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The main objective of site characterization is the prediction of in situ soil properties at any half-space point at a site based on
limited tests. In this study, the Support Vector Machine (SVM) has been used to develop a three dimensional site characterization
model for Bangalore, India based on large amount of Standard Penetration Test. SVM is a novel type of learning machine based
on statistical learning theory, uses regression technique by introducing ε-insensitive loss function. The database consists of 766
boreholes, with more than 2700 field SPT values (N) spread over 220 sq km area of Bangalore. The model is applied for corrected
N (Nc) values. The three input variables (x, y, and z, where x, y, and z are the coordinates of the Bangalore) were used for the SVM
model. The output of SVM was the Nc data. The results presented in this paper clearly highlight that the SVM is a robust tool for
site characterization. In this study, a sensitivity analysis of SVM parameters (σ , C, and ε) has been also presented.

1. Introduction

In general, geotechnical engineers characterize a site based
on a limited number of tests. They interpret a site in terms
of working soil profiles, which are generally prepared based
on soil properties. So, they have to predict in-situ soil
properties at any half-space point at a site, based on a limited
number of tests. The prediction of soil property is a difficult
task due to uncertainty. Spatial variability, measurement
“noise,” measurement and model bias, and statistical error
due to limited measurements are the sources of uncertainty
[1]. Prediction of soil properties using geostatistics has
been reported by many researchers [2–6]. However, several
reasons appear to hinder the use of geostatistics in geotech-
nical engineering [7]. In probabilistic site characterization,
random field theory has been used by many researchers in
geotechnical engineering [8–19]. One of the most important
assumptions of random field theory is that the soil property
is to be statistically homogeneous with the chosen layer. In
addition, these models have also assumed that soil property
consists of a constant mean or a global mean trend with a
stationary stochastic portion. To model the constant mean
or global mean trend, regression analysis with polynomial

functions has been used by the above researchers. Autoco-
variance function, autocorrelation function, autoregressive
processes, power spectra functions, variance function, and
scale of fluctuation are available for modelling the stationary
stochastic portion. Statistically homogeneous soil layers have
been determined by using “Modified Bartlett Statistics”
[20]. However, random field methods and geostatistics have
been applied in site characterization modelling with limited
success [21]. Recently, artificial neural network has been used
for site characterization [21]. A major disadvantage of ANN
models is that there is no information about the relative
importance of the various parameters [22]. In ANN, as the
knowledge acquired during training is stored in an implicit
manner, it is very difficult to come up with reasonable
interpretation of the overall structure of the network [23].
This leads to the term “black box” which many researchers
use while referring to ANN’s behavior. In addition, ANN has
some inherent drawbacks such as slow convergence speed,
less generalizing performance, arriving at local minimum,
and overfitting problems.

The support vector machine (SVM) based on statistical
learning theory has been developed by Vapnik (1995) [24].
It provides a new, efficient novel approach to improve the
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generalization performance and can attain a global min-
imum. In general, SVMs have been used for pattern
recognition problems. Recently, it has been used to solve
nonlinear regression estimation and time series prediction
by introducing ε-insensitive loss function [25–27]. The
SVM implements the structural risk minimization principle
(SRMP), which has been shown to be superior to the more
traditional empirical risk minimization principle (ERMP)
employed by many of the other modelling techniques [28,
29]. SRMP minimizes an upper bound of the generalization
error, whereas ERMP minimizes the training error. In this
way, SVM produces the better generalization than traditional
techniques.

The standard penetration test (SPT) is a well-established
and unsophisticated method of soil test, which was devel-
oped in the United States around 1925. It has been
established as the most popular field testing method to
characterize the subsurface soil profiles, despite its limita-
tions. Field SPT (N) value is used to determine the bearing
capacity, settlement, and liquefaction potential, and it is also
correlated to many soil properties such as shear wave velocity,
angle of internal friction, and cone tip resistance. The
objective of this paper is to use SVM for three-dimensional
(3D) site characterization model for Bangalore, India based
on a large amount Nc values in this area. Further, sensitivity
analysis of SVM parameters (σ , C, and ε) has been carried
out and results are presented to highlight their influence on
the results.

2. Site Description

The city of Bangalore covers an area of over 220 square
kilometres, and ground reduced levels (GRLs) also vary a lot
in the city. It varies from 810 m in the north-eastern part
to 940 m in the south-western part of Bangalore. Ground
reduced levels do not vary much in the other parts of the
city. There were more than 450 lakes once upon a time,
and more than 340 lakes have dried up due to erosion and
encroachments for construction of layouts and buildings.
The population of greater Bangalore region is over 6 million,
and it is the fifth biggest city in India. It is growing very fast
and is situated on latitude of 12◦8′north and longitude of
77◦37′east.

From geology, the most part of Bangalore falls in gneiss
complexes, which are formed due to several tectonic-thermal
events with large influx of sialic material and are believed
to have occurred between 3400 and 3000 million years ago
giving rise to an extensive group of gray gneisses designated
as the “older gneiss complex.” These gneisses act as the
basement for a widespread belt of schist’s. The younger
group of gneissic rocks mostly of granodiorite and granite
composition is found in the eastern part of the state, repre-
senting remobilized parts of an older crust with abundant
additions of newer granite material, for which the name
“younger gneiss complex” has been given [31]. The soil is
mostly a residual soil from granite gneiss due to weathering
action. In the old tank beds, silty sand/clay is also found as
overburden.
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Figure 1: Borehole location in Bangalore map (scale: 1 : 20000).

3. Geographic Information System (GIS) Model
and Geotechnical Data

The Bangalore map forms the base layer for the development
of GIS model (see Figure 1). The map entities have been
developed in view of two aspects, firstly for locating the
borelogs to the utmost accuracy on a scale of 1 : 20000 and
secondly for identification of borelogs by end user. The
digitized map has several layers of information. Some of
the important layers considered are the boundaries (outer
and Administrative), highways, major roads, minor roads,
streets, rail roads, water bodies, drains, ground contours,
and borehole locations. A large amount of geotechnical data
consisting of 766 boreholes has been collated along with
index and engineering properties of subsoil layers at different
locations in Bangalore (location of boreholes is shown in
Figure 1). Geotechnical data were evaluated for geotechnical
investigations of several major projects in Bangalore. In total,
766 borelogs information has been entered into the database
using a GIS with ARCINFO package. The latitudes and
longitudes were confirmed using global positioning system
(GPS) stations at selected locations. In total, 2722 “N” values
are available in 766 boreholes in the three-dimensional GIS
model. Distribution of collected boreholes in Bangalore is
shown in Figure 2, indicating a very good distribution of
the boreholes in each quadrant of Bangalore from the city
center. Figure 1 depicts a grid of 1 km × 1 km within the
corporate boundary of Bangalore along with outer boundary
circumscribing the ring road also with location of boreholes.
It gives a clear view of the spatial distribution of boreholes in
Bangalore region. An average of about four boreholes data is
available within the grid of 1 km × 1 km.

Geotechnical data was collated from archives of Torsteel
Research Foundation in India and Indian Institute of Science
for geotechnical investigation carried out for several major
projects in Bangalore. The data collected are of very high
quality for important projects in Bangalore during the years
1995–2003. The data in the model are on average to a
depth of 30 m below the ground level. The borelogs contain
information about depth, density of the soil, total stress,
effective stress, fines content, and N values and depth of
ground water table. For the purpose of general identification
of soil layers, the Bangalore map area is divided into
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Figure 2: Distribution of boreholes in quadrants for Bangalore.

four parts (four quadrants) in north-south and east-west
directions as shown in Figure 2. The typical soil profile in
the north-western part of the Bangalore has three layers of
soil deposition. The first layer contains brownish silty sand
with clay or red soil in some location up to 3 m, after which
up to 6 m, medium dense to very dense silty sand is present.
The third layer has weathered rock varying from 6 m to 17 m
depth and followed by hard rock. The south-western part
contains red soil or reddish silty sand with gravel up to 1.7 m
depth, yellowish clayey sand from 1.7 m to 3.5 m, yellowish
silty sand with clay from 3.5 m to 8.5 m, and hard rock below
8.5 m. The soil in the south-eastern part can be classified
into 4 layers. The first layer up to 1.5 m contains brownish
clayey sand, brownish clayey sand with gravel from 1.5 m to
4 m, yellowish silty sand with gravel up to 5.5 m, different
stages of weathered rock from 5.5 m to 17.5 m, and hard rock
beneath. North-eastern side has 4 layer depositions, filled up
soil to 1.5 m, reddish silty clay from 1.5 m to 4.5 m, sandy clay
from up to 7.5 m, weathered rock form 7.5 m to 18.5 m, and
hard rock below. The corrections for field N values (shown
in Tables 1 and 2) are applied for overburden pressures (CN ),
hammer energy (CE), borehole diameter (CB), presence or
absence of liner (CS), rod length (CR), and correction for
fines content (Cfines) as per standard procedures existing in
literature [32–37].

4. Support Vector Machine Model

SVM has originated from the concept of statistical learning
theory pioneered by Boser et al. (1992) [38]. In this section,
a brief introduction is presented on the construction process
of SVM for regression problems. There are three distinct
characteristics of SVM when they are used to estimate the
regression function. First of all, SVM estimates the regression
using a set of linear functions that are defined in a high-
dimensional space. Secondly, SVM carries out the regression
estimation by risk minimization where the risk is measured
using Vapnik’s ε-insensitive loss function. Thirdly, SVM uses

Table 1: Different types of SPT corrections used to obtainNc values.

Different types of correction Correction factor

Correction for hammer

Donut hammer 0.5–1.0

Safety hammer 0.7–1.2

Automatic-trip donut hammer 0.8–1.3

Sampler correction

Without liner 1.00

With liner: dense sand, clay 0.80

Loose sand 0.90

Rod length correction

Length > 10 m 1.0

6–10 0.95

4–6 0.85

0–4 0.75

Borehole diameter correction

Hole diameter 60–120 mm 1.00

150 mm 1.05

200 mm 1.15

Correction for overburden
pressure, σ ′v0 (CN )

2.2/(1.2 + σ ′v0/Pa), where
Pa = 100 kPa

Correction for fines content
(Cfines)

1 + 0.004FC + 0.055(FC/N60),
where FC = percent fines content

(percent dry weight finer than
0.074 mm) and N60 = SPT value

for 60% energy ratio

a risk function consisting of the empirical error and a
regularization term which is derived from the SRMP. This
study uses the SVM as a regression technique by introducing
an ε-insensitive loss function. The ε-insensitive loss function
(Lε(y)) can be described in the following way:

Lε
(
y
) =

⎧
⎨

⎩

0, for
∣
∣ f (x)− y

∣
∣ < ε,

∣
∣ f (x)− y

∣
∣− ε, otherwise.

(1)

This defines an ε tube (Figure 3) so that if the predicted value
is within the tube, the loss is zero, while if the predicted point
is outside the tube, the loss is the magnitude of the difference
between the predicted value and the radius, ε, of the tube.
Assume that the training dataset consists of l training sample
{(x1, y1), . . . (xl, yl)} where x is the input and y is the output.
For site characterization model for Bangalore, x = [x, y, z]
and y = [Nc].

The main aim in SVM is to find a function f (x) that gives
a deviation of ε from the actual output and at the same time
is as flat as possible. Let us assume a linear function

f (x) = (w · x) + b, w ∈ Rn, b ∈ r, (2)

where w = an adjustable weight vector, b = the scalar
threshold, Rn = n-dimensional vector space, and r = one-
dimensional vector space.

Flatness in the case of (2) means that one seeks a small
w. One way of obtaining this is by minimizing the Euclidean
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For site characterization
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].

y − f (x)
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ξ

Figure 3: Prespecified accuracy ε and slack variable ξ in support
vector regression [30].

norm ‖w‖2. This is equivalent to the following convex
optimization problem:

minimize:
1
2
‖w‖2

subjected to: yi − (〈w · xi〉 + b) ≤ ε, i = 1, 2, . . . , l

(〈w · xi〉 + b)− yi ≤ ε, i = 1, 2, . . . , l.

(3)

The above convex optimization problem is feasible. Some-
times, however, this may not be the case, or we also may want
to allow for some errors, analogously to the “soft margin” loss
function [39] which was used in SVM by Cortes and Vapnik
(1995) [40]. As shown in Figure 1, the parameters ξi, ξ∗i are
slack variables that determine the degree to which samples
with error more than ε are penalized. In other words, any
error smaller than ε does not require ξi, ξ∗i and hence does
not enter the objective function because these data points
have a value of zero for the loss function. The slack variables
(ξi, ξ∗i ) have been introduced to avoid infeasible constraints
of the optimization problem (3)

minimize:
1
2
‖w‖2 + C

l∑

i=1

(
ξi + ξ∗i

)

subjected to: yi − (〈w · xi〉 + b) ≤ ε + ξi, i = 1, 2, . . . , l

(〈w · xi〉 + b)− yi ≤ ε + ξ∗i , i = 1, 2, . . . , l

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, . . . , l.
(4)

For site characterization

x = [x, y, z] and y = [Nc

model of Bangalore,

].

f (x)

x

+ε

−ε
0

+ε

−ε
0

f (x)

Φ(x)

ξ

ξ

Figure 4: Concept of nonlinear regression.

The constant 0 < C < ∞ determines the trade-off between
the flatness of f and the amount up to which deviations
larger than ε are tolerated [41]. This optimization problem
(4) is solved by Lagrangian multipliers [42], and its solution
is given by

f (x) =
nsv∑

i=1

(
αi − α∗i

)
(xi · x) + b, (5)

where b = −(1/2)w · [xr + xs], αi, α∗i are the Lagrangian
multipliers, and nsv is the number of support vectors.
An important aspect is that some Lagrange multipliers
(αi, α∗i ) will be zero, implying that these training objects are
considered to be irrelevant for the final solution (sparseness).
The training objects with nonzero Lagrange multipliers are
called support vectors.

When linear regression is not appropriate, then input
data has to be mapped into a high-dimensional feature space
through some nonlinear mapping [38] (see Figure 4). The
two steps that are involved are first to make a fixed nonlinear
mapping of the data onto the feature space and then carry
out a linear regression in the high-dimensional space. The
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Figure 5: Architecture of support vector machine for Nc prediction.

input data is mapped onto the feature space by a map Φ
(see Figure 4). The dot product given by Φ(xi) · Φ(xj) is
computed as a linear combination of the training points.
The concept of kernel function [K(xi, xj) = Φ(xi) · Φ(xj)]
has been introduced to reduce the computational demand
[40, 43]. So, (5) becomes written as

f (x) =
nsv∑

i=1

(
αi − α∗i

)
K
(
xi · xj

)
+ b. (6)

In this study, radial basis function has been used as a kernel
function.

5. SVM Implementation for Site
Characterization Model

Figure 5 shows the architecture of SVM for Nc prediction
in 3D subsurface of Bangalore. In SVM, each of the input
variables (x, y, and z) is first normalized with respect to
their respective maximum value. The output variable Nc was
also normalized with respect to the maximum Nc value. For
implementing the SVM, the data has been divided into two
subsets:

(1) a training dataset: this is required to train the model.
In this study, 90% of total boreholes (number of total
boreholes = 766, number of Nc values = 2429, and

90% of total boreholes = 689.4≈690) are considered
for training dataset.

(2) a testing dataset: this is required to examine the
model performance. In this study, the remaining 10%
of the total boreholes is considered as testing dataset,
which consists of 76 boreholes of 293 Nc data.

The training and testing datasets have been chosen
using sorting method to maintain statistical consistency.
The application of SVM for this study requires the proper
selection of design parameters (C and ε). The identification
of optimal values ofC and ε is largely a trial and error process.
However, there are guidelines that can be used for selecting
these parameters. A large C assigns higher penalties to errors
so that the regression is trained to minimize error with lower
generalization, while a small C assigns fewer penalties to
errors; this allows the minimization of margin with errors,
thus higher generalization ability. If C goes to be infinitely
large, SVM would not allow the occurrence of any error and
result in a complex model, whereas when C goes to zero, the
result would tolerate a large amount of errors, and the model
would be less complex. With regards to the selection of ε, if ε
is too large, too few support vectors are selected which leads
to a decrease of the final prediction performance. If ε is too
small, many support vectors are selected which leads to the
risk of overfitting. The optimum values of C and ε obtained
in this study are presented in Section 6. The program of SVM
is constructed using MATLAB.
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6. Result and Discussion

In this analysis as a first step, the free parameters of Gaussian
kernel function σ , C, and ε have been chosen arbitrarily. So it
is necessary to investigate the impact of these free parameters
on the generalization error and number of support vectors.
Firstly, the influence of σ on the prediction performance is
studied. It is known to us that the level of predicting accuracy
is greatly influenced by the value of σ . Using too small σ
(i.e., σ → 0) or too large σ (i.e., σ →∝) will be not well
suited for good model. Figure 6 represents the impacts of
σ on the testing results. The mean absolute error (MAE)
(MAE = (1/n)

∑n
i=1 |ai − pi|, where ai is the actual data, pi

is the predicted data, and n is the number of data) achieves
minimum value of 0.0271 at σ = 3 forNc values. It can be seen
from Figure 6 that the MAE values change sharply when σ <
40 and tend to flatten after σ ≥ 40. In this study, a σ value 3
has been used for Nc. Figure 7 shows the variation between
the MAE and the C values. The MAE has a minimum value
of 0.0271 at C = 150 for the Nc values. Figure 8 shows the
variation of a number of support vectors with the C values.
It can be seen from Figure 8 that the number of support
vector values changes sharply when C < 150 and tends to
flatten after ≥ 150. In order to make the learning process
robust, C has been assigned a value of 150. Figure 9 depicts
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the variation MAE value with ε values. The MAE has a
minimum value at ε = 0.002. Figure 10 shows the relation
between the number of support vectors and the ε values. It is
also found that the number of support vectors is decreasing
with increasing ε. In general, ε should be set at small value,
specified as ε = 0.002 in this analysis. To produce the best
possible result, the σ value should be 3. The SVM was found
to generalize well by setting the capacity factor C as 150 and
ε value as 0.002. Figure 11 represents the performance of
SVM model for training dataset (coefficient of correlation,
R = 0.994), and the results are almost identical to the original
data. In order to evaluate the capabilities of the SVM model,
the model is validated with new Nc data that are not part of
the training dataset. Figure 12 shows the performance of the
SVM model for testing dataset (R = 0.986). From Figure 12,
it is clear that the SVM model has predicted the actual values
of Nc very well, and it can be used for 3D site characterization
model of Bangalore. Figures 13 and 14 show the Nc values
with depth corresponding to borehole nos. BH 176-2 and BH
276-2, respectively. From Figures 13 and 14, it is clear that
the predicted values match very well with the actual values
of Nc. Figures 15 and 16 shows three-dimensional and two-
dimensional surface of Nc using SVM model, respectively.
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7. Conclusions

The three-dimensional site characterization model has been
developed for Bangalore using SVM technique. SVM tech-
nique has shown to be a promising tool for site characteriza-
tion. SVM training consists of solving a-uniquely solvable-
quadratic optimization problem and always finds a global
minimum. In this study, C and ε factors are considered
in SVM method by using a kernel function. A detailed
parametric analysis of these parameters on the predictive
performance has been carried out. The SVM was found to
generalize well by setting the capacity factor C as 150 and
ε value as 0.002. The result obtained shows that the SVM
model is accurate in predicting Nc values. In general, SVM
is shown to provide a general site characterization model of
Bangalore. This has a potential for seismic hazard analysis,
site response, and liquefaction studies for the development
of microzonation maps for an area. The predicted Nc values
from the developed model can also be used to estimate the
subsurface information, allowable bearing pressure of soils,
and elastic modulus of soils.
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