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A three-dimensional steady flow of an incompressible Jeffrey fluid bounded by two parallel circular disks,
one rotating and other stationary is examined with uniform suction at the stationary disk. Solutions for
the governing equations are obtained applying ‘‘Power series method”. The velocity distributions, pres-
sure coefficient and skin frictions are obtained which in turn are compared with assumptions of creeping
flow solutions. The velocity distribution and pressure coefficient are discussed graphically. We found that
the radial velocity increases and axial velocity decreases when Jeffrey parameter is increased.
� 2017 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The flow of an incompressible fluid bounded by parallel disks
whether porous or non-porous has been extensively investigated
so far by many researchers. The classical study of Stewartson [1]
presented fixed motion of viscous fluid restrained by two coaxial
rotating disks is discussed both experimentally and theoretically.
Pearson [2] has repeatedly discussed the character of the steady-
stateviscous flow bounded by two large rotating disks by using a
type of the numerical method expressed in digital computer solu-
tions for the time-dependent case. Elkouh [3] has elucidated the
equation of motion for a firm, incompressible, axially symmetric
flow of a fluid bounded by parallel porous disks. The flow is
entirely the result of either suction or injection throughout the
disks. Mellor et al. [4] experimented the flow between two coaxial
infinite disks, in which one is rotating and other is stationary.
Rudraiah [5] has discussed three- dimensional flows between a
rotating and a stationary disk with uniform suction at the station-
ary disk. He got solutions for the Navier-Stokes equations and the
expressions for the velocity, pressure coefficients and skin-friction
are compared with the solutions based on the assumptions of
creeping flow.

Mishra et al. [6] studied about a laminar flow of incompressible
elastico-viscous fluid which is flown between a porous rotating
disk and non-porous stationary disk. Herethe effects of rotation
coefficient, velocity components, radial pressure variation and
shear stress at the disks are observed. Hayat et al. [7] conducted
an experiment in which the effects of an endoscope and magnetic
field on the peristalsis involving Jeffrey fluid. Here he described the
accurate analytic result for velocity components and pressure gra-
dient. Nadeem et al. [8] found that the incompressible Jeffrey fluids
and the effects of variable viscosity are supposed to vary as an
exponential function of temperature. The governing fundamental
equations are estimated under the long wavelength and low Rey-
nolds number.

Vajravelu et al. [9] studied the peristaltic flow of Jeffrey fluid in
a vertical porous stratum with heat transfer under long wave-
length and low Reynolds number. The effects of various parameters
on the velocity, temperature and the pumping characteristics are
discussed. Farooq et al. [10] researched about the influence of cou-
ple stresses on the flow of fluid in which an infinite disk is rotating
at a constant angular velocity. Kavitha et al. [11] discussed the
peristaltic pumping of a non-Newtonian Jeffrey fluid between
two permeable walls with suction and injection. The effect of suc-
tion/ injection parameter, amplitude ratio and permeability
parameter including slip on flow quantities are evaluated. Qayyum
et al. [12] studied the vacillating axisymmetric flow of Jeffrey fluid
between two parallel disks.
ith suc-
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Ellahi et al. [13] investigated Mathematical Modelling of
Magneto-Hydrodynamic peristaltic flow of Jeffrey fluid in the
space between two eccentric tubes in the presence of magnetic
field. Siddiqui et al. [14] studied classical Von K´ arḿ an flow of
Jeffrey fluid by using a generalized non-similarity transformation.
He concluded that the boundary layer structure develops near
the surface of the disk and far-field behavior is distinct from
the near-wall solution. Ellahi et al. [15] examined numerical
models of Jeffrey liquid by means of nanoparticles in the ste-
nosed atherosclerotic conduits. The convection impacts of
warmth exchange with the catheter are additionally considered.
Riaz et al. [16] deduced precise answers for the peristaltic stream
of Jeffrey liquid model in a cross-sectional area of a three dimen-
sional rectangular channel having a slip at the peristaltic limits.
Nadeem et al. [17] studied Jeffrey liquid model with nanoparti-
cles in peristaltic waves of a three-dimensional rectangular
channel.

Rashidi et al. [18] evaluated a scientific model for two-
dimensional liquid stream affected by stream astute transverse
attractive fields in a laminar flow. Nawaz et al. [19] studied the
Joules warming consequences for stagnation point stream of New-
tonian and non-Newtonian liquids over an extending chamber by
the method for genetic algorithm (GA). Ellahi et al. [20] studied
the magnetohydrodynamics Couette flow of Eyring – Powell fluid
with heat transfer Couette stream. Here the outcomes for the zero
liquid slip and no warm slip are determined. Bhatti et al. [21] pre-
sented the impacts of a variable magnetic field on the peristaltic
stream of Jeffrey liquid in a non-uniform rectangular conduit hav-
ing consistent dividers. Rahman et al. [22] analyzed the impacts of
nanoparticles for the blood stream of Jeffrey liquid in decreased
course with stenosis. The slip impacts alongside penetrable nature
of the blood vessel divider within the sight of convection are like-
wise considered.

In the existing paper, the three-dimensional flow of an incom-
pressible Jeffrey fluid bounded by two circular disks, one rotating
and the other stationary is examined with a uniform suction at
the stationary disk. The motion is three-dimensional due to the
rotation of a disk. The fluid is thrown outward by centrifugal force.
The fluid moves towards the disk in the axial direction to replace
the fluid that is thrown out. The solution for creeping flow are
obtained and are compared with those of non-creeping flow solu-
tions. Furthermore, it is apparent that many other solutions for a
rotation Reynolds number are possible.

2. Mathematical formulation

The governing Eqs. (Rudraiah 1969 [5]) which are based on axial
symmetry are
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The disk z = l is rotating while the disk z = 0 is stationary. The
fluid is extracted with a uniform velocity U through the latter disk.

If O is the angular velocity of the disk z = l, the boundary condi-
tions are

Urðr;0Þ ¼ 0; Urðr; lÞ ¼ 0: ð5Þ

Uhðr;0Þ ¼ 0; Uhðr; lÞ ¼ Xr: ð6Þ

Uzðr;0Þ ¼ �U; Uzðr; lÞ ¼ 0: ð7Þ
Using the transformations:

z ¼ ln;

Uh ¼ XrgðnÞ;
Uz ¼ �Uf ðnÞ;

Ur ¼ Ur
2l

f 0ðnÞ;

ð8Þ

Eqs. (2) to (4) become
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where R ¼ Ul
m is the suction Reynolds number and R1 ¼ Xl2

m is the rota-
tion Reynolds number.

Since the left side of Eq. (11) is a function of z only, so that Eq.
(9) becomes

f 000 þ Rð1þ k1Þ ff 00 � 1
2
f 02

� �
¼ C � kð1þ k1ÞRg2: ð12Þ

where C is the constant of integration and k ¼ 2R2
1

R2 : ð13Þ

The corresponding boundary conditions will be

f 0ð0Þ ¼ 0; f 0ð1Þ ¼ 0:
gð0Þ ¼ 0; gð1Þ ¼ 1:
f ð0Þ ¼ 1; f ð1Þ ¼ 0:

ð14Þ

Solution for R:
The solution for Eqs. (10) and (12) can be expressed for small

values of R with a finite k by a power series developed near R = 0
as follows
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Eqs. (12) and (10) using (15) become
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The boundary conditions satisfied by f 0ns and g0
ns are:

f 0nð0Þ ¼ 0; f 0nð1Þ ¼ 0:
gnð0Þ ¼ 0; g0ð1Þ ¼ 1; gnð1Þ ¼ 0: for n > 0
f 0ð0Þ ¼ 1; f nð0Þ ¼ 0 for n > 0; f nð1Þ ¼ 0:

ð18Þ
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Figure 1. The variation of azimuthal velocity with n for different values of Reynolds
number with k ¼ 1; k ¼ 0:1.
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The solutions of (16) and (17) are
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where a second order perturbation solution is considered suffi-
ciently accurate.

The solutions for the creeping flow are

f ðnÞ ¼ ð2n3 � 3n2 þ 1Þ: ð22Þ

gðnÞ ¼ n: ð23Þ

C ¼ 12: ð24Þ
The torque on the rotating disk can be evaluated from the

shearing stress component szh which acts in the place of the disk
and produces a force in h direction.

szh ¼ q
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If the edge effects are neglected the torque on the disk of radius
r0 wetted on both sides is:

T ¼ 2
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0
ðszhÞl2Pr2dr ¼ PqXg0ð1Þ

lð1þ k1Þ r40: ð26Þ

The pressure coefficient Cp is
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The pressure coefficient for the creeping flow is:
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The components of skin-friction in the radial and azimuthal
directions at the plane z = 0 are:
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And the plate z = 1 are:
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These expressions for creeping flow are:
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For a creeping flow the torque s0 is:

T0 ¼ pqmXr40
ð1þ k1Þl : ð38Þ
3. Results & discussion

In this paper, the study of three dimensional flow of Jeffrey fluid
bounded by two parallel disks one rotating and other stationary
with suction is investigated. The governing Eqs. are transformed
by using the transformation Eq. (8), resulting Eqs. are (9)–(11).
By using ‘‘Power series method”, we get f ðnÞ, gðnÞ and are given
Eqs. (19) and (20). From the above Eqs. velocity distribution is
obtained. In the Eq. (28), the pressure distribution is found and
the components of skin frictions are presented in Eqs. (30)–(33)
1
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Figure 2. The variation of azimuthal velocity with n for different values of Jeffery
parameter k1 with k ¼ 1;R ¼ 1.
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Figure 3. The variation of axial velocity with n for different values of Reynolds
Number with k ¼ 1; k1 ¼ 0:1.
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Figure 5. The variation of radial velocity with n for different values of Reynolds
Number with k ¼ 1; k1 ¼ 0:1.
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and compared with the assumptions of creeping flow. The results
are shown graphically from Figs. 1–6 for the Velocity distribution
and Figs. 7 and 8 for the pressure distributions.

Fig. 1 is plotted to see the influence of suction Reynolds number
on the azimuthal velocity for fixed values k ¼ 1 and k1 ¼ 0:1. It is
observed that the azimuthal velocity is increasing with the
increase of suction Reynolds number.

Fig. 2 is sketched to find the effect of Jeffrey parameter k1 on the
azimuthal velocity for fixed parameter k ¼ 1 and R ¼ 1. It is
observed that the azimuthal velocity is increasing with the
increase of Jeffrey parameter.

Fig. 3 is illustrated to find the effect of influence of suction Rey-
nolds number on axial velocity for fixed values k ¼ 1 and k1 ¼ 0:1.
Please cite this article in press as: Maninaga Kumar P, Kavitha A. Three-dimens
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It is shown that the axial velocity is decreasing with the increase of
suction Reynolds number. It is due to the fact that as we increase
the suction Reynolds number, the inertial force increases which
reduce the fluid motion, further upper disk is rotating and lower
disk is stationary so that axial velocity decreasing.

Fig. 4 is plotted to see the effect of Jeffrey parameter k1 the
effect is to enhance the axial velocity of the flow between rotating
and stationary disks for given values k ¼ 1 and R ¼ 1.

The behavior of radial velocity for suction Reynolds number R is
described in Fig. 5. Magnitude of radial velocities decays at station-
ary disk with an increase R. This may due to effect of inertial forces
acting in the fluid with fixed values of k ¼ 1 and k1 ¼ 0:1.
ional flow of Jeffrey fluid between a rotating and stationary disks with suc-
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Fig. 6 is sketched to find the effect of Jeffrey parameter on the
radial velocity. We observe that radial velocity is decreasing with
the increase of Jeffrey parameter k1 in the lower half of the region
between the disks and the opposite phenomena is observed in the
upper half of the region for fixed values k ¼ 1 and R ¼ 1. Further
the maximum radial velocity is shifting towards the upper disk
(rotating) due to the increase in Jeffrey parameter k1.

Fig. 7 is plotted to see the effect of the pressure coefficient Cp
for fixed values k ¼ 1 and k1 ¼ 0:1. It is noticed that the pressure
coefficient increases with suction Reynolds number R decreases.
The maximum pressure occurs at the stationary disk.
Please cite this article in press as: Maninaga Kumar P, Kavitha A. Three-dimens
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Fig. 8 is sketched to see the effect of the pressure coefficient Cp
for fixed values k ¼ 1 and R ¼ 1. It is observed that the pressure
coefficient decreases with the increase of Jeffrey parameter.
4. Conclusions

The three-dimensional flow of Jeffrey fluid bounded by two par-
allel disks, one rotating and another stationary with suction is
discussed.

� Expressions for velocity, pressure and skin-friction have been
obtained and compared with the creeping flow solutions.

� The radial velocity increases with the increases of Jeffrey
parameter k1:

� The axial velocity decreases with the increases of Jeffrey param-
eter k1:

� The pressure coefficient decreases with the increase of Jeffrey
parameter k1:
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