y1 ∗1 y2, that is, x ∈
f –1 (y1 ∗1 y2) = A3. Thus A1 ∗ A2 ⊆ A3. It follows that

𝜇f(A) (y1 ∗1 y2) = sup
x∈f –1(y1∗1y2)𝜇A (x)= sup
x∈A3𝜇A (x)⩾ sup
x∈A1∗A2𝜇A (x)⩾ sup
x1∈A1,x2∈A2𝜇A (x1 ∗ x2)⩾ sup
x1∈A1,x2∈A2T (𝜇A (x1) , 𝜇A (x2)) .

Since T is continuous, for every 𝜀 > 0 there exists a number 𝛿 > 0
such that if

supx1∈A1 𝜇A (x1) – x∗1 ⩽ 𝛿 and supx2∈A2 𝜇A (x2) – x∗2 ⩽ 𝛿, then
T
(

supx1∈A1𝜇A (x1) , supx2∈A2𝜇A (x2)) – T
(

x∗1, x∗2) ⩽ 𝜀.
Choose a1 ∈ A1 and a2 ∈ A2 such that

supx1∈A1 𝜇A (x1) – 𝜇A (a1) ⩽ 𝛿 and supx2∈A2 𝜇A (x2) – 𝜇A (a2) ⩽ 𝛿.
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Then
T
(

supx1∈A1 𝜇A (x1) , supx2∈A2 𝜇A (x2)) – T (𝜇A (a1) , 𝜇A (a2)) ⩽ 𝜀.
Consequently

𝜇f(A) (y1 ∗1 y2) ⩾ sup
x1∈A1,x2∈A2T (𝜇A (x1) , 𝜇A (x2))

⩾ T

(

sup
x1∈A1𝜇A (x1) , supx2∈A2𝜇A (x2)

)

= T
(𝜇f(A) (y1) , 𝜇f(A) (y2))

which shows that f (A) is a T-normed fuzzy TM-subalgebra of Y.

Theorem 15. Let f ∶ X → Y be an epimorphism from a TM-algebra
X onto a TM-algebra Y. If A is an idempotent T-normed fuzzy TM-
subalgebra of X, then the image f (A) of A under f is a T-normed fuzzy
TM-subalgebra of Y.

Proof. Let A be an idempotent T-normed fuzzy TM-subalgebra of
X. By Theorem 11, U (𝜇A; 𝛼) is TM-subalgebra of X for every 𝛼 ∈[0, 1]. Therefore by Theorem 1, f (U (𝜇A; 𝛼)) is a TM-subalgebra
of Y. But f (U (𝜇A; 𝛼)) = U

(

f (𝜇A) ; 𝛼). Hence U
(

f (𝜇A) ; 𝛼) is a
TM-subalgebra of X for every 𝛼 ∈ [0, 1]. By Theorem 12, f (A) is a
T-normed fuzzy TM-subalgebra of Y.

4. PRODUCT OF T-NORMED FUZZY
TM-SUBALGEBRAS

We will define a concept called T-product in TM-algebra using a
t-norm T, analogue to the pointwise product of functions.

Definition 12. LetA1 = (

X, 𝜇A1) andA2 = (

X, 𝜇A2) be two fuzzy
sets of a TM-algebraX andT be a t-norm. Then the T-product ofA1
and A2 denoted by [A1 ⋅ A2]T = (

X, 𝜇[A1⋅A2]T
)

and is defined by𝜇[A1⋅A2]T (x) = T
(𝜇A1 (x) , 𝜇A2 (x)) for all x ∈ X. Also 𝜇[A1⋅A2]T =𝜇[A2⋅A1]T .

Theorem16. LetA1 andA2 be twoT-normed fuzzy TM-subalgebras
of X. If T∗ is a t-norm such that T∗ >> T, then the T∗-product of A1
and A2, [A1 ⋅ A2]T∗ is a T-normed fuzzy TM-subalgebra of X.

Proof. For any x, y ∈ X, we have

𝜇[A1⋅A2]T∗ (x ∗ y) = T∗ (𝜇A1 (x ∗ y) , 𝜇A2 (x ∗ y))⩾ T∗ (T (𝜇A1 (x) , 𝜇A1 (y)) ,T (𝜇A2 (x) , 𝜇A2 (y)))⩾ T
(

T∗ (𝜇A1 (x) , 𝜇A2 (x)) ,T∗ (𝜇A1 (y) , 𝜇A2 (y)))= T
(𝜇[A1⋅A2]T∗ (x) , 𝜇[A1⋅A2]T∗ (y)

)

.

Hence, [A1 ⋅ A2]T∗ is a T-normed fuzzy TM-subalgebra of X.

Corollary 17. Let f ∶ X → Y be an epimorphism of TM-algebras.
Let T and T∗ be t-norms such that T∗ >> T. If A1 and A2
be two T-normed fuzzy TM-subalgebras of Y, then the pre-images

f –1 (A1) , f –1 (A2) and f –1 ([A1 ⋅ A2]T∗) are T-normed fuzzy TM-
subalgebras of X.

Proof. Since every epimorphic pre-image of a T-normed fuzzy
TM-subalgebra is again a T-normed fuzzy TM-subalgebra, their
T∗-product is also T-normed fuzzy TM-subalgebra by the previous
theorem.

The relationship of f –1(𝜇[A1⋅A2]T∗
)

with the T∗-product of

f –1 (𝜇A1) and f –1 (𝜇A2) can be viewed by the following theorem:

Theorem 18. Let f ∶ X → Y be an epimorphism of TM-algebras.
Let T and T∗ be t-norms such that T∗ >> T. Let A1 and A2 be two
T-normed fuzzy TM-subalgebra of Y. If [A1 ⋅ A2]T∗ is the T∗-product
of A1 and A2 and [f –1 (A1) .f –1 (A2)]T∗ is the T∗-product of f –1 (A1)
and f –1 (A2), then

f –1(𝜇[A1⋅A2]T∗
) = [f –1 (𝜇A1) ⋅ f –1 (𝜇A2)]T∗ .

Proof. For any x ∈ X we get,

f –1(𝜇[A1⋅A2]T∗
)

(x) = 𝜇[A1⋅A2]T∗ (f (x))= T∗ (𝜇A1 (f (x)) , 𝜇A2 (f (x)))= T∗ (f –1 (𝜇A1) (x) , f –1 (𝜇A2) (x))= [f –1 (𝜇A1) ⋅ f –1 (𝜇A2)]T∗ (x) .
Hence the proof.

Remark 1. Now let us consider about the image of T-product of T-
normed fuzzy TM-subalgebras.

Let f ∶ X → Y be an epimorphism of TM-algebras. Let T and T*

be t-norms such that T∗ >> T, where T is a continuous t-norm.
If A1 and A2 be two T-normed fuzzy TM-subalgebras of X, then
the images f (A1) , f (A2) , f ([A1 ⋅ A2]T∗), and [f (A1) ⋅ f (A2)]T∗ are
T-normed fuzzy TM-subalgebras of Y by Theorems 14 and 16.

Theorem 19. Let T and T∗ be t-norms such that T∗» T, where T
is a continuous t-norm. Let A1 and A2 be two T-normed fuzzy TM-
subalgebras of a TM-algebra X and f ∶ X → Y be an epimorphism of
TM-algebras. Then 𝜇

f
([A1⋅A2]T∗) ⊂ 𝜇[f(A1)⋅f(A2)]T∗ .

Proof. For each y in Y,

𝜇
f
([A1⋅A2]T∗)

(

y
) = f

(𝜇[A1⋅A2]T∗
)

(

y
)

= sup
x∈f –1(y)𝜇[A1⋅A2]T∗ (x)= sup
x∈f –1(y)T∗

(𝜇A1 (x) , 𝜇A2 (x))
⩽ (

sup
x∈f –1(y)𝜇A1 (x) , sup

x∈f –1(y)𝜇A2 (x)
)

= T∗ (𝜇f(A1) (y) , 𝜇f(A2) (y))= 𝜇[f(A1)⋅f(A2)]T∗ (y) .
Nextwe consider theT∗-direct product of twoT-normed fuzzyTM-
subalgebras.Pdf_Folio:710
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Definition 13. Let A1 = (

X1, 𝜇A1) and A2 = (

X2, 𝜇A2) be two
T-normed fuzzy TM-subalgebras of TM-algebras X1 and X2,
respectively, and T∗ be a t-norm. Then the T∗-direct product of
A1 and A2 denoted by [A1 × A2]T∗ = (

X1 × X2, 𝜇[A1×A2]T∗
)

and

is defined by 𝜇[A1×A2]T∗ (x1, x2) = T∗ (𝜇A1 (x1) , 𝜇A2 (x2)) for all
(x1, x2) ∈ X1 × X2.
Remark 2. Let X be a TM-algebra and I = [0, 1]. Define a map
g ∶ X × X → X by g (x) = (x, x) for all x ∈ X. We can see the
relationship between T-product and the T-direct product of two
T-normed fuzzy TM-subalgebras in the following diagram:

Clearly, [A1 ⋅ A2]T is the preimage of [A1 × A2]T under the map g.

Theorem 20. Let X = X1 ×X2 be the direct product of TM-algebras
X1 and X2. If A1 = (

X, 𝜇A1) and A2 = (

X, 𝜇A2) be two T- normed
fuzzy TM-subalgebras of X1 and X2, respectively, then A = (X, 𝜇A)
is a T-normed fuzzy TM-subalgebra of X defined by 𝜇A (x1, x2) =𝜇[A1×A2]T (x1, x2) = T

(𝜇A1 (x1) , 𝜇A2 (x2)) for all (x1, x2) ∈ X1×X2.
Proof. Let x = (x1, x2) and y = (

y1, y2) be any elements of X. We
have

𝜇A (x ∗ y) = 𝜇A ((x1, x2) ∗ (y1, y2))= 𝜇A (x1 ∗ y1, x2 ∗ y2)= 𝜇[A1×A2]T (x1 ∗ y1, x2 ∗ y2)= T
(𝜇A1 (x1 ∗ y1) , 𝜇A2 (x2 ∗ y2))⩾ T
(

T
(𝜇A1 (x1) , 𝜇A1 (y1)) ,T (𝜇A2 (x2) , 𝜇A2 (y2)))= T

(

T
(𝜇A1 (x1) , 𝜇A2 (x2)) ,T (𝜇A1 (y1) , 𝜇A2 (y2)))= T

((𝜇[A1×A2]T
)

(x1, x2) ,(𝜇[A1×A2]T
)

(

y1, y2))= T
(𝜇A (x) , 𝜇A (y)) .

Hence, A = (X, 𝜇A) is a T-normed fuzzy TM-subalgebra of X.

We can generalize previous theorem to the product of n T-normed
fuzzy TM-algebras using the function Tn defined in Definition 9.

Theorem21. Let T be a t-norm and let {Xi}ni=1 be the finite collection
of TM-algebras and X = ∏n

i=1 Xi the direct product TM-algebras
of {Xi}. Let Ai be a T-normed fuzzy TM-subalgebra of Xi, where1 ⩽ i ⩽ n. Then A = ∏n

i=1 Ai defined by 𝜇A (x1, x2,⋯ , xn) =𝜇[∏n
i=1 Ai]T (x1, x2,⋯ , xn) = Tn

(𝜇A1 (x1) , 𝜇A2 (x2) ,⋯ , 𝜇An
(xn)

)

is a T-normed fuzzy TM-subalgebra of the TM-algebra X.

Proof. Let x = (x1, x2,⋯ , xn) and y = (

y1, y2,⋯ , yn) be any ele-
ments of X =∏n

i=1 Xi. Then,

𝜇A (x ∗ y) = 𝜇A (x1 ∗ y1, x2 ∗ y2,⋯ , xn ∗ yn)= Tn

(𝜇A1 (x1 ∗ y1) , 𝜇A2 (x2 ∗ y2) ,⋯ , 𝜇An

(

xn ∗ yn))⩾ Tn
(

T
(𝜇A1 (x1) , 𝜇A1 (y1)) ,T (𝜇A2 (x2) , 𝜇A2 (y2)) ,⋯ ,T (𝜇An

(xn) , 𝜇An

(

yn
)

))

= T
(

Tn

(𝜇A1 (x1) , 𝜇A2 (x2) ,⋯ , 𝜇An
(xn)

) ,
Tn

(𝜇A1 (y1) , 𝜇A2 (y2) ,⋯ , 𝜇An

(

yn
)

))

= T
(𝜇A (x1, x2,⋯ , xn) , 𝜇A (y1, y2,⋯ , yn))= T
(𝜇A (x) , 𝜇A (y)) .

 

Hence A is a T-normed fuzzy TM-subalgebra of X.

5. CONCLUSION

The previous works related to fuzzy TM-subalgebra relied on the
conventional min/max t-norm/t-conorm dual combinations. But
the literature on t-norms suggests that there exists other widely
accepted t-norms. In this article, we put forth a new notion of
T-normed fuzzy TM-subalgebra of TM-algebra by generalizing the
concept of fuzzy TM-subalgebra (defined using minimum t-norm)
introduced in [25]. We observed that our generalized concept sat-
isfy most of the various theorems stated in the previous related
works. The theorem (Theorem 14 of [25]) which is stated as “A is
a fuzzy TM-subalgebra of a TM-algebra X if and only if its level set
U (𝜇A; 𝛼) is either empty or a TM-subalgebra for all 𝛼 ∈ [0, 1],”
is found to be different in our generalized case. Theorems 11 and
12 in this article shows that this may not hold in the case of a
T-normed fuzzy TM-subalgebra in general, but the level set can be a
T-normed fuzzy TM-subalgebra when the corresponding fuzzy set
A is an idempotent T-normed fuzzy TM-subalgebra. The converse
part of the theorem always holds.

Moreover, we studied the properties of image and the inverse image
of a T-normed fuzzy TM-subalgebra under a homomorphism.
The relationship between the T-direct product and T-product of
T-normed fuzzy TM-subalgebras is also obtained. In this paper, we
focused on the t-norms and so this can be extended by exploring
the analogous observations for the t-conorms in a fuzzyTM-algebra
based on the duality between these operators.
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