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                        Abstract. Given G , b  coloring is a proper k coloring of G  in which each and every color class 

has at least one b  vertex that has a neighbour in other k 1  color classes. The largest integer k

is the b  chromatic number ( )b G  for which G  having a b  coloring using k colors. In this 

paper, we constructed some family of graphs and found its b  chromatic number. 

                              

1.  Introduction 

All graphs we consider are simple, finite and undirected graphs. Let ( , )G V E  be a graph. Then the set 

of vertices denoted by ( )V G with order n  and set of edges denoted by ( )E G with size m . A proper 

vertex k  coloring of G is a nonempty partition { , ,..., }1 2 kP V V V  produce a color class, each iV  is an 

independent set of G . The minimum integer k  is the chromatic number ( )G  for which G  has a      

k  colorable.  A b  coloring is a proper k  coloring in which each and every color class iV
 
contains at 

least one vertex that has a neighbour in other k 1  color classes. A vertex which is satisfying the above 

property is called a b  vertex. A set of all vertices in 0S  are b  vertices is called a b  system such that 

every b  vertex belongs to different color classes. The largest integer k is the b  chromatic number 

( )b G  for which G  having a b  coloring  using k  colors. First Irving and Manlove [3] introduced the 

concept of b  chromatic number and also they derived the upper bound, ( )b G ( ) 1G   . In particular, 

they remark that, G  having a b  chromatic coloring using k  colors and inG should have at least k  
vertices having a degree k 1 . Effantin and Kheddouci discussed the b  chromatic number of some 

power graphs [2]. On b  coloring of regular graphs studied by Blidia, Maffray and Zoham [1]. The b 

chromatic number of some path related graphs discussed by Vaidya and Rakhimol [5] also they 

investigated the b  chromatic number of the degree splitting graphs of the path, shell and gear graph in 

[4]. In general, the corona of any two graphs G and H denoted byG H . Vernold Vivin and 

Venkatachalam [7]  have found the b  chromatic number of corona product of any graph G with path, 

cycle and complete graph also Vivin et al[6] investigated the b  chromatic number of star graph 

families. 

 

2.  Main Results 

In the main section, we describe few particular families of graphs and obtained its b chromatic 

number. 
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2.1.  Definition 

Let 1,n-3H K
 
be a star graph on n 2 vertices and let  1 2 3, ,..., ,( )1,n-3 nV K u u u c , where c  is the 

central vertex of H . The graph 1F  is constructed from nC  by adding a copy of graph H to every vertex 

iv  of nC  . Clearly the order of 1F
 
is ( )n n n 3 

.
 

The following family of graphs 0 1 2
1 1 1 1{ , , ,..., }kF F F F are constructed from 1F

 
such that 1 , 0,1,2,...,iF i k is 

obtained by adding i number of edges to every copy of H . 
0

1 1 n 1,n-3F F C K    

 1
1 { }n 1,n-3 1F C K e   

 2
1 { , }n 1,n-3 1 2F C K e e   

. 

. 

. 

 1 1 2{ , ,..., } ,
( )( )k

n 1,n-3 k

n 4 n 3
F C K e e e 1 k

2
 

 
 

 

 Let 
0 1 2

1 1 1 1{ , , ,..., }( ) k
nC F F F FF be denote the family of graphs and the order of every graph in ( )nCF is

( )n n n 3  .
  

2.2.  Theorem 

For any graph of ( )nCF , the b chromatic number is n . 

Proof 

Let 1F  ( )nCF and let  1( ) ,, ,j

i iV F v u 1 i n 1 j n 3      . The order of 1F  is ( )n n n 3 
 
. Suppose 

we assume the b chromatic number of 1F
 
is greater than or equal to n  that is 1( )b F n .Therefore, we 

have the existence of a b system 0S
 
such that 0S n 1  . This means that, in 1F

 
having b system 0S

 
and that b system contains n 1  vertices of degree at least n . But here 1F  having only n  vertices of 

degree n 1  and the remaining vertices are of degree at most n 3 , which contradicts our assumption 

and hence 1( )b F n . 

Now we define the following mapping 1: ( ) { }C V F 1,2,3,...,n  to vertices as follows. 

   ( )iC v  =   i              1 i n  ,    

  ( )j

iC u  = 

, ,

, ( )

,

,

i j 1 i 1 2 1 j n 3

i j 1 3 i n 1 1 j n i 1

j 3 i n 1 1 j i 2

j i n 2 j i 2

     

        

     

   








 

Thus we get a proper b  coloring of C. Therefore 1( )b F n
 
and hence 1( )b F n . 

2.3.  Definition 

Let 1,2H K
 
be a star graph with 3 vertices and let  1 2) , ,( 1,2V K u u c , where c  is the central vertex of 

H . The graph 2F  is constructed from nC  by adding a copy of graph H  to every vertex iv  of nC  . 

Clearly the order of 2F
 
is n 2n 3n  .  
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The following family of graphs 0 1
2 2{ , }F F  

are constructed from 2F
 
such that 

2 0,1,2...,,i
F i k is obtained 

by adding i number of edges to every copy of H .  
 

 0
2 2 n 1,2F F C K   

 1
2 1( { })n 1,2KF C e 

 

Let 
0 1

2 2{ , }( )nC F FF be denote the family of graphs and the order of every graph  in ( )nCF  is 3n . 

2.4.  Theorem 

For any graph of ( )nCF , n 5 the b chromatic number is n . 

Proof 

Let ( )2 nF CF , n 5 and let ( )2V F   ,, ,j

i iv u 1 i n j 1,2   . The order of 2F is 3n . Suppose we 

assume the b chromatic number of 2F
 
is greater than or equal to n  that is 2( )b F n . Therefore, we 

have the existence of  a b system 0S
 
such that 0S n 1  . This means that, in 2F

 
having b system 

0S
 
and that b system contains n 1  vertices of degree at least n . But here 2F  having only n  vertices 

of degree n 1  and the remaining vertices are of degree at most 2 , which contradicts our assumption 

and hence 2( )b F n . 

Now we define the following mapping : ( ) { }2C V F 1,2,3,...,n  to vertices as follows. 

    ( )iC v i 1 i n    

    
1

( )i

n i 1
C u

i 1 i 2




 





 

    

2
( )i

i 1 1 i n 1
C u

1 i n

   






  

Thus we get a proper b  coloring of C. Therefore ( )2b F n and hence ( ) .2b F n
 

2.5.   Definition 

Let 1 1,m-1H K , 2 1,n-1H K  and let 1 2 1( ) { , ,..., , }1,m-1 mV K u u u c , 1 2 1( ) { , ,..., , '}1,n-1 nV K v v v c  where 

, 'c c  are central vertex of 1H and 2H . Let
,m nK , m n be a complete bipartite graph with bipartitions 1V  

and 2V .The graph 3F  is constructed from ,m nK , m n  by adding m copy of graph 1H  to every vertex 

1 , )(i m nv V K and n  copy of graph 2H  to every vertex of 2 , )(i m nv V K
.
 Clearly the order of 3F

 
is 

( ) ( ) ( )m n m m 1 n n 1    
.
  

The following family of graphs 0 1 2
3 3 3 3{ , , ,..., }kF F F F is constructed from 3F such that 

3 0,1,2,...,,i
F i k is 

obtained by adding i number of edges to every copy of 1H and 2H . 
 

0
3 3 , 1, 2( )m nF F K H H   

1
3 , 1 1 2 1{ }, { }( )m nF K H e H e    

2
3 , 1 1 2 2 1 2{ , }, { , }( )m nF K H e e H e e    

. 

. 

. 
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3 , 1 1 2 2 1 2( { , ,..., }, { , ,..., }
( 1)( 2) ( 1)( 2)

,1 ,1
2 2

)k
m n k l

m m n n
F K H e e e H e e e k l  

   
     

Let 
0 1 2

3 3 3 3{ , , ,..., }( ) k
m,nK F F F FF

be denote the family of graphs and the order of every graph in ( )m,nKF

is ( ) ( ) ( )m n m m 1 n n 1     .
  

 

2.6.  Theorem 

For any graph of ( )m,nKF , the b chromatic number is m n . 

Proof  

Let 3F  ( )m,nKF and let ( )3V F  =  1 2 3V V V   where 1V  = , ,...,1 2 mv v v , 2V  =  1 2, ,...,m m m nv v v    

and 3V   
,

,

,

,

j

i

j

i

u 1 i m 1 j m 1

v m 1 i m n 1 j n 1

    

      

  
 
  

. The order of 3F  is ( ) ( ) ( )m n m m 1 n n 1     . 

Suppose we assume the b chromatic number of 3F
 

is greater than or equal to m n  that is 

2( )b F m n  . Therefore, we have the existence of a b system 0S
 
such that 0S  m n 1   . This 

means that, in 3F
 
having b system 0S

 
and that b system contains m n 1   vertices of degree at 

least m n . But here 3F  having only m n  vertices of degree m+ n 1  and the remaining vertices are 

of degree at most m 1  in 1H  and n 1  in 2H , which contradicts our assumption and hence 

( )3b F m n 
. 

Now we define the following mapping : ( ) { ( )}3C V F 1,2,3,..., m+n  to vertices as follows, 

        
( )iC v       i     1 i m n    

        
( )

j

iC u
   
  

m i j 1 i m

j i j 1 j m 1

  

   





 

        

( )
j

m i

m n i j 1 i n
C v

m j i j 1 j n 1


   


    





  

Thus we get a proper b  coloring of C. Therefore ( )3b F m n 
 
and hence ( )3b F m n  .  

2.7.  Definition 

Let 1,n-4H = K  be a star graph on n - 3 vertices and 1 2 4) { , ,..., , }( 1,n-4 n=V K u u u c  where c  is the central 

vertex of H . Let ,nW n 4  be the wheel graph with 1 2 3 1( ) { , , ..., },n nV W v v v v v is central vertex. The 

graph 4F  is constructed from nW
 by adding a copy of graph H to every vertex (2 )iv i n 

 of nW

.Clearly the order of 4F  is ( )( )n n 1 n 4   . 

The following family of graphs 0 1 2
4 4 4 4{ , , ,..., }kF F F F  

is constructed from 4F such that 4 , 0,1,2,...,iF i k is 

obtained by adding i number of edges to every copy of H .   
0

4 4 n 1,n 4F F W K    

 1
4 { }n 1,n-4 1F W K e 

 

 2
4 { , }n 1,n-4 1 2F W K e e   

. 

. 

. 
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 4 1 2{ , ,..., } ,
( )( 5)k

n 1,n-4 k

n 4 n
F C K e e e 1 k

2
 

 
 

 

 Let 
0 1 2

4 4 4 4{ , , ,..., }( ) k
nW F F F FF be denote the family of graphs and the order of every graph in 

( )nWF is

( 1)( 4)n n n   .
    

2.8.  Theorem 

For any graph of 4F  ( )nWF , the b chromatic number is n . 

 

Proof 

Let 4F  ( )nWF
 

and let ( )4V F
1 , 4{ }j

i iv v u 2 i n 1 j n,        .The order of 4F
 

is

( 1)( 4)n n n   . Suppose we assume the b chromatic number of 4F
 
is greater than or equal to n  that 

is 4( )b F n . Therefore, we have the existence of a b system 0S
 
such that 0S n 1  . This means 

that, in 4F
 
having b system 0S

 
and that b system contains n 1  vertices of degree at least n . But 

here 4F  having only n  vertices of degree n 1  and the remaining vertices are of degree at most 4n  , 

which contradicts our assumption and hence 4( )b F n
.
 

Now we define the following mapping : ( ) { }4C V F 1,2,3,...,n  to vertices as follows, 

   

( )

( )

, ,

, ( )
( )

,

,

i

i

j

i

C v 1 i 1

C v i 2 i n

i j 1 i 2 3 1 j n 3

i j 1 4 i n 1 1 j n i 1
C u

j 4 i n 1 2 j i 2

j i n 3 j i 2

 

  

     

        


     

   








 

Thus we get a proper b  coloring of C. Therefore ( )4b F n and hence ( )4b F n  

3.  Conclusion 

In this paper, we defined some particular family of graphs such as ( )nCF
,
 ( )nCF

 ,
( )m,nKF  

( )nWF

and obtained its b chromatic number. The b chromatic numbers of central, middle and total graphs 

of above family of graphs are still open.  
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