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Structure measurements of a suspension of charged polystyrene spheres with significant 
polydispersity (16%) are reported for a wide range of particle and added salt concentrations 

and scattering wave vector. Small angle neutron scattering yielded the structure factors of 

concentrated samples that have had extensive rheological characterization. A Schulz model of 
the particle size distribution was used to reduce the intensity data and as a basis for the 

theoretical fits of the structure factors. Static light scattering measurements yielded the 
structure factors of diluted, deionized samples. Dynamic light scattering was also performed to 

study the relaxation of these structures. These measured structures were fit with a recent 

theory that accounts for both size and charge polydispersity in the suspension. These results 

and the previous extensive, rheological investigations and physical characterization yi~ld a 

complete data set on a well-characterized, model system that can be used to test theones of the 

statics and dynamics of polydisperse colloidal suspensions. 

I. INTRODUCTION 

There is a large research effort directed toward under­

standing the macroscopic behavior of complex fluids in 
terms of the underlying nature of the fluid's constituents and 

their fundamental interactions. In particular, colloidal fluids 

exhibit a wide range of mechanical, optical, and electrical 
behavior in a multiplicity of practical applications. Conse­
quently, a microscopically based understanding of these 
fluids is desirable to further the design and development of 

such materials for specific uses. For example, the develop­

ment of a colloidal suspension for a ceramic precursor or an 
electro rheological fluid could benefit substantially from un­

derstanding the macroscopic property changes resulting 

from variations in the fundamental nature of the particles, 
solvent, and added salt, polymer, and surfactant. Similar ar­

guments are made for the development of superior microe­

mulsions and polymer solutions tailored for specific applica­

tions. 
Motivated by experimentally based intuitive guidelines 

that arose from studies of colloidal suspensions and the need 
to modify these suspensions for specific applications, a more 

rigorous treatment based in statistical mechanics has been 

developed. I
-

15 The fundamental idea is to treat the suspen­
sion as a one-component macrofluid; this stochastic system 
is then amenable to description by statistical mechanics. 

Once certain simplifications have been made, such as ap­
proximations for many-body effects, then knowledge of the 

interparticle interactions and the constituents of the system 
enable complete specification of the equilibrium state of the 

sample. 15.16 The theory takes as inputs the microscopic vari­

ables of the sample and returns the equilibrium structure as 
characterized by the radial distribution function. Further 
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work relates this structure and the microscopic forces to 

the mechanical and optical properties of the 
sample. 1.2.6.10.12.13.15.17 There is certainly more than one way 

to perform the latter step; the methods include solving a 
nonequilibrium Smoluchowski equation 1.2.4.10.12.14.15.17 and 

using a mode-coupling closure to the equations of general­

ized hydrodynamics. 6
•
7 Nevertheless, these approaches that 

relate the macroscopic behavior to the microscopic proper­
ties all have as an intermediate the eqUilibrium structure of 

the sample. This quantity is fundamental to the development 
of the theory of these complex fluids. 

In the recent past, there have been a number of attempts 

to test this theoretical development for a model hard-sphere 
suspension.9

•
11

,12.17-27 The results of comparing the rheologi­

cal measurements and equilibrium and nonequiIibrium mi­

crostructure measurements with the predictions of the theo­
ries mentioned above were plagued by the dominant role of 

hydrodynamic interactions in dense hard-sphere suspen­

sions. The long-range nature of hydrodynamic interactions 
and their relative importance and coupling to the other inter­

particle and Brownian forces results in an intractable many­

body problem that is yet to be resolved. However, limited 

simulations using the Stokesian dynamics technique28
,29 

have been useful in identifying some problems in the limiting 
assumptions necessary to solve the theory. 

The results of this comparison motivated the examina­

tion of suspensions where interparticle forces dominate the 

behavior. One such model system is that of charged polysty­

rene latex in water, which is a colloidal suspension stabilized 
by surface charges on the particles. The range of the Cou­

lomb interactions can be controlled by the addition of salt 

ions that screen the particles. Thus, it is possible to have 
significant correlations between particles that are dilute in a 
hydrodynamic sense and to vary the structure of the suspen­

sion independently from the particle concentration. Recent 

494 J. Chern. Phys. 95 (1).1 July 1991 0021-9606/91/130494-15$03.00 © 1991 American Institute of Physics  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

93.180.53.211 On: Thu, 06 Feb 2014 12:28:11



Wagner et al.: Microstructure of colloidal suspensions 495 

and previous studies have developed both a description of 

the interaction forces,30-32 the microstructure of these sus­

pensions, 16 and the resultant rheology in the limit of linear 
response.4-7.IO.IS.33-36 There have been some limited studies 

of the microstructure and rheology of these suspensions in 

the past, but surprisingly few on one, well-characterized 

sample. Quasielastic light scattering CQELS) studies on 
most suspensions of rheological interest are impossible be­

cause concentrated suspensions are usually strong multiple 

scatterers. However, small angle neutron scattering 
(SANS) is not plagued by multiple scattering for these sys­

tems and has been used in some previous structural 

studies.37.38 To properly test the statistically based theories 

for the macroscopic behavior of such suspensions, the mini­
mum information required consists of the particle size, poly­
dispersity, shape, charge, added salt concentration, mea­

surements of the eqUilibrium microstructure, and 

rheological measurements in the linear response regime. 

When possible, nonequilibrium microstructure measure­

ments are also very useful in understanding the linear and 

nonlinear dynamics of the suspension. 

In this paper, we report the results of both small angle 

neutron scattering and static and dynamic light scattering 

measurements on a suspension of charged latex particles in 
water, over a wide range of salt and particle concentrations. 

This well-characterized sample has been the object of de­

tailed rheological measurements-modulus, viscosity, and 

relaxation spectrum. 39
,4O It is our goal to provide the comple­

mentary structure measurements to completely characterize 

the material, which will be used to test the fundamental ideas 
in the above theories. In the following, the sample and ex­
perimental procedure for both SANS and static and dynam­
ic light scattering will be presented. This is followed by the 
presentation of the resultant structures and a comparison 
with the best theory available for these systems, which is 
discussed in light of the applicability of the statistical me­
chanical theory to adequately describe these model fluids. A 
detailed comparison of the rheological behavior, 
these measured structures, and the various theories is 
forthcoming. 

II. STRUCTURE DETERMINATION 

The basic aspects of determining the microstructure of a 
complex fluid are well documented.41 The scattering of both 
thermal neutrons and photons can be used to measure the 
structure, with similar formalisms for reducing the experi­
mental measurements to the material structure in both tech­
niques. Light scattering is limited to dilute suspensions or 
systems with small refractive index differences as photons 
are strongly scattered by the electrons in the material. Neu­
tron scattering is less subject to multiple scattering as the 
nuclear spin coherent interaction of neutrons with the nuclei 
is small. Colloidal suspensions are nonabsorbing to thermal 
neutrons (A.::::: I nm) and the scattering equations parallel 

the Rayleigh-Gans-Debye theory for light scattering.42 The 
combination of the two techniques covers a wide range in 

wave vector and material parameters. 
The elastic scattering of thermal neutrons and the quasi­

elastic scattering of photons yield a direct measure of the 

structure factor, weighted by the form factor of the scatterer, 
the absolute scattering length density difference of the scat­

terers from the solvent, and the number of scatterers. In go­
ing from the measured scattering intensity to the quantities 

of interest, namely structure factor, form factor, scatterer 

radius, and concentration, there is an experimental method­
ology enabling one to extract this information directly from 

a series of measurements. For neutron scattering, this is out­

lined in the handbook for data analysis at the Institute Laue­

Langevin.43 The procedure reduces the scattering intensity 

l(q) by corrections for the incoherent, isotropic scattering 

from the sample geometry and cell, corrections for back­

ground, and corrections for the detector geometry. The re­
sulting ratio ofthis quantity to a reference R (q) is then plot­
ted to abstract any leftover background intensity and to 

determine a normalization for reduction by the form factor. 
These measurements also yield the particle radius, concen­

tration, and the scattering density difference of the material 

from the medium. Given the shape and composition of the 

scatterers, accurate predictions for the form factors are used 

to reduce the data further to the structure factors. Thus, with 

a consistent set of experiments, it is possible to determine 

completely the quantities mentioned above, requiring only 

fundamental knowledge of the system composition, which is 
obtained from independent measurements. Below we repro­
duce some of the fundamental relations concerning SANS, 
QELS, and the data reduction, referring the reader to Ref. 

41 for more detailed derivations. 
The scattering vector q is given by the difference 

between the incident and scattered wave vectors in the medi­

um with refractive index n s as 

q = qo - qs; q = Iql = 4~1T sin( ~). (1) 

The measured scattered intensity l(q) is proportional, to 
within an instrument factor (which will be set to one), to the 
structure of the material as 

l(q) = S(q)F;(q) + F;(q) - F;(q), 

where the single particle form function is given by 

F,(q) = r [pp(r) -Pm (r)]e-iqordr. 
Jvp 

(2) 

(3) 

The overbar denotes an average over the scattering volume 
with Vp the particle volume andpp,m the neutron scattering 
length densities for the particles and suspending medium. 
For particles of uniform composition, this reduces to 

F,(q) = (pp -Pm) r e-iq·rdr. 
Jvp 

(4) 

The structure factor Seq) for the N scatterers is defined as 

Seq) = 1 + J... (f /q'(RJ-Rk», (5) 
N j'Fk 

which is the Fourier transform of the radial distribution 
function 

Seq) = 1 + n J [g(r) - l]e - iq'rdr, 

with n the particle number density. 

(6) 
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For monodisperse spheres, Eq. (2) reduces to the com­

monly quoted expression 

I(q) = S(q)F;(q). (7) 

In direct analogy, the effective structure factor of a polydis­

perse system is defined as 

I(q) = Self (q) F;(q) = Self (q)n(pp - Pm )2V;P(q), (8) 

where Vp is the particle volume formed from a, the mean 

particle radius, as Vp = 41T[ (a)3/3]. Note that the volume 

fraction is defined in terms of the third moment of the size 
distribution as rp = n41T( (a3 )/3). In Eq. (8) above, the form 

factor P(q) is defined as 

P(q) = ~Xl(~ rpO(qai), (9) 

where Xi is the number fraction of species i and with 

p. ( a) = [ 3(sin qa - qa cos qa) ]2 (10) 
o q (qa)3 

the single sphere form factor. This simple form for the inten­

sity results in a complicated function for the effective struc­

ture factor 

as a mixture of both single particle scattering and pair corre­

lation contributions. The subscripts a and (3 refer to particle 
species. The partial structure factors are defined as 

(12) 

Because it is easier to reduce the data in terms of the effective 

structure factor Self (q), our results are analyzed according 
to Eq. (8). In a recent study, 16 it is shown how Seq) can be 

theoretically determined and how Self (q) can be physically 

interpreted. In what follows, we drop the SUbscript on Seq) 

unless necessary, with the understanding that we are analyz­

ing the data in terms of Eq. (8). 
The normalized scattering ratio R (q) written for 

spherical scatterers in a liquid is the ratio of the scattered 

intensity to that of some reference 10 (usually water for 
SANS and toluene for QELS) as 

R(q) = [n(pp -Pm)2V;P(q)S(q) +B]Io-l, (13) 

where B is the background scattering. Plotting R(q)q4 

against q4 for large qa gives a measure of the incoherent 
background as the slope and a measure ofthe prefactor as the 
intercept. This Porod plot is based on the limiting behavior 

as qa ...... 00 that S( q) ...... 1 and P( q) 0:: q - 4. Then the intercept 

has the dependence 

lim R (q)q4 = BPorod n Vp + APorodq4 0:: n (pp - Pm )2 V; 
q-oo 

(14) 

A plot of the in.~~l'cepts against number density n or volume 

fraction should be linear with zero intercept and slope pro­
portional to the scattering density and particle volume. As 
will be shown, the proportionality can be estimated, enabling 

a consistency check of these quantities. The value of the 

slope A Porod is to be subtracted from the experimental R(q) 

values to correct for any leftover background contribution to 
the scattering. The intercept values are then used to divide 

out the form factor with the correct weighting. 

Another useful analysis is to make a Guinier plot44 of 
In R(q) vsq2. In the Guinierlimit where the particle correla­

tions are negligible (qrg <: 1), the scattering ratio becomes 

(qr )2 
In[R(q)] = In[ n(pp - Pm )2V;] - --g-

3 

(15) 

where rg is the radius of gyration. For a homogeneous 
sphere, the radius of gyration is simply related to the sphere 

radius a as 

(16) 

Thus, the slope of the Guinier plot is equal to a2/5 and the 

intercept value R(q=O) =n(pp -Pm)2V; gives a mea­

sure of the scattering density if the number density is known, 

or vice versa. 

Once these plots are made, all of the physical quantities 

needed to reduce the intensities to structure factors are 

known. What is needed is a model for the form factor P( q). 

The use ofa dilute, noninteracting sample to provide P(q) is 

plagued with large error bars due to the low coherent scatter­

ing intensity relative to the incoherent background in SANS. 
A better procedure, and that adopted here, is to measure a 

number of dilute samples [Seq) = 1], fit them to a model 
form factor, and then divide the scattering ratios by this fit. 

The Porod plot results are used to normalize the data for 
SANS. For light scattering where the scattering vector is 

more limited in extent, the reduced structure is normalized 

to approach one for the largest q values. 
For homogeneous spheres, the particle form factor as 

defined above in Eq. (8) can be written as a sum over both 

polydispersity in size and in wavelength as 

PC qa) = I I XIiXi(~ )6PO (qli ai ), (17) 
Ii i a 

wi th Xi the num ber fraction of species i with radi us a i> and Xli 

the number fraction of neutrons with wavelength;t The po­

lydispersity of our sample is known from previous transmis­
sion electron microscopy (TEM) measurements and is giv­
en in Fig. 1, where the mean radius is 37.8 ± 5.5 nm.39 There 

can be some uncertainty in the TEM values as the sample 
must be dried. Further, interpreting effective diameters of 
poiydisperse samples is not straightforward as neutron scat­

tering measurements give a different moment of the size dis­
tribution. We choose to allow this as an adjustable fit param­

eter to be determined by comparing the model form factor 

with the dilute scattering measurements. 
The polydispersity of the neutron beam has been mea­

sured45 and is nearly a triangular distribution at A = 1.0 nm 

with a full width at half-maximum of9%. This is modeled as 
a three component mixture with 50% of the intensity distrib­

uted evenly about the main peak at the values ± 4.5% vari-
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FIG. \. Particle size distribution as a function of average radius. (*) TEM 

analysis (Ref. 39); (-) Schulz distribution. 

ation in A. This correction is rather small in comparison with 
the broad polydispersity of the particles and is almost negli­

gible. 
The procedure to construct the form factor is to adjust 

the mean radius of the distribution to optimize the fit to the 

measured scattering intensity ratio (minus the background 
from the Porod plot) for a dilute, noninteracting sample. 

This constructed form factor is then also fit to a Porod plot 
and the intercept B extracted. Finally, the value of the struc­

ture factor (effective) can be determined by 

seq) = R(q) - APonxl 

Bporod 

A. Schulz distribution 

[ 

BPorod ] 

P(q) model' 

(18) 

An alternative method to model size polydispersity is to 
fit the data to an analytic function for the size distribution. A 
commonly used model for a particle size distribution that is 
continuous and normalized is the Schulz distribution (see 
Ref. 41 ). Defining/( a) as the normalized probability of oc­

currence of particles of radius a, 

-(z+l)x 
lea) = (z + 1)z+ I~exp, (19) 

rr(z+l) 

where a is the mean particle size and x = ara, 
z = (I - s'l)/s'l, and s = O'ra with if the variance. The line 
in Fig. 1 is the Schulz distribution determined from the 
SANS data for the particles used in this study. 

Using this distribution for spherical, homogeneous scat­
terers, an analytical expression has been derived for the form 
factor41 

p(y)=_9_{ZI[I_ cosZIW _ 2ysinz2w ] 
2zV'6 (1 + 4u2 )Z,/2 (1 + 4u2 )Z2/2 

(20) 

Here, u = ylzl' V = arctan(u), W = arctan(2u), and 

I j = I + j. 

The Guinier analysis can also be modified for polydis­

persity effects by summing the individual scatterer result 
given above in Eq. (15) over the Schulz size distribution. 

The result is 

R(q) = [N(pp _Pm)2(4;y] f da/(a)a6
e-(qa)'/s. (21) 

From this it is readily seen that the intercept BGuinier ob­
tained from the polydisperse equation is simply related to 
that from the monodisperse equation (15) by 

B poly _ (a
6
) B mono _ ( 6)B mOno 

Guinier - (a> 6 Guinier - X Guinier , (22) 

where the normalized nth moment is 

( 
n) _ (an) _ rr;=2Zj 

X ---- • 
(a)n z7- 1 

(23) 

Further, expanding the exponential in Eq. (21) above for 

spherical particles shows that the radius determined by a 
Guinier plot [Eq. (15)] is 

A .. = ~ (a
8

) = ~ (x
8

) (a)2 (24) 
GUlmer 5 (a6 ) 5 (x6 ) • 

B. Dynamics 

The dynamic light scattering (DLS) experiments have 

been performed in the homodyne mode. The normalized 

field autocorrelation function 

g(1)(q t) = (E(q,O)E*(q,t) = S(q,t) (25) 

, <IE(q,Q) n Seq) 

was determined from the intensity autocorrelation function 
by using the Siegert relation.46 The dynamic structure factor 
of the macroion correlations is 

S(q,t) =~ f (e{iq.[Ri(tl-R/OlJ}). 
N iJ=1 

(26) 

In analyzing DLS data, the cumulant expansion has been 

widely used. According to Ackerson,47.48 the first cumulant 
for a monodisperse sample is 

K (q) = _~lng(ll(qt)1 _ =q2
H

(q). (27) 
I dt '1-0 Seq) 

The function H(q) contains the effects of the hydrodynamic 
interaction between the macroions, mediated by the solvent. 
For systems with negligible hydrodynamic interaction, 
H(q) reduces to DO, where 

o koT 
D =-- (28) 

61T1]a 

denotes the Stokes diffusion coefficient and 1] is the shear 
viscosity of the solvent. 

III. EXPERIMENT 

A.SANS 

The measurements reported here were performed on the 
D 11 instrument at the Institute Laue-Langevin in Grenoble, 
France. The samples of polystyrene latex in water, with con­
trolled salt concentration, were synthesized at the Universi­

ty of Bristol and have had extensive rheological 
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characterization. 39
•
4O Four original samples (I C, 2C, 3C, 

and 4A) were obtained with the given characteristics in Ta­

ble I, all being of the same batch of colloid, but varying in 

concentration of colloid and added salt. As indicated, some 

samples were dialyzed against a known salt concentration, 

while sample 3C was suspended in a known salt solution. 

Two of these samples were diluted with distilled water with 

the appropriate salt concentration and further dialyzed until 

equilibrated with a salt bath at 25°C, resulting in two sets of 

varying particle concentration (IA-IC and 2A-2C). Sam­

ple 4A2 is a repeat of sample 4A, used to check reproducibil­

ity, and samples B2a and B2b are dilute samples used to 

determine the form factor. We note that samples lA, IB, 2A, 

and 2B were observed to be liquidlike, while samples I C, 2C, 

3C, and 4A exhibited varying degrees of viscoelasticity, such 

that 3C and 4A required heating to load into the sample 

cells. The samples were contained in Helma I mm quartz 

cells. To complete the experimental data set, measurements 

were made on a blank cell, a cell with pure distilled water, 

and a cadmium blank. 

In order to cover a wide range of scattering vector 

(10 - 2_1 nm - 1) with good collimation, three sample detec­

tor distances were used as follows: 1.5 m with 5 m collima­

tion, 5 m with 20 m collimation, and 20 m with 40 m collima­

tion. The samples were thermostated to 25°C. 

Transmissions were measured on every sample at 20 m and 

plotted against sample volume fraction in Fig. 2. The results 

should vary approximately linearly with the logarithm ofthe 

volume fraction, as observed, with deviations attributable to 

differences in the sample cells and the experimental geome­

try for the different measurements. 

In scattering, the concentrated samples yielded distinct 

maximum rings of scattering intensity on the detector, 

which were sharp and clearly isotropic, except for sample 

2C, which showed some evidence of weak Bragg peaks on 

the intensity maximum (as shown in Fig. 3). The resulting 

TABLE 1. Sample characteristics. (A) SANS samples; (B) QELS samples. 

System ,p C .. 1t (mM) Preparation 

(A) 

lA 0.181 1.0 NaCI Dialyzed 
IB 0.10 1.0 NaCI Dialyzed 
IC 0.208 1.0 NaCI Dialyzed 
2A 0.05 0.1 LiCI Dialyzed 
2B 0.092 0.1 LiCI Dialyzed 
2C 0.1l9 0.1 LiCI Dialyzed 
3C 0.285 0.01 LiCI Added 
4A 0.353 10.0 NaCI Dialyzed 
4A2 0.353 10.0 NaCI Dialyzed 
B2b 0.001 0.1 LiCl Added 
B2a 0.01 1.0 LiCl Added 
(B) 

sets of data were then initially reduced at the Grenoble facili­

ty, following the documented procedure.49 Masking correct­

ed for the geometry of the detector and any anomalous de­

tector signals. The masked raw data are first radially 

averaged about the beam center. Each data set (at the vary­

ing sample distances and collimation) is then reduced by 

subtracting off the incoherent scattering from the cell and 

the background scattering from the instrument. This is then 

divided by the similarly corrected water sample. The final 

ratio is then scaled to the known value for water, so as to be in 

relative units. After treating the three sets of files in this 

manner, they were fitted together to correct for any differ­

ences in intensities due to collimation effects. 

B. Static and dynamic QELS 

The light scattering apparatus (ALV, FRG) employed 

in this study consisted of a computer controlled goniometer 

table with focusing and detector optics and a power stabi­

lized 3 W argon laser (Spectra Physics), a 4 bit real-time 

correlator (1023 channels), a digital rate meter, and a tem­

perature control which stabilized the temperature of the 

sample cell at T = (21 ± 1) °C. Measurements and data ac­

quisition were controlled by a personal computer. Intensity 

data were corrected by the dark rate of the photomultiplier 

and by the angle dependence of the scattering volume. The 

scattered intensity was measured in steps of 2°. The magni­

tude of the scattering vector ranged from 0.3 X 10 - 2 to 

3.3 X 10 - 2 nm - 1 with the vacuum wavelength of the inci­

dent light Ao = 488 nm in aqueous solutions with a medium 

refractive index ns = 1.33. The beam was focused through 

an index match fluid (silicon oil) and the scattering cell onto 

the scattering volume. For scattering cells, we used quartz 

tubes of 10 mm outer diameter. All measurements were nor­

malized to a reference sample (toluene) in the total q region. 

The salt-free samples listed in Table I were diluted from a 

,p (Dry weight) 

0.182 

0.106 

0.053 
0.089 

WI 0.00125% Ion exchanged 
W2 0.0125% Ion exchanged 
W3 0.025% Ion exchanged 
W4 0.000625% Ion exchanged 
W5 0.05% Ion exchanged 
W6 0.075% Ion exchanged 
W7 0.10% Ion exchanged 
W8 0.15% Ion exchanged 
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FIG. 2. One minus the SANS transmission measurements normalized to 

water ( I - 7) plotted vs the log of the particle volume fraction. 

highly concentrated polystyrene latex solution (SANS sam­

ple 2C) with deionized water. To minimize the ionic 
strength of the suspensions, a cleaned, mixed-bed ion ex­

change resin was added to the samples, removing all the 
residual salt ions and leaving only the counterions from the 

colloids and the H + and OH - from water dissociation. The 

size of the latex was determined from DLS in very diluted 
monodisperse solutions by applying the cumulant method. 
The standard deviation of the particle radius was obtained as 

the ratio of the first two cumulants a = K2/ K i . 
The DLS data were also analyzed by fitting to a double 

exponential form as 

Seq,!) = a(q)e -It/r,(q») + [1 _ a(q)]e -It/r.(q») , (29) 
Seq) 

which is a hypothesis based on a viscoelastic approximation 
to the dynamics of Brownian suspensions.7 The relaxation 

FIG. l SANS D\ \ detector output for sample 2C at distance 5 m. 

times 71 (q) and 72 (q), and weighting parameter a (q) can be 
used to study the linear response of the material to deforma­
tion. The fit was performed by a standard nonlinear error 
minimization algorithm. 50 The first and second cumulants 

are readily obtained in terms of the three fit parameters 7 1, 

7 2, and a as 

K1 (q) = a(q) + [1 - a(q)] , 

71 (q) 72(q) 

K
2
(q) = K~ (q) _ a(q) _ [1 - a(q)] (30) 

~ (q) -G (q) 

C. Monte Carlo fits 

Monte Carlo (MC) computer simulations of dilute, 
monodisperse suspensions within the framework of the one­
component macroion fluid model were used to fit the QELS 

structure measurements. The simulations are for monodis­
perse suspensions interacting via a Yukawa type potential. 

{3U(R) = 00, r<2a 

Q2L
B
e2Ka e- kr 

(1 + Ka)2 r 
(31) 

with K = (417L B nQ) 1/2 the inverse Debye-Hiickel screening 

length, L B = e2
/ ( 41T€€ok B n the Bjerrum length, and Q the 

charge on the colloids. 

A number N particles with diameter 2a are placed in a 
basic cubic cell of volume V = L 3 with 

L = [1T(26~3Nr3 (32) 

Periodic boundary conditions are used. Since L _ N 1/3, the 

number N has to be chosen sufficiently. large so that L is 
greater than the effective range of the pair potential. In all 
our MC calculations, N = 256. The simulations were started 
from a face-centered-cubic (fcc) lattice configuration or 
from a configuration obtained from a previous computation. 
Sufficient computational MC steps were allowed for the sys­

tem to reach thermal equilibrium, using the usual Metropo­

lis algorithm. 51
,52 The radial distribution function g(r) was 

calculated and the static structure factor Seq) determined 
by numerical Fourier transformation. The effective charge 
on the colloidal particles and the concentration were adjust­
ed for each sample so that the peak height and position of the 
main peak in Seq) agreed with the static light scattering 
measurements. 

IV. RESULTS AND DISCUSSION 

A. Form factor determination 

The form factor was calculated by both the analytic 
Schulz result, Eq. (20), and the discrete summation over the 
TEM distribution, as given in Eq. (17). In using the Schulz 
distribution, both the mean particle radius and the standard 
deviation of the sample were determined by the fit to the 
dilute measurements B2a and B2b. A least-mean-square fit 
procedure resulted in the values of a = 35.0 nm and 

s/Ci = 0.16 as the best fit. These are shown in Figs. 4(a) and 
4(b). No account of the polydispersity in neutron wave­

lengths was explicitly made. However, for such a small dis-
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persion relative to the dispersion in particle sizes, these ef­
fects are included together in the effective variance of the fit. 

A variation of ± 1.0 nm in the mean size and ± 0.02 in s/1z 
made a noticeable difference in the quality of the fit. 

For the form factor derived from Eq. 17, the value ofa 

was allowed to float and the entire distribution shifted pro­
portionally to match this value. The value of a = 42.0 nm 
was again determined by a least-square fit. Figures 4(a) and 
4(b) compare these two fits, with the noticeable difference 
that the Schulz distribution results in less pronounced mini­
ma in the form factor (see the inserts). 

FIG. 4. (a) B2aSANSR(q). (0), (-) Schulz distribution fit; (- - -) TEM 

based distribution fit. Cb) B2b, the same as above. The insets show the detail 

around the first minimum. 

In Fig. 5, the data were plotted as In R(q) vs q2 to ex­
tract the Guinier radius (Table II). The plots have a linear 
region at low qa and can be fit by a straight line, where the 

low qa data that show the influence of interparticle structure 
in sample B2a were rejected from the fit. The results for the 
particle radius (Table III), extracted from Eq. (15), are in 

good agreement with one another, but significantly (27%) 
higher than that determined by TEM. 39 By using the value of 

the polydispersity obtained from the Schulz fit, both the po-

TABLE II. Porod and Guinier plot results. 

Porod plot Guinier plot 

System t/J 
A XIQ5 B AXIO-' B 

lA 0.181 0.390 ± 0.008 0.0923 ± 0.0449 0.385 ± 0.073 6.25 ±0.12 

1B 0.10 0.219 ± 0.008 0.0830 ± 0.0425 0.713 ± 0.080 6.29 ± 0.13 

lC 0.208 0.472 ± 0.010 0.127 ± 0.0531 0.197 ± 0.087 6.11 ±0.14 

2A 0.05 0.0938 ± 0.0064 0.0494 ± 0.0360 0.614 ± 0.072 6.45 ± 0.11 

2B 0.092 0.180 ± 0.007 0.0518 ± 0.0403 0.962 ± 0.080 5.85 ± 0.13 

2C 0.119 0.253 ± 0.008 0.0478 ± 0.0795 0.635 ± 0.085 5.71 ±0.14 

3C 0.285 0.697 ± 0.144 0.0142 ± 0.0698 - 0.112 ± 0.088 6.48 ± 0.14 

4A 0.353 0.702 ± 0.2390 0.440 ± 0.0960 0.311 ± 0.088 6.31 ±0.14 

4A2 0.353 0.726 ± 0.189 0.360 ± 0.0860 0.0557 ± 0.088 6.25 ± 0.14 

B2b 0.001 0.000 997 ± 0.000 10 0.0076 ± 0.Dl08 - 0.327 ± 0.115 4.03 ±0.18 

B2a 0.Dl 0.0135 ± 0.0006 0.0198 ± 0.Dl15 - 0.352 ± 0.016 6.50 ± 0.059 
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TABLE III. Radius from Guinier plots. 

Radius (nm) 

System Monodisperse Polydisperse 

B2b 41.7 ± 2.5 35.8 ± 2.2 

B2a 41.9 ± 1.9 35.9 ± 1.6 

Schulz form factor 40.9 ± 1.8 35.1 ± 1.5 
TEM form factor 41.0 ± 1.8 35.1 ± 1.5 

lydisperse Guinier equation (21) or the equivalent conver­

sion equation (24) result in excellent agreement for the radi­

us, as listed in Table III. Applying the same analysis to the 

model Schulz form factor demonstrates the consistency of 
this technique for handling polydispersity (see Table Ill). 

Dynamic light scattering was performed on highly di­

luted samples where particle correlations were negligible. 

The results of using the cumulant method to determine the 

particle radius and polydispersity are a ± da = 39.6 ± 7.6 

nm, with a standard deviation of 19%. This technique is 

sensitive to the hydrodynamic radius of the sample, so the 

close agreement with the above analysis indicates that the 

particles are physically spherical and are not aggregated. 

B. Volume fraction and scattering length density 

The scattering density difference for the samples was 

extracted from the intercept values of the Guinier plot. From 

Eq. (15), it is seen that the intercept of the Guinier plot 

BGumier is equal to 

BGumier = In R(q = 0) = n(pp - Pm )2V~ 

= (~> (pp -Pm)2Vp' (33) 

The results, based on using the known volume fraction and 
the particle radius determined by the monodisperse Guinier 

analysis are shown in Table IV. The value of - 0.S6X 10 -10 

cm - 2 was used for the medium (water) and the accepted 

value for polystyrene is 1.41 X 10 - \0 cm - 2. Using the poly­

disperse Guinier fit or the conversion equation (22) results 

in an improvement of the values (see Table IV). The results 

are still low, which could be due to a number off actors that 

include error in the known volume fraction. However, the 

Porod plot that follows shows that this error is negligible. 

Table II summarizes the results for the slope (back­

ground) and intercept values obtained from Porod plots of 
each sample. These values were subtracted off the scattering 

ratios and used for normalization of the structure factors, 

TABLE IV. Scattering length density. 

Pl'Oly<'yrene (10 - '0 cm - 2) 

System Monodisperse Polydisperse 

B2b 0.89 ± 0.05 1.\9 ± 0.06 
B2a 0.97 ±0.04 1.27 ± 0.05 

Porod data (5 m) 1.34 

Porod data ( 1.5 m) 1.28 
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FIG. 6. Porod plot for the SANS data \.S m (-) best fit line; S m (- - -) best 
fit line. 

respectively. The intercepts of the Porod plots are plotted 

against volume fraction in Fig. 6 for the 1.5 and 5 m data. 

Excellent agreement with the expected volume fraction is 

evident by the linearity of the plots. The measured back­

ground has a general trend to increase with volume fraction, 

although these values do not appear to be that systematic or 

significant. 

As mentioned above, the slopes of the lines of the Porod 

plot intercepts against expected volume fraction can be used 
to estimate the scattering length density difference. From 
Eq. (14) above, this slope is seen to be proportional to the 

particle volume fraction times the square of the scattering 

length density difference, times some constant that gives the 

decay of P( q) in the q - 4 regime. This decay coefficient is 

estimated by averaging the single particle form factor over a 

cycle of 21T. The error in doing this is expected to be of order 

1/ qa and thus, should be small for our data. The slope in the 

plots of Fig. 6, denoted by A p, is then 

Ap ~ (:~> (pp - Pm)2 2~ [f" sin 2(J d(J + 0 (q~)]. 
(34) 

The results of this calculation, listed in Table IV, are in rea­

sonable agreement with the accepted value of 1.41 X 10 - 10 

cm - 2 when 35 nm is taken for the particle radius. 

C. Theoretical fits of the structure factor 

A successful model for the structure factor of poly dis­

perse, charged suspensions of spherical particles has been 
verified 16 and previously used in the determination of trans­

port coefficients. 15 It is based on solving the Ornstein-Zer­
nike equation53 with the Rogers and Y oung54 closure (R Y). 

This essentially blends the Percus-Yevick (PY) and hyper­

netted chain (HNC) closures into a thermodynamically 

self-consistent integral equation for the structure. The result 
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is constrained to satisfy equal osmotic compressibilities cal­

culated from both the pressure equation and the Ornstein­
Zernike route. Polydispersity is modeled by an n component 

discretization of the Schulz distribution, requiring the first n 

moments of the discretized distribution to equal the corre­
sponding moments for the continuous Schulz distribution. 

Charge polydispersity is assumed to scale as the surface area 
of the particle, i.e., a constant surface charge density. 

For a given interparticle potential, the OZ equation with 

the RY closure and the condition of thermodynamic consis­

tency constitute a closed set of equations for the microstruc­

ture of the liquid phase. An n component system has 

n (n + 1) /2-independent radial distribution functions char­

acterizing the mixture, requiring simultaneous solution of an 
equal number of coupled OZ-RY equations. The equations 

are solved for a choice ofR Y mixing parameter, the degree of 

thermodynamic consistency calculated, and a new value for 
the mixing parameter is estimated to improve the consisten­

cy. This iteration procedure is continued until an acceptable 

degree of consistency is achieved. For polydisperse systems 
requiring a large number of components, the computational 

time requirements for solving the coupled integral equation 

matrix, necessary at every iteration, become prohibitive. 

Further, systems with strong correlations and high particle 
density require finer resolution in the numerical calculations 

for mathematical accuracy and convergence in solving the 

equation matrix. Hence, our SANS samples, which require a 
five component discretization and have a high volume frac­

tion, cannot be modeled by the full OZ-R Y scheme given the 

present computational limitations. The full OZ-HNC equa­

tions (essentially one iteration with the RY mixing param­
eter set to infinity) are tractable and can be used for the 

fitting. 16 The QELS samples have a significantly longer 

screening length and so polydispersity effects on the micro­
structure are reduced. Here a three component fit, for which 

the RY scheme is computationally tractable, suffices to ac­

curately model the distribution. 
The interparticle potential is modeled as a Yukawa po­

tential, or equivalently, the Debye-Hiickel approximation 

to the linearized Poisson-Boltzmann equation. Essentially, 
this results in two fit parameters for the systems of interest 

here, the charge on the colloid and the screening length [see 

Eq. (31)]. The screening length is given in terms of the ionic 
strength, which depends on the total concentration of all 

small ions. For the samples dialyzed against a known salt 

bath, the ionic strength in the suspension can be estimated as 
a starting point for the fitting procedure from considering 
the Donnan equilibrium across the dialysis membrane. 55 

Equating the chemical potentials of the salt in the colloidal 

suspension and the dialysis bath and accounting for elec­
troneutrality yields an equation for the salt concentration in 

the suspension C salt in terms of the charge and volume frac­

tion of the colloids (Q and ifJ), the salt concentration in the 

dialysis bath (Cdialysis ), and the activity coefficients. Assum­
ing ideal mixing then gives40 

C salt = - (QCp~ticles ) + ~ [( QCparticles ) 2 

+ 4C ~ialYSis (1 - ifJ)2] 112. (35) 

These values lead to estimates for the salt concentrations 

that are about one-half of the bath concentrations for the 
colloidal suspensions considered here. For the QELS sam­

ples in equilibrium with ion exchange resin, where the only 

appreciable counterion concentration is from dissociated 
ions, the fit reduces to just the effective charge. In practice, 

slight adjustments in the particle concentration are also 

made to improve the fit of the peak position. This adjustment 
is kept within the experimental uncertainty in the volume 

fraction. 

The fitting procedure uses the mean particle radius (35 

nm) and the polydispersity (16%) fixed by the form factor 

fit. The number of size components is set and the distribution 

discretized. The OZ-R Y equation matrix is then solved for 
the given values of colloid charge, added salt concentration, 

and colloid concentration. Small adjustments in the latter 

parameter are made to fit the position of the primary peak in 

Seq) to the experimental measurements, if necessary. Itera­

tions on the values of Q and Csalt (where applicable) are 

performed until an optimal fit of the data is achieved. As the 

SANS samples require a minimum of five components in the 

size distribution to capture accurately the structure, the 
simpler OZ-HNC equation matrix was solved. The results 

of this fitting procedure are compared in Fig. 7 to the SANS 
structure factors, which were normalized by the Schulz form 
factor. Typically, it has been observed that using the HNC 

closure leads to a slightly higher charge as determined from 

the fit, 16 but that structures are very similar with predictable 

qualitative differences. Adding in some PY character to the 

solution will qualitatively increase the magnitude of the sec­

ondary and higher order maxima and minima, which would 
improve the correspondence to the data. These fits are simi­
lar in comparison to the data with previous SANS measure­

ments on hard-sphere-like suspensions. 21 Some of the dis­
crepancy in the first peak height can be attributed to loss of 

resolution in the signal by both the discrete detector array 

and the radial averaging. The fits were constructed to repro­
duce the low q data and fit the width of the first peak and the 

position of the second peak accurately. This results in over­

predictions for the height of the first maximum, and under­
predictions for the secondary and higher order peaks. It is 

our opinion that a full RY solution would thus be in better 
qualitative agreement with the measurements, but that the 

parameters determined would not vary significantly from 
those reported. 

As shown in Fig. 3, some of our samples clearly exhibit 
multiphase behavior. It is possible that there also exists mix­
tures ofliquid and glassy phases in some of the other concen­

trated samples. Indeed, this is also suggested by some of the 

rheological measurements, where multiple relaxation times 
are observed during frequency-dependent viscosity mea­
surements.40 A sample in this condition would exhibit struc­

ture factors that differ from a liquid in a manner qualitative­

ly as we have observed here. 

The results for the mean charge, and the salt concentra­

tion, are listed in Table V. The salt concentration determined 

in this manner is generally smaller than the value deter­
mined from Eq. (35). Titration measurements39 yielded 

1660 charges per particle, which is significantly larger than 

J. Chern. Phys., Vol. 95, No.1, 1 July 1991  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

93.180.53.211 On: Thu, 06 Feb 2014 12:28:11



Wagner et al.: Microstructure of colloidal suspensions 503 

,-... 

C"' 
'-' 
00 

3.0 

2.0 

1.0 

0'8 2. 

o 
1.0 

O.g 
2. 

1.0 

0'8 2. 

1.0 

~:8 

1.0 

~:8 

1.0 

-

4A2* 
4A 0 

000 

3C 

o 

2C 

2B 

2A 

IC 

IB 

lA 

o. O~~lTTTrnTTTT1TmlTTTrnTTIT1Tmrrrri 
0.00 0.20 1 0.40 

q (nm)' 

FIG. 7. Seq) determined from SANS and the Schulz based form factors 
(0) and the model predictions (-). 

that obtained by fitting the structure factor. This difference 
can result from a number of reasons, including that the titra­
tion measurements detect ions that may be weakly bound, 
and that the use of the linearized Debye-Hiickel potential 
(Yukawa) for such highly charged and concentrated sus­
pensions is an approximation. It is known that the true zeta 
potential will be higher (e.g., see Ref. 30) and so it is safest to 

TABLE V. SANS fit results. 

System C",,, (mM) QHNC tPHNC 

IA 0.30 340 0.181 

IB 0.38 420 0.11 
IC 0.25 300 0.208 

2A 0.29 390 0.06 
2B 0.081 390 0.092 

2C 0.010 340 0.119 
3C 0.050 300 0.285 

4A,4A2 0.50 300 0.353 

view the charge determined by the fit of the structure factor 
as the effective charge applicable to this model. This fit none­

theless is a characteristic of the system that can be used in 
further studies of the dynamics. 15 

A comparison between the structure resulting from us­

ing the Schulz distribution and the TEM based distribution 

to fit the form factor is shown in Fig. 8 for sample 1 C. The 

TEM based fit results in a lower first peak and a higher sec­

ond peak, with a phase difference for the higher order peaks. 

In general, the Schulz distribution based fit was more satis­
factory, but as shown, the differences are small. The general 

agreement among the radii determined by the Schulz distri­
bution form factor fit, the Guinier plot, and DLS measure­

ments encouraged the use of the Schulz model in the struc­

ture fits. 
Figure 9 is a comparison of the above determined struc­

ture factors and form factors from the Schulz distribution 

against the actual scattering ratios, corrected by the Porod 

data for the background. As noted by previous investiga­
tors,21 these are less discriminating than plots of Seq), but 

they do show that many details of the overall fit are reasona­

bly represented by our analysis. 

The structures of the diluted samples with ion exchange 
resin, as determined by static light scattering, are shown in 
Fig. 10. Samples Wi and W4 were used for normalization 

and showed no significant structure. The structures shown 
are more similar to those measured for simple fluids, with 

sharper and higher first peaks. These samples have a Debye 

length that is many times the particle size, and hence size 
polydispersity does not playas important a role in influenc­

ing the structure as in the SANS samples, where the screen­

ing length is a fraction of the particle diameter. 
The structures determined by QELS were fit by the inte­

gral theory using a three component discretization and the 
RY closure. The results of this best fit for the colloid charge 

and the concentration are shown in Fig. 10 and are tabulated 
in Table VI. The particle size and the polydispersity were 

3.00 

2.00 

1.00 

0.10 0.20 0.30 

q (1/nm) 

FIG. 8. Comparison of the Seq) normalized with the Schulz form factor 
(0) and that from the TEM based distribution ("') for sample 3C; (.) mod· 

el fit. 
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taken from the neutron measurements (35 nm and 16%). 
The effective charge determined in this way is consistent 
with that from the SANS fits and is significantly lower than 
the titration results. Also given in Table VI are the charge 
and volume fraction determined by Monte Carlo simulation. 
This fit is not nearly of the same quality as that shown for the 
R Y closure integral equation as the MC results are for a 
monodisperse suspension. Accounting for the polydispersity 
in size and charge is important in modeling these suspen­
sions, as evidenced by the disparity between the charge de­
termined from the MC simulation and the integral equation 
method. This is true even in those samples where the screen­
ing length is much longer than the radius of the particles due 
to polydispersity in charge. 

For a suspension of spherical particles, the primary peak 

position should scale as qmax ~21Tid, where d is the mean 
spacing between the spheres. This spacing scales as the vol­
ume fraction to the minus one-third power d a: ¢ - 113, with 

some proportionality constant that depends on the type of 
structure assumed for the packing. Shown in Fig. 11 is a plot 

of the primary peak position vs ¢1/3 for all of the QELS and 

SANS structures. The best fit line through the origin has 

slope 0.12, which yields an estimate for a~ 30 nm based on 
assuming random close packing, a value in good agreement 
with the measured values. Some of the scatter about the fit 
line in the SANS data is resultant from the finite size of the 
detector elements limiting the resolution of the peak posi­

tion. 
The value of both Self (q = 0), which is measured by the 

scattering, and S(q = 0), the true thermodynamic structure 
which is inversely proportional to the osmotic compressibili­
ty, can be extrapolated from the theoretical fits to the SANS 
data. The results from the model fits for S(O) are given in 
Table VII. The SANS data are plotted as In [1/S(q = 0)] vs 
volume fraction in Fig. 12. The utility of this plot is it distin­
guishes readily the effects of screening length on the inter­
particle interaction, due to controlling the salt concentra­

tion. Theoretical results56
•
57 and experimental data for 

hard-sphere systems have shown that such a plot yields a 
straight line over a wide range of volume fractions, with a 
slope that depends on the polydispersity of the sample, rang­
i~g from 7.90 downward slightly with increasing polydisper­
Slty. The SANS data roughly group as expected, with the 

outlying sample lB having the greatest error bars associated 
with the fit, as it has the least structure. 

An effective hard-sphere volume fraction for charged 

suspensions can be defined 1I.s58 

¢elf = ¢(1 + :r (36) 

where K is the inverse Debye screening length3l and is given 
by the ionic strength of the solution. In the calculation of the 
inverse screening length, the particle charge and the salt con­
centration as determined by the model fits were used. Then it 
was assumed that each valueofln [1/S(O)] lies ona straight 

line through the origin. The ratio of the slope of this line to 
the hard-sphere value of7.9 gives the ratio ¢elf/¢' Using the 
Ka values calculated from the model fits results in values for 

the parameter a, as listed in Table VII. The results for a 
based on this approximation and earlier experiments on 
mapping the phase transition of charged colloidal systems 
similar to those studied here determined a~ 1.64, which is 
similar to values obtained by computer simulations. 58 This 
simple parametrization results in values within a factor of2, 
but with no unique value for the entire sample set. Samples 
4A and 3C exhibited strong viscoelastic behavior character­
istic of a glassy solid, which might explain some of the differ­
ence in the a values between these samples and the more 
liquidlike SANS samples. The very dilute light scattering 

samples show a trend toward increasing a with particle con­
centration. It is also of interest that an analysis using the 
values of Self (q = 0) leads to similar results, except that the 
a values are slightly lower. This similarity is expected as the 
polydispersity is constant for all the samples. Using a lower 
value of the hard-sphere slope to account for polydispersity 
will increase the resultant values of a only slightly. 

D. Dynamic light scattering results 

Dynamic studies of the samples with structure were fit 
both with a short time polynomial fit and the complete dou-

J. Chem. Phys., Vol. 95, No.1, 1 July 1991  This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

93.180.53.211 On: Thu, 06 Feb 2014 12:28:11



Wagner et al.: Microstructure of colloidal suspensions 505 

2.0 

0.0 

2.0 

1.0 

0.0 

2.0 

1.0 

0.05% 

0.025% 

c = 0.01% 

2.0 

1.0 

0.0 

2.0 

1.0 

0.0 

2.0 

1.0 

o 
a 

C = 0.15% 

FIG. 10. Seq) determined from QELS as 
compared to the theoretical fits. (000) 
static light scattering measurements; 
(X X X) DLS Seq) from the first cumu-
lant; (-) OZ-RY theoretical fit. 

= 0.1% 

0.075% 

o . 0 -rr-n-rrr-.rT'T"l-rr-n-rrr-.rT'T'T'T'r"""""-'T"ri O. 0 -n::':'-rA-.r,-,,-,--,-...--rr-n-TrrrT-'-'-rT"T"'TT,.-rl 

0.00 0.01 0.02 0.03 0.00 0.01 

q (nmr
1 

ble exponential to extract the cumulants and the relaxation 
times. Typical time decays of the structure are well repre­
sented by the double exponential ansatz, as demonstrated in 
Fig. 13. We found essentially identical results for the first 
and second cumulants as determined by both methods. 
Shown in Figs. 14(a) and 14(b) are some representative 

results for the first and second cumulants. Kl clearly reflects 
the underlying microstructure as characterized by S( q). The 
second cumulant is very noisy and oflower magnitude than 

the first, although the shape of these functions resemble the 
corresponding first cumulants. 

The results of reducing the first cumulant to Seq) by 
assuming that H(q) = 1 and using relation (27) are also 
given in Fig. 10. The DLS structure is systematically lower 
than that obtained directly from static measurements in all 

TABLE VI. QELS fit results. 

System t/> QMC t/>MC QRY ifJRY 

W2 0.0125% 210 0.0115% 390 0.01% 
W3 0.025% 270 0.025% 390 0.0205% 
W5 0.05% 270 0.055% 390 0.047% 
W6 0.075% 255 0.085% 380 0.07% 
W7 0.10% 265 0.12% 400 0.095% 
W8 0.15% 260 0.17% 390 0.14% 
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FIG. 11. Position of the maximum in Seq) vs ifJ,n for QELS and SANS 
structures (0), (-) best fit line. 
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FIG. 12. In [IIS(O) 1 vs the volume fraction for the SANS samples. 

cases. This may be due to hydrodynamic interaction such 

that H(q) > 1, or that polydispersity effects in size and 
charge are significant. At these dilute concentrations, esti­
mations of the increased hydrodynamic drag due to particle 
interaction are negligible. However, Eq. (27) is derived for a 

monodisperse suspension. Since the first cumulant is a dy­
namical quantity, it is a different moment of the size and 
charge distributions than the intensity of the light scattered 
from the particles. Thus, it is likely that this trend could be 
predicted by a more general derivation of this relation. 

Typical time constants and the weighting factors deter­
mined from the double exponential fit of the dynamical mea­
surements are given in Fig. 15. The dominant relaxation 
time, chosen to be 1"1 (q), strongly reflects the underlying 
microstructure and is nearly the inverse of the first cumu­
lant. As shown, 1"2(q) is very noisy and is two orders of mag-

TABLE VII. Effective hard-sphere parametrization. 

System <P S(q=0)XI02 Ka a 

W2 0.01% 0.30 0.048 0.89 

W3 0.0205% 0.32 0.069 0.99 

W5 0.047% 0.34 0.11 1.1 

W6 0.070% 0.34 0.13 1.2 

W7 0.095% 0.37 0.15 1.3 

W8 0.14% 0.35 0.18 1.3 

IA 0.181 0.54 2.8 1.5 

IB 0.10 1.5 2.8 2.1 

IC 0.208 0.42 2.8 1.4 

2A 0.05 3.8 1.6 1.6 

2B 0.092 0.39 1.8 1.7 

2C 0.119 0.25 1.6 1.4 

3C 0.285 0.17 2.4 1.0 

4A 0.353 0.28 3.7 1.0 
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FIG. 13. Demonstration of the double exponential fit of the DLS data. (0) 

Data from sample W6 at 16'; (-) nonlinear least-square fit. 
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FIG. 14. (a) First K, and (b) second K2 cumulants for three samples (-) 

W3; (- - -) W5; and (-*-*) W8. 
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nitude lower than 1'1 (q). It is also approximately constant 

over the entire range of q values probed. The weighting fac­

tor a(q) again reflects some character of the underlying 

structure. These observations are predicted qualitatively by 
the mode coupling formalism that is based on the viscoelas­

tic approximation.7 For weakly viscoelastic systems, 1'1 (q) 

and a (q) can be related simply to the first and second cumu­
lants, with small corrections that are related to 1'2(q). 

v. CONCLUSIONS 

Structure measurements of a model polydisperse sus­
pension of charged colloids are reported over a wide range in 
both particle and added salt concentration. Comparisons of 

static QELS measurements with an integral equation for the 
structure, which accounts for both polydispersity in size and 
charge, are in good agreement and yield an effective surface 
charge of about 390e. Dynamic QELS measurements yield a 
structure factor from analysis of the first cumulant that is 
consistently lower than the static measurements. This dis­
crepancy is postulated to be an effect of the polydispersity in 
size and charge on the particles. The cumulants determined 
from a double exponential fit of the relaxation of the intensi­
ty autocorrelation function are in excellent agreement with 
those determined from a short time polynomial fit. The vis­
coelastic relaxation times determined from the double expo­
nential fit show a primary q-dependent relaxation time that 
is essentially the inverse of the first cumulant, and a second­
ary relaxation time that is significantly smaller and less im­
portant in weighting. 

SANS measurements of the structure of concentrated 
samples spanning the liquid to glass regimes, for which ex­

tensive rheological measurements have been made, are re­
ported. A Schulz model for the particle size distribution £1t to 
the dilute SANS measurements yielded a = 35.0 nm with 

16% po\ydispersity. Guinier and Porod analysis of the 

SANS measurements and DLS results demonstrate the con­
sistency of the data. The resultant SANS structures show 
some qualitative differences in shape to those measured in 
the dilute samples by QELS and to predictions of the integral 

equation theory, including lower primary peaks and higher 

secondary peaks. Comparison with the HNC solutions of the 
integral equation theory yield good agreement for the low q 

data, the primary peak width, and the secondary peak posi­
tion, with a discrepancy in the primary peak height. This 

may be partially attributable to losses in resolution, the use 
of the HNC closure, and the possibility of multiple phases. 

The primary peak positions fit on the same line as the QELS 

data when plotted against <p1/3. An effective hard-sphere par­

ametrization based on the osmotic compressibility resulted 
in an a value that varied by a factor of2 with a deterministic 

dependence on particle concentration. The salt concentra­
tion determined from the fit is generally lower than that pre­
dicted by the Donnan equilibrium and the mean surface 
charge is significantly lower than reported by titration mea­

surements, but in good agreement with that measured by 

QELS. The integral equation theory is able to fit the data for 

these polydisperse, charged suspensions from the dilute to 

strongly correlated liquid regimes, providing a parametriza­

tion for use in further structural studies. 

In future work, we intend to use these measured struc­
tures and system parameters to quantitatively test various 
statistical mechanical theories relating the structure of com­

plex fluids to their measured rheological behavior. 
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