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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global
pandemic, coronavirus disease-2019 (COVID-19) which has resulted in 60.4 million infections and
1.42 million deaths worldwide. Mathematical models as an integral part of artificial intelligence are
designed for contact tracing, genetic network analysis for uncovering the biological evolution
of the virus, understanding the underlying mechanisms of the observed disease dynamics,
evaluating mitigation strategies, and predicting the COVID-19 pandemic dynamics. This paper
describes mathematical techniques to exploit and understand the progression of the pandemic through
a topological characterization of underlying graphs. We have obtained several topological indices for
various graphs of biological interest such as pandemic trees, Cayley trees, Christmas trees, and the
corona product of Christmas trees and paths. We have also obtained an analytical expression for the
thermodynamic entropies of pandemic trees as a function of R0, the reproduction number, and the
level of spread, using the nested wreath product groups. Our plots of entropy and logarithms of
topological indices of pandemic trees accentuate the underlying severity of COVID-19 over the 1918
Spanish flu pandemic.

Keywords: COVID-19; pandemic trees; Cayley trees; entropy of pandemic trees; corona product of
graphs; topological indices

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called the novel
coronavirus (COVID-19), has resulted in 1.42 million deaths worldwide up to now [1,2]. The first case
was detected in the city of Wuhan, China on 31 December 2019, and it was reported by Zhou et al. [3]
as a pneumonia outbreak associated with a new coronavirus of bat origin. It is presently understood
that the disease spreads by human-to-human or aerosol transmission via either droplet in the air or
through direct or indirect contacts. An underestimated mean incubation period of 2.24–3.58 days [4]
has now been revised to a median R0 value close to 5.7 in some regions of a susceptible population.
This dramatically contrasts with the previous Spanish flu virus which has a R0 value close to 1.8.
There are seven types of coronaviruses that infect humans [5], including the newly discovered
SARS-CoV-2 virus. The level and duration of infectious virus replication are important factors in the
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risk assessments [6]. A study on interspecies transmission of the virus and its genetic diversity can
provide mitigation strategies against the infection [7].

Biological models can simulate the dynamics of the spread and genetic evolution of a disease
as to how cells interact in a single patient and how genetic mutations spread across people living in
different geographical locations [2,8]. Forster et al. [9] recently considered phylogenetic networks as
powerful tools for understanding the genetic evolution of the coronavirus 2019. Graph models also
enhance our understanding of the effect of introducing an affected individual in a pool of unaffected
individuals. Recursive trees constructed from phylogenetics have provided graphical representation
of microbiomes and have been proven to be powerful in the perturbations induced to genomes and
proteomes by environment or toxins [10–13], and hence, graph techniques are especially suited to
understand the dynamics of the COVID-19 epidemic. Furthermore, it has been shown that tree pruning
methods and other efficient topological techniques can be applied to characterize various biological
trees such as phylogenetic trees, epidemic trees, Cayley trees, and the lattices through graph theoretical
entities [14–17]. The combinatorial theory of genetic mutations and the applications of graph theory to
the computation of evolutionary genomics have been pioneered by Sellers and others [12,13,18–20].
Yun et al. [21] demonstrated the graph mining approaches in identifying the patterns in complex and
large data sets such as the chemical and genome data sets.

Network models help to capture the transmission, forecast the future of the pandemic, and estimate
the sequel of ongoing interventions [22]. A pandemic tree provides a pictorial representation of
the epidemic dynamics where each node is connected to k other nodes, where k is an integer
rounded from the R0 value, an epidemiological measure of the degree of infection, suggesting that
an infected individual in turn infects R0 others in a susceptible population pool. Consequently,
quantitative measures of a pandemic network can provide significant new insights into the epidemic
dynamics. Topological indices have been developed that aid in the prediction of chemical, physical,
pharmaceutical, and biological properties [23–29]. The eccentric connectivity index is one such
topological index that is currently being used for modeling biological activities of chemical compounds.
In anticonvulsant, anti-inflammatory, and diuretic activities, this index exhibits high degree of
predictability [30]. Ghorbani et al. [31] obtained various eccentricity–entropy-based topological
measures of fullerenes.

We consider several trees of biological and phylogenetic interests and corona products of graphs
in order to obtain the topological measures of the associated networks. In particular, we consider
several classes of recursive networks of biological importance, namely pandemic trees, Cayley trees,
Christmas trees, and the corona products of Christmas trees and paths. In Section 2, basic definitions
are stated, while Section 3 computes the eccentricity-based topological indices. Section 4 highlights
various applications of topological indices to the COVID-19 pandemic, while in Section 5, we study
the thermodynamic entropy of pandemic trees. Section 6 discusses stochasticity in pandemic tree
generation. The conclusion is given in Section 7.

2. Basic Concepts

Let G = (V(G), E(G)) be a graph with V(G) as the set of vertices and E(G) as the set of edges. A tree
is a connected, acyclic graph. In a binary tree, each node can have at most two descendants. It is said
to be a complete binary tree if each internal node has exactly two descendants.

The length of the shortest path between two vertices x and y in a graph G is the topological distance
between x and y and it is denoted by d(x,y). The eccentricity value of a vertex u ∈ V(G) denoted by
ec(u) is the longest distance between the vertex u and any other vertex v of G. The neighborhood of a
vertex u, denoted by n(u), is the set of all vertices which are adjacent to u. Let d(u) denote the degree of
a vertex u. For an edge uv ∈ E(G), let nu(e) be the number of vertices lying closer to the vertex u than
the vertex v and let nv(e) denote the number of vertices lying closer to the vertex v than the vertex u.
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The fourth geometric-arithmetic eccentricity index was introduced by Ghorbani and Khaki [32]: as

GA4(G) =
∑

uv∈E(G)

2
√

ec(u)ec(v)

ec(u) + ec(v)
.

Furthermore, the fourth Zagreb index, the fourth multiplicative Zagreb index, the sixth Zagreb
index, and the sixth multiplicative Zagreb index [33,34] are defined as follows:

Zg4(G) =
∑

uv∈E(G)

(ec(u) + ec(v));

Π
∗
4(G) =

∏

uv∈E(G)

(ec(u) + ec(v));

Zg6(G) =
∑

uv∈E(G)

ec(u) ec(v);

Π
∗
6(G) =

∏

uv∈E(G)

ec(u) ec(v).

The fourth Zagreb polynomial Zg4(G, x) and the sixth Zagreb polynomial Zg6(G, x) [33,34] are
defined by:

Zg4(G, x) =
∑

uv∈E(G)

xec(u)+ ec(v);

Zg6(G, x) =
∑

uv∈E(G)

xec(u) ec(v).

The fifth multiplicative atom bond connectivity index [33] is defined as:

ABC5Π(G) =
∏

uv∈E(G)

√

ec(u) + ec(v) − 2
ec(u) ec(v)

.

The first Zagreb index M1(G) [35] is defined as:

M1(G) =
∑

vi∈V(G)

d2
i .

The second Zagreb index M2(G) [35] of graph G is defined as:

M2(G) =
∑

viv j∈E(G)

did j.

The Atom-bond Connectivity index (ABC) [36] is defined as:

ABC(G) =
∑

viv j∈E(G)

√

di + d j − 2

did j
.

The Padmakar–Ivan (PI) index [37] is defined as:

PI(G) =
∑

e=uv∈E(G)

[nu(e) + nv(e )].
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The Szeged Index [38] is defined as:

Sz(G) =
∑

e=uv∈E(G)

[nu(e) × nv(e)].

3. Main Results for the Topological Indices

In epidemiology, R0, the reproduction number measures the severity of the pandemic, and it is
defined as the number of individuals an infected person can in turn infect in a group of susceptible
population set. For example, Figure 1 shows a pandemic tree for an epidemic with an R0 value of
4. In this section, we have obtained the eccentricity-related indices for the pandemic tree network
(also called a complete k-ary tree network), Cayley tree network, Christmas trees, and the corona
product of Christmas tree and a path, all of which are defined in the respective sections.

 

 

𝑘 𝑘 𝑘 𝑙𝑘𝑖 𝑖 + 1  0 ≤ 𝑖 ≤ 𝑙 − 1  𝑘 𝑘𝑘 𝑘𝑘 𝑇 𝑙 𝑘 ≥𝑖, 0 ≤ 𝑖 ≤ 𝑙 𝑜𝑓 𝑇  𝑘𝑇 − 1, 𝑑(𝑣) 𝑇 𝑖𝑠 1 𝑣𝑘 𝑣 𝑘 + 1, 𝑣𝑇   

Figure 1. A pandemic tree with an epidemiological R0 value of 4.

3.1. Topological Indices of Pandemic Trees

A pandemic tree is a complete R0-ary tree, where R0 is the reproduction number of a pandemic
rounded to the nearest integer.

Definition 1 ([39]). A k-ary tree is a rooted tree in which each node has no more than k children. All children of

one node can be described as descendants of this node. In a k-ary tree, the maximum distance l from leaves to the

root node is called the height of the k-ary tree. The root node is said to be at level 0. Inductively, the descendants

of nodes at level i are at level i + 1, 0 ≤ i ≤ l− 1. A k-ary tree is said to be a complete k-ary tree if each internal

node has exactly k descendants. Thus, a pandemic tree is a complete k-ary tree, with the rounded epidemiological

R0 value of k. We denote this tree by Tk
l
, where l is the height of the tree, k, l ≥ 2.

The number of vertices in level i, 0 ≤ i ≤ l of Tk
l

is ki. Hence, the total number of vertices and

edges in Tk
l

are kl+1−1
k−1 and kl+1−1

k−1 − 1, respectively. The degree d(v) of a vertex v in Tk
l

is 1 , if v is a leaf;
k, if v is the root and k + 1, if v is an internal vertex. For illustration, the pandemic tree T3

5 of level 5,
and the pandemic tree T6

6 of level 6 are shown in Figure 2a,b, respectively.
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(a) 

 
(b) 𝑇𝑇 , Figure 2. (a): A 5-level pandemic tree T3

5 , with reproduction number 3. (b): A 6-level pandemic tree T6
6 ,

with a reproduction number 6.

Theorem 1. Let Tk
l

denote a pandemic tree on l levels with a reproduction number k.

Then:

(i) GA4

(

Tk
l

)

=
l
∑

i=1
ki × 2

√
(l+i−1)(l+i)

2(l+i−1)+1 ;

(ii) Zg4

(

Tk
l

)

=
k(k+2l−2lk+1)

(k−1)2 − kl+1(k+4l−4lk+1)

(k−1)2 ;

(iii) Π
∗
4

(

Tk
l

)

=
l
∏

i=1
(2(l + i) − 1)ki

;

(iv) Zg6

(

Tk
l

)

=
2kl+1(2k2l2−lk2−4kl2+k+2l2+l)

(k−1)3 − k(k2l2−lk2−2kl2+2k+l2+l)
(k−1)3 ;

(v) Π
∗
6

(

Tk
l

)

=
l
∏

i=1
((l + i− 1)(l + i))ki

;

(vi) Zg4

(

Tk
l
, x

)

=
l
∑

i=1
ki × x2(l+i−1)+1;

(vii) Zg6

(

Tk
l
, x

)

=
l
∑

i=1
ki × x(l+i−1)(l+i);

(viii) ABC5

(

Tk
l

)

=
l
∏

i=1

(√

2(l+i−1)−1
(l+i−1)(l+i)

)ki

;

(ix) PI
(

Tk
l

)

=
k(kl−1)(kl+1−1)

(k−1)2 ;

(x) Sz
(

Tk
l

)

=
kl+1(2k−l−2k×kl+kl−kl×kl+k2+l×l)

(k−1)3 .
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Proof. We prove the results based on the edge partition and structure analysis of Tk
l

:

• El+i−1, l+i =
{

e = uv ∈ E
(

Tk
l

)

∣

∣

∣

∣

ec(u) = l + i− 1 and ec(v) = l + i
}

and nl+i−1,l+i =
∣

∣

∣El+i−1,l+i

∣

∣

∣ = ki,
where i ∈ {1, . . . , l} :

and

• Ek+1,k =
{

e = uv ∈ E
(

Tk
l

)

∣

∣

∣

∣

d(u) = k + 1 and d(v) = k, n(u) =
(

kl−1
k−1

)

and n(v) =
(

kl+1−1
k−1

)

−
(

kl−1
k−1

)}

and nk+1,k =
∣

∣

∣Ek+1,k

∣

∣

∣ = k;

• E1,k+1 =
{

e = uv ∈ E
(

Tk
l

)

∣

∣

∣

∣

d(u) = 1andd(v) = k + 1, n(u) = 1 and n(v) =
(

kl+1−1
k−1

)

− 1
}

and
∣

∣

∣E1,k

∣

∣

∣ = kl;

• Ek+1,k+1 =

{

e = uv ∈ E
(

Tk
l

)

∣

∣

∣

∣

∣

∣

d(u) = d(v) = k + 1, n(u) =
l−2
∑

i=1

(

ki+1−1
k−1

)

and n(v) =
(

kl+1−1
k−1

)

−

l−2
∑

i=1

(

ki+1−1
k−1

)

}

and
∣

∣

∣Ek,k

∣

∣

∣ =
l−2
∑

i=1
(kl−i).

From the definitions we have:

GA4

(

Tk
l

)

=
l

∑

i=1

ki ×
2
√

(l + i− 1)(l + i)

2(l + i− 1) + 1
;

Zg4

(

Tk
l

)

=
l

∑

i=1

ki × 2(l + i− 1) + 1 =
k(k + 2l− 2lk + 1)

(k− 1)2
−

kl+1(k + 4l− 4lk + 1)

(k− 1)2
;

Π
∗
4

(

Tk
l

)

=
l

∏

i=1

(2(l + i) − 1)ki

;

Zg6

(

Tk
l

)

=
l
∑

i=1
ki × (l + i− 1)(l + i)

=
2kl+1(2k2l2−lk2−4kl2+k+2l2+l)

(k−1)3 − k(k2l2−lk2−2kl2+2k+l2+l)
(k−1)3 ;

Π
∗
6

(

Tk
l

)

=
l

∏

i=1

((l + i− 1)(l + i))ki

;

Zg4

(

Tk
l
, x

)

=
l

∑

i=1

ki × x2(l+i−1)+1;

Zg6

(

Tk
l
, x

)

=
l

∑

i=1

ki × x(l+i−1)(l+i);

ABC5

(

Tk
l

)

=
l

∏

i=1

















√

2(l + i− 1) − 1
(l + i− 1)(l + i)

















ki

.

Further:

PI
(

Tk
l

)

=
((

kl−1
k−1

)

+
((

kl+1−1
k−1

)

−
(

kl−1
k−1

)))

×k +
(

1 +
((

kl+1−1
k−1

)

− 1
))

× kl

+
l−2
∑

i=1
(kl−i)

{(

ki+1−1
k−1

)

+
((

kl+1−1
k−1

)

−
(

ki+1−1
k−1

))}

=
k(kl−1)(kl+1−1)

(k−1)2 ;
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Sz
(

Tk
l

)

=
((

kl−1
k−1

)

×
((

kl+1−1
k−1

)

−
(

kl−1
k−1

)))

×k +
(

1×
((

kl+1−1
k−1

)

− 1
))

× kl

+
l−2
∑

i=1
(kl−i)

{(

ki+1−1
k−1

)

×
((

kl+1−1
k−1

)

−
(

ki+1−1
k−1

))}

=
kl+1(2k−l−2k×kl+kl−kl×kl+k2+l×l)

(k−1)3 .

�

Theorem 2. The various degree based topological indices of Tk
l

are given by:

(i) M1

(

Tk
l

)

= k2 + (k + 1)2 × kl−k
k−1 + kl;

(ii) M2

(

Tk
l

)

= kl(k + 1) + kl−k2

k−1 (k + 1)2 + k2(k + 1);

(iii) ABC
(

Tk
l

)

= k
√

2k−1
k(k+1) + kl

√

k
k+1 + kl−k2

k−1 ×
√

2k
k+1 .

Proof. Let the vertex and edge sets of Tk
l

be partitioned as follows:

• P1 =
{

v
∣

∣

∣ d(v) = k
}

and |P1| = 1 ;

• P2 =
{

v
∣

∣

∣ d(v) = k + 1
}

and |P2| = kl−k
k−1 ;

• P3 =
{

v
∣

∣

∣ d(v) = 1
}

and |P3| = kl ;

and

• Ek,k+1 =
{

e = uv ∈ E
(

Tk
l

)

∣

∣

∣

∣

d(u) = k and d(v) = k + 1
}

and
∣

∣

∣Ek,k+1

∣

∣

∣ = k ;

• E1,k+1 =
{

e = uv ∈ E
(

Tk
l

)

∣

∣

∣

∣

d(u) = 1 and d(v) = k + 1
}

and
∣

∣

∣E1,k+1

∣

∣

∣ = kl ;

• Ek+1,k+1 =
{

e = uv ∈ E
(

Tk
l

)

∣

∣

∣

∣

d(u) = k + 1 and d(v) = k + 1
}

and
∣

∣

∣Ek+1,k+1

∣

∣

∣ =
l−1
∑

i=2
ki.

By the definition of first Zagreb index, we have:

M1

(

Tk
l

)

=
∑

vǫP1

(d(v))2 +
∑

vǫP2

(d(v))2 +
∑

vǫP3

(d(v))2= k2 + (k + 1)2 × kl − k

k− 1
+ kl.

From the definitions of M2 and ABC we obtain:

M2

(

Tk
l

)

=
∑

eǫEk,k+1

d(u)d(v) +
∑

eǫE1,k+1

d(u)d(v) +
∑

eǫEk+1,k+1

d(u)d(v)

= ((k)(k + 1))k + ((1)(k + 1)) kl + (k + 1)(k + 1) kl−k2

2

= kl(k + 1) + kl−k2

k−1 (k + 1)2 + k2(k + 1);

ABC
(

Tk
l

)

= k
√

(k)+(k+1)−2
(k)(k+1) + kl

√

(1)+(k+1)−2
(1)(k+1)

+
l−1
∑

i=2
ki

√

(k+1)+(k+1)−2
(k+1)(k+1)

= k
√

2k−1
k(k+1) + kl

√

k
k+1 + kl−k2

k−1 ×
√

2k
k+1 .

�

Remark 1. The results obtained from Topo-Chemie-2020 [40] are shown in Table 1 for a comparison with the

results obtained from Theorems 1 and 2.
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Table 1. Results obtained for the pandemic tree Tk
l

with the computer code, compared with the results
from the expressions in Theorems 1 and 2.

Index Dimension l, k From Expressions 1 and 2 Topo-Chemie-2020 [40]

GA4

(

Tk
l

)

l = 3, k = 3 38.8016 38.801700143357856

l = 3, k = 4 83.5947 83.59488962413361

l = 4, k = 3 119.6838 119.6839561076481

l = 4, k = 4 339.1496 339.1498266447425

Zg4

(

Tk
l

)

l = 3, k = 3 399 399

l = 3, k = 4 876 876

l = 4, k = 3 1692 1692

l = 4, k = 4 4884 4884

Π
∗
4

(

Tk
l

)

l = 3, k = 3 1.74212456 × 1039 1.742124563637115 × 1039

l = 3, k = 4 1.98337192 × 1085 1.9833719240465464 × 1085

l = 4, k = 3 3.75944893 × 10137 3.759448938495563 × 10137

l = 4, k = 4 Infinity +Inf

Zg6

(

Tk
l

)

l = 3, k = 3 1026 1026

l = 3, k = 4 2288 2288

l = 4, k = 3 6000 6000

l = 4, k = 4 17,584 17,584

Π
∗
6

(

Tk
l

)

l = 3, k = 3 6.74664061 × 1054 6.746640616477462 × 1054

l = 3, k = 4 4.66622007 × 10119 4.666220065428966 × 10119

l = 4, k = 3 4.24758724 × 10202 4.247587242244764 × 10202

l = 4, k = 4 Infinity +Inf

ABC5Π

(

Tk
l

)

l = 3, k = 3 2.0850970590 × 10−10 2.0850970590395853 × 10−10

l = 3, k = 4 7.2443933360 × 10−22 7.2443933361227945 × 10−22

l = 4, k = 3 2.6373891592 × 10−37 2.6373891591075294 × 10−37

l = 4, k = 4 1.26583295 × 10−105 1.2658329528339406 × 10−105

PI
(

Tk
l

)

l = 3, k = 3 1560 1560

l = 3, k = 4 7140 7140

l = 4, k = 3 14,520 14,520

l = 4, k = 4 115,940 115,940

Sz
(

Tk
l

)

l = 3, k = 3 3402 3402

l = 3, k = 4 17,152 17,152

l = 4, k = 3 44,712 44,712

l = 4, k = 4 389,120 389,120

M1

(

Tk
l

)

l = 3, k = 3 228 228

l = 3, k = 4 580 580

l = 4, k = 3 714 714

l = 4, k = 4 2372 2372

M2

(

Tk
l

)

l = 3, k = 3 288 288

l = 3, k = 4 800 800

l = 4, k = 3 936 936

l = 4, k = 4 3360 3360

ABC
(

Tk
l

)

l = 3, k = 3 30.8308 30.83052949654569

l = 3, k = 4 68.6607 68.66073893642222

l = 4, k = 3 94.13 94.12995706469174

l = 4, k = 4 276.5956 276.59462680515827
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3.2. Topological Indices of Cayley Trees

Definition 2. A tree is said to be a k-Cayley tree with l levels, denoted by C(k, l), k, l ≥ 3 if all vertices have the

same degree k except the leaves [41]. The number of vertices and edges in C(k, l) are
k(k−1)l−2

k−2 and
k(k−1)l−2

k−2 − 1,
respectively. For illustration, the Cayley trees C(3,6) and C(6,6) are shown in Figure 3a,b, respectively.

 

 
(a) 

(b) 

𝐶(𝑘, 𝑙), 𝑤𝑖𝑡ℎ 𝑘, 𝑙 ≥ 3, 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖
 𝐺𝐴 (𝐶(𝑘, 𝑙)) = ∑ 𝑘(𝑘 − 1) × ( )( )( ) ;
 𝑍𝑔 (𝐶(𝑘, 𝑙)) = ( ( ( ) ( ) ( ) ))( ) ;

Figure 3. (a): A 3-Cayley tree, C(3,6), of degree 3 with 6 levels. (b): A 6-Cayley tree, C(6,6), of degree 6
with 6 levels.

Theorem 3. For a Cayley tree C(k, l), with k, l ≥ 3, we obtai:

(i) GA4(C(k, l)) =
l
∑

i=1
k(k− 1)i−1 × 2

√
(l+i−1)(l+i)

2(l+i−1)+1 ;

(ii) Zg4(C(k, l)) =
(k(4l+k−2lk−8l(k−1)l−k(k−1)l+4lk(k−1)l))

(k−2)2 ;

(iii) Π
∗
4(C(k, l)) =

l
∏

i=1
(2(l + i) − 1)k(k−1)i−1

;

(iv) Zg6(C(k, l)) = k

(

(

4l2k−l2k2−4l2+lk2−2lk−2k+2
(k−2)3

)

+

(

2(k−1)l(2l2k2−8l2k+8l2−lk2+2lk+k−1)
(k−2)3

))

;

(v) Π
∗
6(C(k, l)) =

l
∏

i=1
((l + i− 1)(l + i))k(k−1)i−1

;

(vi) Zg4(C(k, l), x) =
l
∑

i=1
k(k− 1)i−1 × x2(l+i−1)+1;
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(vii) Zg6(C(k, l), x) =
l
∑

i=1
k(k− 1)i−1 × x(l+i−1)(l+i);

(viii) ABC5(C(k, l)) =
l
∏

i=1

(√

2(l+i−1)−1
(l+i−1)(l+i)

)k(k−1)i−1

;

(ix) PI(C(k, l)) =

(

k
(

k(k−1)l−2
)(

(k−1)l−1
))

(k−2)2 ;

(x) Sz(C(k, l)) =

(

k
(

2k(k−1)l−2k(k−1)2l+(k−1)2l−2kl(k−1)2l+lk2(k−1)2l−1
))

(k−2)3 .

Proof. We compute the edge partition with respect to eccentricities and the edge partitions with respect
to the degrees of the associated vertices from the edge set of C(k, l) as follows:

• El+i−1, l+i =
{

e = uv ∈ E(C(k, l))
∣

∣

∣ec(u) = l + i− 1 and ec(v) = l + i
}

and nl+i−1, l+i =
∣

∣

∣El+i−1, l+i

∣

∣

∣ =

k(k− 1)i−1, where i ∈ {1, . . . , l} :

and

• Ek,k =
{

e = uv ∈ E(C(k, l))

∣

∣

∣

∣

∣

d(u) = d(v) = k, n(u) =
(

(k−1)l−1
k−2

)

and n(v) =
(

k(k−1)l−(k−1)l−1
k−2

) }

and
∣

∣

∣Ek,k

∣

∣

∣ = k;

• E1,k =
{

e = uv ∈ E(C(k, l))

∣

∣

∣

∣

∣

d(u) = 1 and d(v) = k, n(u) = 1 and n(v) =
(

k(k−1)l−2
k−2 − 1

)}

and
∣

∣

∣E1,k

∣

∣

∣ = k(k− 1)l−1;

• Ek,k =

{

e = uv ∈ E(C(k, l))

∣

∣

∣

∣

∣

∣

d(u) = d(v) = k, n(u) =
l−2
∑

i=1

(

(k−1)i+1−1
k−2

)

and n(v) =
l−2
∑

i=1

(

k(k−1)d−2
k−2 −

(k−1)i+1−1
k−2

)}

and
∣

∣

∣Ek,k

∣

∣

∣ =
l−2
∑

i=1
k(k− 1)l−i−1.

From the definitions of the eccentric version indices, we obtain:

GA4(C(k, l)) =
l

∑

i=1

k(k− 1)i−1 ×
2
√

(l + i− 1)(l + i)

2(l + i− 1) + 1
;

Zg4(C(k, l)) =
(k(4l + k− 2lk− 8l(k− 1)l − k

(

k− 1)l + 4lk
(

k− 1)l
))

(k− 2)2
;

Π
∗
4(C(k, l)) =

l
∏

i=1

(2(l + i) − 1)k(k−1)i−1
;

Zg6(C(k, l)) = k
((

4l2k−l2k2−4l2+lk2−2lk−2k+2
(k−2)3

)

+
(

2(k−1)l(2l2k2−8l2k+8l2−lk2+2lk+k−1

(k−2)3

))

;

Π
∗
6(C(k, l)) =

l
∏

i=1

((l + i− 1)(l + i))k(k−1)i−1
;

Zg4(C(k, l), x) =
l

∑

i=1

k(k− 1)i−1 × x2(l+i−1)+1;

Zg6(C(k, l), x) =
l

∑

i=1

k(k− 1)i−1 × x(l+i−1)(l+i);

ABC5(C(k, l)) =
l

∏

i=1

















√

2(l + i− 1) − 1
(l + i− 1)(l + i)

















k(k−1)i−1

.
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By the definitions of the PI and Sz indices we have:

PI(C(k, l)) =
((

(k−1)l−1
k−2

)

+
(

k(k−1)l−(k−1)l−1
k−2

))

×k +
(

1 +
(

k(k−1)l−2
k−2 − 1

))

×

k(k− 1)l−1

+
l−2
∑

i=1
k(k− 1)l−i−1

{(

(k−1)i+1−1
k−2

)

+
((

k(k−1)l−2
k−2

)

−
(

(k−1)i+1−1
k−2

))}

=

(

k
(

k(k−1)l−2
)(

(k−1)l−1
))

(k−2)2 ;

Sz(C(k, l)) =
((

(k−1)l−1
k−2

)

×
(

k(k−1)l−(k−1)l−1
k−2

))

×k +
(

1×
(

k(k−1)l−2
k−2 − 1

))

×

k(k− 1)l−1

+
l−2
∑

i=1
k(k− 1)l−i−1

{(

(k−1)i+1−1
k−2

)

×
((

k(k−1)l−2
k−2

)

−
(

(k−1)i+1−1
k−2

))}

=

(

k
(

2k(k−1)l−2k(k−1)2l+(k−1)2l−2kl(k−1)2l+lk2(k−1)2l−1
))

(k−2)3 .

�

Theorem 4. The various degree based topological indices of C(k, l) are given by:

(i) M1(C(k, l)) =
k(k(k−1)l−2k+2(k−1)l

k−2 ;

(ii) M2(C(k, l)) =
k2(2(k−1)l−k)

k−2 ;

(iii) ABC(C(k, l)) =
(

k(k−1)l−k+1
k2−3k+2

)
√

2(k−1)
k + k(k− 1)l−1

√

k−1
k .

Proof. Partition the vertex and edge sets of C(k, l) as follows:

• P1 =
{

v
∣

∣

∣ d(v) = k
}

and |P1| =
(

k(k−1)l−1−2
k−2

)

;

• P2 =
{

v
∣

∣

∣ d(v) = 1
}

and |P2| = k(k− 1)l−1 :

and

• Ek,k =
{

e = uv ∈ E(C(k, l))
∣

∣

∣ d(u) = k and d(v) = k
}

and
∣

∣

∣Ek,k

∣

∣

∣ =
(

k(k−1)l−k+1
k2−3k+2

)

;

• E1,k =
{

e = uv ∈ E(C(k, l))
∣

∣

∣ d(u) = 1 and d(v) = k
}

and
∣

∣

∣E1,k

∣

∣

∣ = k(k− 1)l−1.

By the definition of M1:

M1(C(k, l)) =
∑

vǫP1

(d(v))2 +
∑

vǫP2

(d(v))2

= k2
(

k(k−1)l−1−2
k−2

)

+
(

k(k− 1)l−1
)

× 1

=
k(k(k−1)l−2k+2(k−1)l

k−2 .

Again, by the definitions of M2 and ABC we obtain:

M2(C(k, l)) =
∑

eǫEk,k

d(u)d(v) +
∑

eǫE1,k

d(u)d(v)

= (k× k)
(

k(k−1)l−k+1
k2−3k+2

)

+ (k× 1)
(

k(k− 1)l−1
)

=
k2(2(k−1)l−k)

k−2 ;
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ABC(C(k, l)) =
∑

eǫEk,k

√

d(u)+d(v)−2
d(u)d(v)

+
∑

eǫE1,k

√

d(u)+d(v)−2
d(u)d(v)

=
(

k(k−1)l−k+1
k2−3k+2

)√

(k)+(k)−2
(k)(k)

+ k(k− 1)l−1
√

(1)+(k)−2
(1)(k)

=
(

k(k−1)l−k+1
k2−3k+2

)
√

2(k−1)
k + k(k− 1)l−1

√

k−1
k .

�

Remark 2. The results obtained from Topo-Chemie-2020 [40] shown in Table 2 corroborate with the results

obtained from Theorems 3 and 4.

Table 2. Results obtained for the Cayley Trees C(k, l) with the computer code, compared with the
results from the expressions in Theorems 3 and 4.

Index Dimension k, l Expressions 3 and 4 Topo-Chemie-2020 [40]

GA4 (C(k, l))

k = 3, l = 3 20.8823882414 20.88238824139906

k = 3, l = 4 44.8676307844 44.86763078442802

k = 4, l = 3 51.7356001911 51.73560019114378

k = 4, l = 4 159.578608144 159.57860814353083

Zg4 (C(k, l))

k = 3, l = 3 207 207

k = 3, l = 4 609 609

k = 4, l = 3 532 532

k = 4, l = 4 2256 2256

Π
∗
4(C(k, l))

k = 3, l = 3 5.72086104 × 1020 5.7208610362887386 × 1020

k = 3, l = 4 5.06517068 × 1050 5.065170680143067 × 1050

k = 4, l = 3 2.09623003 × 1052 2.0962300336315637 × 1052

k = 4, l = 4 2.71330692 × 10183 2.7133069091840815 × 10183

Zg6 (C(k, l))

k = 3, l = 3 516 516

k = 3, l = 4 2088 2088

k = 4, l = 3 1368 1368

k = 4, l = 4 8000 8000

Π
∗
6(C(k, l))

k = 3, l = 3 5.87731231 × 1028 5.877312307199999 × 1028

k = 3, l = 4 1.5897237 × 1074 1.589723697730939 × 1074

k = 4, l = 3 1.27482362 × 1073 1.2748236216396078 × 1073

k = 4, l = 4 1.482028 × 10270 1.4820280048671849 × 10270

ABC5Π (C(k, l))

k = 3, l = 3 0.00000840649 0.000008406491899037542

k = 3, l = 4 4.4189082 × 10−14 4.419672639996076 × 10−14

k = 4, l = 3 1.23642668 × 10−13 1.2364266794260217 × 10−13

k = 4, l = 4 1.66132298 × 10−49 1.6913453312569212 × 10−49

PI(C(k, l))

k = 3, l = 3 462 462

k = 3, l = 4 2070 2070

k = 4, l = 3 2756 2756

k = 4, l = 4 25,760 25,760
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Table 2. Cont.

Index Dimension k, l Expressions 3 and 4 Topo-Chemie-2020 [40]

M1(C(k, l))

k = 3, l = 3 102 102

k = 3, l = 4 222 222

k = 4, l = 3 308 308

k = 4, l = 4 956 956

M2(C(k, l))

k = 3, l = 3 117 117

k = 3, l = 4 261 261

k = 4, l = 3 400 400

k = 4, l = 4 1264 1264

ABC(C(k, l))

k = 3, l = 3 15.7979589714 15.797958971132715

k = 3, l = 4 33.5959179422 33.59591794226542

k = 4, l = 3 40.9748735074 40.974873507372514

k = 4, l = 4 125.374110265 125.37411026490041

Remark 3. Gutman et al. [42] proved that the Szeged index and the Wiener index are equal for trees. Hence,

in particular, W and Sz indices are equal for the pandemic and Cayley trees.

3.3. Christmas Tree Network

Definition 3 ([43]). For s ≥ 2, a Christmas tree CT(s) is composed of an sth slim tree ST(s) = (V1, E1, u1, l1, r1)
and an (s + 1)th slim tree ST(s + 1) = (V2, E2, u2, l2, r2) together with the edges (u1, u2), (l1, r2), and (l2, r1),
where ST(s) = (V, E, u, l, r), with V as the node set, E as the edge set, u ∈ V as the root node, l ∈ V as the left

node, and r ∈ V as the right node defined below:

1 ST(2) is the complete graph K3 with its nodes labelled with u, l and r.

2 The sth slim tree ST(s), with s ≥ 3, is composed of a root node u and two disjoint copies of (s − 1)th

slim trees as the left subtree and right subtree, denoted by STl(s− 1) = (V1, E1, u1, l1, r1) and

STr(s− 1) = (V2, E2, u2, l2, r2), respectively and ST(s) = (V, E, u, l, r) is given by V = V1 ∪V2 ∪
{u}, E = E1 ∪ E2 ∪

{

(u, u1), (u, u2), (r1, l2)
}

, l = l1, r = r2.

For illustration, the Christmas tree CT(3) is shown in Figure 4. The number of nodes and edges of
CT(s) are (3× 2s) − 2 and 9×2s−6

2 , respectively.

 

 𝐺𝐴 𝐶𝑇(𝑠) = ∑ 3(2 ) ( )( )( ) + 3(2 ) ;
 𝑍𝑔 𝐶𝑇(𝑠) = 12𝑠(2 ) − 6𝑠 − 9(2 ) + 9 + 12𝑠(2 );
  𝛱∗ 𝐶𝑇(𝑠) = (4𝑠) ∏ (2(𝑠 + 𝑖) − 1) ( );
 𝑍𝑔 𝐶𝑇(𝑠) = 9𝑠 + 𝑠 (12 × 2 − 3) + 3 × 2 (2𝑠 − 3𝑠 + 2) − 12;

 𝛱∗ 𝐶𝑇(𝑠) = (4𝑠 ) ∏ ((𝑠 + 𝑖 − 1)(𝑠 + 𝑖)) ( );
 𝑍𝑔 (𝐶𝑇(𝑠), 𝑥) = ∑ 3(2 )𝑥 ( ) + 3(2 )𝑥 ;
 𝑍𝑔 (𝐶𝑇(𝑠), 𝑥) = ∑ 3(2 )𝑥( )( ) + 3(2 )𝑥 ;
 𝐴𝐵𝐶 Π 𝐶𝑇(𝑠) = ∏ ( )( )( ) × .

𝐶𝑇(𝑠)
  𝐸 , = {𝑒 = 𝑢𝑣 ∈ 𝐸(𝐶𝑇(𝑠))|𝑒𝑐(𝑢) = 𝑠 + 𝑖 − 1 and 𝑒𝑐(𝑣) = 𝑠 + 𝑖} 𝑛 ,  =𝐸 , = 3(2 ) , 𝑖 ∈ {1, … , 𝑠};
 𝐸 , = {𝑒 = 𝑢𝑣 ∈ 𝐸(𝐶𝑇(𝑠))|𝑒𝑐(𝑢) = 𝑒𝑐(𝑣) = 2𝑠 } 𝑛 , = 𝐸 , = 3(2 )

□

 𝑀  𝐶𝑇(𝑠) = 9(3 × 2 − 2); 
 𝑀  𝐶𝑇(𝑠) =9 × ; 
 𝐴𝐵𝐶 𝐶𝑇(𝑠) = (3 × 2 − 2). 

 𝑃 = {𝑣| 𝑑(𝑣) = 3} 𝑎𝑛𝑑 |𝑃 | = (3. 2 − 2): 

Figure 4. A Christmas tree CT(3) with 3 levels.



Symmetry 2020, 12, 1992 14 of 27

Theorem 5. We have the following results for CT(s):

(i) GA4(CT(s)) =
s
∑

i=1
3
(

2i−1
) 2
√
(s+i−1)(s+i)

2(s+i−1)+1 + 3
(

2s−1
)

;

(ii) Zg4(CT(s)) = 12s(2s) − 6s− 9(2s) + 9 + 12s
(

2s−1
)

;

(iii) Π
∗
4(CT(s)) = (4s)3(2s−1)

s
∏

i=1
(2(s + i) − 1)3(2i−1);

(iv) Zg6(CT(s)) = 9s + s2
(

12× 2s−1 − 3
)

+ 3× 2s+1
(

2s2 − 3s + 2
)

− 12;

(v) Π
∗
6(CT(s)) =

(

4s2
)3(2s−1) s

∏

i=1
((s + i− 1)(s + i))3(2i−1);

(vi) Zg4(CT(s), x) =
s
∑

i=1
3
(

2i−1
)

x2(s+i)−1 + 3
(

2s−1
)

x4s;

(vii) Zg6(CT(s), x) =
s
∑

i=1
3
(

2i−1
)

x(s+i−1)(s+i) + 3
(

2s−1
)

x4s2
;

(viii) ABC5Π(CT(s)) =
s
∏

i=1

(

2(s+i)−3
(s+i−1)(s+i)

)3(2i−2)

×
(

4s−2
4s2

)3(2s−2)
.

Proof. The edge partitions of CT(s) are defined below:

• Es+i−1, s+i =
{

e = uv ∈ E(CT(s))
∣

∣

∣ec(u) = s + i− 1 and ec(v) = s + i
}

and ns+i−1,s+i =
∣

∣

∣Es+i−1,s+i

∣

∣

∣ =

3(2i−1) , where i ∈ {1, . . . , s};
• E2s, 2s =

{

e = uv ∈ E(CT(s))
∣

∣

∣ec(u) = ec(v) = 2s
}

and n2s, 2s =
∣

∣

∣E2s, 2s

∣

∣

∣ = 3(2s−1).

Computations similar to those of Theorems 1 and 3 yield the following results. �

Theorem 6. The various degree based topological indices of CT(s) are given by:

(i) M1 (CT(s)) = 9(3× 2s − 2);

(ii) M2 (CT(s)) = 9
(

9×2s−6
2

)

;

(iii) ABC(CT(s)) = (3× 2s − 2).

Proof. As CT(s) is 3-regular, it is enough to consider the following partitions:

• P1 =
{

v
∣

∣

∣ d(v) = 3
}

and |P1| = (3.2s − 2) :

and

• E3,3 =
{

e = uv ∈ E(CT(s))
∣

∣

∣d(u) = d(v) = 3
}

and
∣

∣

∣

∣

E3,3

∣

∣

∣

∣

=
(9×2s−6)

2 .

A direct application of the definitions yields the required results. �

Remark 4. The results obtained from Topo-Chemie-2020 [40] are shown in Table 3 for a comparison with the

results obtained from Theorems 5 and 6.

Table 3. Results obtained for the Christmas trees, CT(s) with the computer code, compared with the
results from the expressions in Theorems 5 and 6.

Index Dimensions From Expressions 5 and 6 Topo-Chemie-2020 [40]

GA4 (CT(s))

s = 3 32.8823 32.882388241399056

s = 4 68.8671 68.86763078442803

s = 5 140.8350 140.83501683597572

Zg4 (CT(s))

s = 3 351 351

s = 4 993 993

s = 5 2571 2571
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Table 3. Cont.

Index Dimensions From Expressions 5 and 6 Topo-Chemie-2020 [40]

Π
∗
4(CT(s))

s = 3 5.10073079 × 1033 5.10077716500643 × 1033

s = 4 4.01304165 × 1079 4.0130416580886176 × 1079

s = 5 1.91126114 × 10177 1.9112611351919165 × 10177

Zg6 (CT(s))

s = 3 948 948

s = 4 3624 3624

s = 5 11,862 11,862

Π
∗
6(CT(s))

s = 3 2.7848947 × 1047 2.7848946955924445 × 1047

s = 4 3.54520226 × 10117 3.5452023119163584 × 10117

s = 5 3.37859549 × 10269 3.3785954904846475 × 10269

ABC5Π (CT(s))

s = 3 3.8618890813 × 10−9 3.861889064427591 × 10−9

s = 4 5.3059950832 × 10−22 5.305995082939164 × 10−22

s = 5 1.7589082206 × 10−50 1.7589082206095107 × 10−50

M1(CT(s))

s = 3 198 198

s = 4 414 414

s = 5 846 846

M2(CT(s))

s = 3 297 297

s = 4 621 621

s = 5 1269 1269

ABC(CT(s))

s = 3 22 22.000000000000004

s = 4 46 45.99999999999997

s = 5 94 94.00000000000011

3.4. Corona Product of Christmas Tree and a Path

Graph operations facilitate decomposition of a graph G into two or more isomorphic subgraphs.
The corona product G1òG2 of two graphs G1 (with n1 vertices and m1 edges) and G2 (with n2 vertices
and m2 edges) is defined as the graph obtained by taking a copy of G1 and n1 copies of G2, and then
joining the ith vertex of G1 with edges to every vertex in the ith copy of G2. It follows from the definition
of the corona product that G1òG2 has n1 + n1n2 vertices and m1 + n1m2 + n1n2 edges. It is easy to see
that G1òG2 is not in general isomorphic to G2òG1 [44].

The corona product CT(3)òP3 is shown in Figure 5. The number of nodes and edges of CT(s)òPn

are 3 × 2s − 2 + (3× 2s − 2)n and 9×2s−6
2 + ((3× 2s) − 2)(2n− 1), respectively. The eccentricity-based

topological indices for CT(s)òPn, s, n ≥ 2 are given in Theorem 7.
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(v) 𝛱∗(𝐶𝑇(𝑠)ʘ𝑃  ) = (𝑠 + 3𝑠 + 2) × ∏ ((𝑠 + 𝑖)(𝑠 + 𝑖 + 1))( )× (2(2𝑠 + 3𝑠 + 1)) ( ) × (𝑠 + 𝑖 + 2)( ) × (2𝑠 + 1) ( )× (𝑠 + 2) ( );
(vi) 𝑍𝑔 (𝐶𝑇(𝑠)ʘ𝑃  , 𝑥) = (3 + 𝑛)𝑥 + (6 + 3𝑛) ∑ 2 𝑥 ( ) + 3𝑛(2 )𝑥+3(𝑛 − 1) 2 𝑥 ( ) + 3(2 )𝑥 + (𝑛 − 1)𝑥 ( ) ;
(vii) 𝑍𝑔 (𝐶𝑇(𝑠)ʘ𝑃  , 𝑥) = (3 + 𝑛)𝑥 + (6 + 3𝑛) ∑ 2 𝑥( )( )+3𝑛(2 )𝑥( )( ) + 3(𝑛 − 1) 2 𝑥( )

+3(2 )𝑥( ) + (𝑛 − 1)𝑥( ) ;
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Figure 5. The corona product CT(3)òP3 of a Christmas tree CT(3) and a path P3.
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Theorem 7. For s, n ≥ 2, we have the following for CT(s)òPn :

(i) GA4(CT(s)òPn) = (6 + 2n)

√
(s+1)(s+2)

2s+3 +
∑s

i=2 3
(

2i−2
)

(2 + n)
2
√
(s+i)(s+i+1)
2(s+i)+1

+6n
(

2s−1
)

√
(2s+1)(2s+2)

4s+3 +
∑s

i=1 3
(

2i−1
)

(n− 1) 2(s+i+2)
2(s+i+1)+2 +3

(

2s−1
)

+ n− 1;

(ii) Zg4(CT(s)òPn ) = n(9× 2s − 2 + 24s× 2s) + s(6× 2s − 8n− 2) − 6× 2s + 5;

(iii) Π
∗
4(CT(s)òPn ) = (2s + 3)3+n ×

∏s
i=2(2(s + i) + 1)(6+3n)2i−2

× (4s + 3)3n(2s−1)

×
s
∏

i=1
(2(s + i + 2))(3n−3)2i−1

× (4s + 2)3(2s−1) × (2s + 4)n−1;

(iv) Zg6(CT(s)òPn) = s2(6× 2s − 4n + 24n× 2s − 1) + s(5− 2n− 12× 2s + 18n× 2s) + 2s
(

15n− 3
2

)

−
9n− 1;

(v) Π
∗
6(CT(s)òPn) =

(

s2 + 3s + 2
)3+n

×
∏s

i=2((s + i)(s + i + 1))(6+3n)2i−2
×
(

2
(

2s2 + 3s + 1
))3n(2s−1)

×
s
∏

i=1
(s + i + 2)(3n−3)2i

× (2s + 1)6(2s−1) ×(s + 2)2(n−1);

(vi) Zg4(CT(s)òPn , x) = (3 + n)x2s+3 + (6 + 3n)
∑s

i=2 2i−2x2(s+i)+1 + 3n
(

2s−1
)

x4s+3

+3(n− 1)
s
∑

i=1
2i−1x2(s+i+2) + 3

(

2s−1
)

x4s+2 + (n− 1)x2(s+2);

(vii) Zg6(CT(s)òPn , x) = (3 + n)xs2+3s+2 + (6 + 3n)
∑s

i=2 2i−2x(s+i)(s+i+1) +3n
(

2s−1
)

x(2s+1)(2s+2) +

3(n− 1)
s
∑

i=1
2i−1x(s+i+2)2

+3
(

2s−1
)

x(2s+1)2
+ (n− 1)x(s+2)2

;

(viii) ABC5Π(CT(s)òPn ) =
(
√

2s+1
(s+1)(s+2)

)3+n

×
∏s

i=2

(

2(s+i)−1
(s+i+1)(s+i)

)(6+3n)(2i−3)

×
(

4s+1
(2s+1)(2s+2)

)3n(2s−2)

×
s
∏

i=1

(

2(s+i+1)

(s+i+2)2

)(3n−3)(2i−2)

×
( √

4s
(2s+1)

)3(2s−1)

×
( √

2(s+1)
s+2

)n−1

.

Proof. In CT(s)òPn , we have the following partitions:

• Es+1, s+2 =
{

e = uv ∈ E(CT(s)òPn )
∣

∣

∣ec(u) = s + 1 and ec(v) = s + 2
}

and ns+1, s+2 =
∣

∣

∣Es+1, s+2

∣

∣

∣ =

3 + n;
• Es+i, s+i+1 =

{

e = uv ∈ E(CT(s)òPn )
∣

∣

∣ec(u) = s + i and ec(v) = s + i + 1
}

and ns+i, s+i+1 =
∣

∣

∣Es+i, s+i+1

∣

∣

∣ = 3(2i−2)(2 + n), where i ∈ {2, . . . , s};
• E2s+1, 2s+2 =

{

e = uv ∈ E(CT(s)òPn )
∣

∣

∣ec(u) = 2s + 1 and ec(v) = 2s + 2
}

and n2s+1, 2s+2 =
∣

∣

∣E2s+1, 2s+2

∣

∣

∣ = 3n(2s−1);
• Es+i+2, s+i+2 =

{

e = uv ∈ E(CT(s)òPn )
∣

∣

∣ec(u) = ec(v) = s + i + 2
}

and ns+i+2, s+i+2 =
∣

∣

∣Es+i+2, s+i+2

∣

∣

∣ = 3(2i−1)(n− 1), where i ∈ {1, . . . , s};
• E2s+1, 2s+1 =

{

e = uv ∈ E(CT(s)òPn )
∣

∣

∣ec(u) = ec(v) = 2s + 1
}

and n2s+1, 2s+1 =
∣

∣

∣E2s+1, 2s+1

∣

∣

∣ =

3(2s−1);
• Es+2, s+2 =

{

e = uv ∈ E(CT(s)òPn )
∣

∣

∣ec(u) = ec(v) = s + 2
}

and ns+2, s+2 =
∣

∣

∣Es+2, s+2
∣

∣

∣ = n− 1.

Let the edge colors red, blue, yellow, black, green, and sky blue in Figure 5 represent the edge
partitions E3+1, 3+2, Es+i, s+i+1, E6+1, 6+2, Es+i+2, s+i+2, E6+1, 6+1, and E3+2, 3+2, respectively. Hence,
the edge partitions of CT(3) òP3 are given as follows:

• E3+1, 3+2 =
{

e = uv ∈ E(CT(3)òP3 )
∣

∣

∣ec(u) = 3 + 1 and ec(v) = 3 + 2
}

and n3+1, 3+2 = n4,5 =
∣

∣

∣E4, 5

∣

∣

∣ = 3 + 3 = 6;
• Es+i, s+i+1 =

{

e = uv ∈ E(CT(3)òP3 )
∣

∣

∣ec(u) = s + i and ec(v) = s + i + 1
}

and ns+i, s+i+1 =
∣

∣

∣Es+i, s+i+1

∣

∣

∣ = 3(2i−2)(2 + 3) = 15
(

2i−2
)

, where i ∈ {2, 3};
• E6+1, 6+2 =

{

e = uv ∈ E(CT(3)òP3 )
∣

∣

∣ec(u) = 6 + 1 and ec(v) = 6 + 2
}

and n6+1, 6+2 = n7,8 =
∣

∣

∣E7, 8
∣

∣

∣ = 3(3(23−1)) = 36;
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• Es+i+2, s+i+2 =
{

e = uv ∈ E(CT(3)òP3 )
∣

∣

∣ec(u) = ec(v) = s + i + 2
}

and ns+i+2, s+i+2 =
∣

∣

∣Es+i+2, s+i+2

∣

∣

∣ = 3(2i−1)(n− 1), where i ∈ {1, 2, 3};
• E6+1, 6+1 =

{

e = uv ∈ E(CT(3)òP3 )
∣

∣

∣ec(u) = ec(v) = 6 + 1
}

and n7,7 =
∣

∣

∣E7,7
∣

∣

∣= 3(23−1) = 12;
• E3+2, 3+2 =

{

e = uv ∈ E(CT(3)òP3 )
∣

∣

∣ec(u) = ec(v) = 3 + 2
}

and n3+2,3+2 = n5,5 =
∣

∣

∣E5,5
∣

∣

∣ = 3 −
1 = 2.

Now,

Zg4(CT(s)òPn ) = (3 + n)(2s + 3) + (6 + 3n)
s
∑

i=2
2i−2(2(s + i) + 1)

+n(12s + 9)
(

2s−1
)

+ 3(n− 1)
s
∑

i=1
2i−1 × 2(s + i + 2)

+6
(

2s−1
)

(2s + 1) + 2(n− 1)(s + 2)
= n(9× 2s − 2 + 24s× 2s) + s(6× 2s − 8n− 2) − 6× 2s + 5;

and

Zg6(CT(s)òPn ) =
(

s2 + 3s
)

(3 + n) + 2(n + 3) + (6 + 3n)
s
∑

i=2
2i−2(s + i)(s + i + 1)

+6n
(

2s−1
)(

2s2 + 3s + 1
)

+ 3(n− 1)
s
∑

i=1
2i−1(s + i + 2)2

+3
(

2s−1
)

(2s + 1)2 + (n− 1)(s + 2)2

= s2(6× 2s − 4n + 24n× 2s − 1) + s(5− 2n− 12× 2s + 18n× 2s)

+2s
(

15n− 3
2

)

− 9n− 1.

�

All the results follow from the edge partitions defined above and the definitions of the
respective indices.

Theorem 8. The first and second Zagreb, and the atom bond connectivity indices of CT(s)òPn are given by:

(i) M1 (CT(s)òPn) = (3× 2s − 2)
(

n2 + 15n− 1
)

;

(ii) M2 (CT(s)òPn ) = ((3× 2s − 2)
(

9n2 + 50n− 15
)

)/2;

(iii) ABC(CT(s)òPn) =
(9×2s−6)

2 ×
√

2(n+2)
(n+3) + 2(3 × 2s − 2)

√

1
2 +(n− 2)(3 × 2s − 2)

√

(n+4)
(3)(n+3) + (3 ×

2s − 2)
√

2 +(n− 3)(3× 2s − 2)(2/3).

Proof. Let the vertex and edge partitions of CT(s)òPn be given by:

• P1 =
{

v
∣

∣

∣ d(v) = 2
}

and |P1| = 2(3× 2s − 2) ;

• P2 =
{

v
∣

∣

∣ d(v) = 3
}

and |P2| = (n− 2)(3× 2s − 2);

• P3 =
{

v
∣

∣

∣ d(v) = n + 3
}

and |P3| = (3× 2s − 2) :

and

• En+3,n+3 =
{

e = uv ∈ E(CT(s)òPn)
∣

∣

∣d(u) = n + 3 and d(v) = n + 3
}

and
∣

∣

∣En+3,n+3
∣

∣

∣= (9× 2s − 6)/2;
• E2,n+3 =

{

e = uv ∈ E(CT(s)òPn)
∣

∣

∣d(u) = 2 and d(v) = n + 3
}

and
∣

∣

∣E2,n+3
∣

∣

∣= 2(3× 2s − 2) ;
• E3,n+3 =

{

e = uv ∈ E(CT(s)òPn)
∣

∣

∣d(u) = 3 and d(v) = n + 3
}

and
∣

∣

∣E3,n+3
∣

∣

∣ = (n− 2)(3× 2s − 2);
• E2,3 =

{

e = uv ∈ E(CT(s)òPn)
∣

∣

∣d(u) = 2 and d(v) = 3
}

and
∣

∣

∣E2,3
∣

∣

∣ = 2(3× 2s − 2);
• E3,3 =

{

e = uv ∈ E(CT(s)òPn)
∣

∣

∣d(u) = d(v) = 3
}

and
∣

∣

∣E3,3
∣

∣

∣ = (n− 3)(3× 2s − 2).
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Now,
M1(CT(s)òPn ) =

∑

vǫP1

(d(v))2 +
∑

vǫP2

(d(v))2 +
∑

vǫP3

(d(v))2

= 2(3× 2s − 2)
(

22
)

+ (n− 2)(3× 2s − 2)
(

32
)

+ (3× 2s − 2)(n + 3)2

= (3× 2s − 2)
(

n2 + 15n− 1
)

;

M2 (CT(s)òPn ) =
(9×2s−6)

2 (n + 3)2+2(3× 2s − 2)+((2)(n + 3))

+(n− 2)(3× 2s − 2) ((3)(n + 3))+2(3× 2s − 2)((2)(3))

+(n− 3)(3× 2s − 2)((3)(3))

= ((3× 2s − 2)
(

9n2 + 50n− 15
)

)/2;

Likewise, we can obtain ABC(CT(s)òPn). �

Remark 5. The results obtained from Topo-Chemie-2020 [40] are shown in Table 4 for a comparison with the

results obtained from Theorems 7 and 8.

Table 4. Results obtained for the corona product CT(s)òPn of a Christmas tree CT(s) and a path Pn

with the computer code, compared with the results from the expressions in Theorems 7 and 8.

Index Dimension s, n From Expressions 7 and 8 Topo-Chemie-2020 [40]

GA4(CT(s)òPn)
s = 3, n = 3 142.7317 142.73175770071703

s = 4, n = 4 390.5798 390.5798602154981

Zg4(CT(s)òPn)
s = 3, n = 3 1961 1961

s = 4, n = 4 6869 6869

Π
∗
4(CT(s)òPn)

s = 3, n = 3 9.65986697 × 10161 9.659866968127555 × 10161

s = 4, n = 4 Infinity +Inf

Zg6(CT(s)òPn)
s = 3, n = 3 6824 6824

s = 4, n = 4 30,567 30,567

Π
∗
6(CT(s)òPn)

s = 3, n = 3 4.3849717 × 10237 4.384971723725398 × 10237

s = 4, n = 4 Infinity +Inf

ABC5Π(CT(s)òPn)
s = 3,n = 3 1.4118921672 × 10−43 1.411892167070263 × 10−43

s = 4, n = 4 6.08702627 × 10−136 6.087026262790365 × 10−136

M1(CT(s)òPn)
s = 3, n = 3 1166 1166

s = 4, n = 4 3450 3450

M2(CT(s)òPn)
s = 3, n = 3 2376 2376

s = 4, n = 4 7567 7567

ABC(CT(s)òPn)
s = 3, n = 3 93.33733429352 93.33733429351358

s = 4, n = 4 251.70409168311 251.70409168311375

4. Various Applications of Topological Indices for the COVID-19 Pandemic

There are two types of emerging applications of graph theory and topological indices. One of the
more well studied applications of topological indices is the prediction of physicochemical properties
and biological activities of chemicals and drugs through an approach called the quantitative structure
activity relation (QSAR). This approach relies on the fact that the property of a molecule bears a
mathematical relation to the structure or the associated connectivity of the molecule. In this context,
several topological indices have been shown to statistically correlate with a number of observable
properties such as dermal penetration, protonation constants, chromatographic retention indices,
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lipophilicity, octanol partition coefficients, and so on [11,45,46]. When topological indices are combined
with other quantum chemically derived electronic parameters [46–49] such as the Highest Occupied
Molecular Orbital (HOMO)- Lowest Unoccupied Molecular Orbital (LUMO) energy gaps, hardness,
softness, polarizability, molecular electrostatic potentials, Natural Bond Orbital (NBO) analysis, etc.,
one could obtain quantitative measures of the relative stabilities, reactivities and binding potentials of a
drug as a viral inhibitor which can then assist in finding potential cures for the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). One could invoke statistical techniques such as the principal
component analysis by including several of the indices developed in this study to discover among
various topological indices which ones would offer the best correlation and predictive power compared
to the observed properties [46–49].

For example, it has been shown earlier [45] that the logP values of polyacenes have a very good
correlation with the Szeged index that we computed in the present study using Theorem 1, as per the
following statistical correlation:

logP(Lh) = 1.0875 × 10−4Sz + 9.210,

with an r value of 0.9258. We anticipate a similar correlation for the potential drugs for the coronavirus-2,
although the actual additive and multiplier constants would depend on available experimental data
for these compounds.

In a recent work, Mondal et al. [47] studied degree-based and neighborhood degree sum-based
topological indices in order to provide structure-activity correlations for a set of investigated antiviral
drugs for COVID-19 such as remdesivir (GS-5734), chloroquine, hydroxychloroquine, theaflavin, etc.,
by using graph polynomial approaches. Mondal et al. [47] noted that the results obtained from such
topological studies can aid in the development of potentially new drugs for the treatment of COVID-19,
although it is skeptical that topological indices alone can result in the discovery of new drugs. It can,
however, be stated that the developed indices have the efficacy to predict many properties and activities
such as boiling point, entropy, enthalpy, acentric factor, vapor pressure etc., as these properties do not
depend on guest–host interactions and exhibit direct structural dependency. However, the discovery
of potentially new drugs needs more sophisticated approaches such as quantum chemical docking,
molecular dynamics etc., [48–50] that focus on the viral protease–drug inhibitor interactions in order
to enhance the efficacy of a drug as an inhibitor of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) protease. Consequently, in the area of drug discovery, topological indices play a
limited role, that is, only as starting points for molecular similarity and QSAR analysis, and in the
selection of various ligands from a library. Moreover, topological indices cannot serve as the end
point in silico drug discovery for which sophisticated tools based on quantum mechanics are required
to analyze and understand the guest–host interactions involved in potential drug discovery [48–50].
Figures 6 and 7 show the 3D plots of log of the Szeged and fourth geometric-arithmetic indices
respectively for pandemic trees. As can be seen from Figure 6, the magnitude of log of Szeged index
for k = 6 at a given level is several orders larger than that of k = 2 at the same level. This clearly
demonstrates the severity of the ongoing COVID-19 which has a R0 value close to 6 in a susceptible
population set compared to k = 2 for the 1918 Spanish flu. As seen from Figure 7, we obtain a similar
trend for the log of the fourth geometric-arithmetic indices for pandemic trees.

Plots such as the ones obtained in these figures from the computed topological indices provide
significant new insights into the severity of the ongoing COVID-19 pandemic, underscoring the
importance of intervention steps not only through quarantining but also through several other
mitigation measures such as therapeutic interventions, vaccines and improved public awareness of
hygiene, social distancing, facial shields, masks, and other measures to prevent the spread.
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 𝑇Figure 6. log(Sz) values obtained for the Szeged index of pandemic trees Tk
l

demonstrate the underlying
severity of COVID-19 as compared to the 1918 Spanish flu.

 

 𝑇Figure 7. log(GA4) values obtained for the fourth geometric-arithmetic index of pandemic trees Tk
l

demonstrate the underlying severity of COVID-19 as compared to the 1918 Spanish flu.

The second area where our developed topological indices may help us in understanding of the
evolutionary dynamics of the COVID-19 pandemic in terms of genomics is in the identification of
various mutations of the genes that occur during the epidemic propagation, and in the evolutionary
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relationship of the mutations as a function of the propagation to the presumed genome of the Wuhan bat
origin. Secondly, the graph theoretical network aids in enhancing our understanding of the dynamics
of the spread of the pandemic as a function of regions, sectors, states or provinces, and countries.

In relationship to the epidemiological dynamics, as several of the topological indices that we
computed here are eccentricity-based indices, they measure the extent of the spread and the magnitude
of the effect of the pandemic (see Figures 6–8) on a given population set. Another important feature
of the topological indices considered here is that the indices can provide insight into the effect of the
introduction of an infected individual in a pool of uninfected individuals through vertex coloring to
identify the infected person and recomputing the indices with the resulting weighted graphs. As the
topological indices computed here vary as a function of level, one obtains quantitative measures
in terms of these indices of the epidemic progression at different levels. Graph theoretical tools
developed here can facilitate juxtaposing different scenarios by superposing one network over the other,
for example, under the conditions that a given individual infects 2 others compared to an individual
infecting 4 other individuals and so on. Consequently, the network analysis presented here can aid in
the development of artificial intelligence tools in a computer-assisted study of the epidemiological
dynamics of the pandemic, and thus in the development of mitigation strategies. There are several
such applications of these indices which can become the topic of future studies.

 

 𝑇

0 ≤ 𝑖 ≤ 5

Figure 8. Entropy values measured in the units of kB or S(l, k) obtained for pandemic tree Tk
l

accentuates
the underlying severity of COVID-19 compared to the 1918 Spanish flu.

It should be emphasized that all of the topological indices in Section 4 and entropies obtained
in Section 5 and comparisons that are made, are based on the assumed R0, which is a result of the
illness itself and various interventions. It is a macroscopic rather than a microscopic measure. Thus,
the comparison made here is by no means indicative of the total number of infections or deaths,
as they depend on multiple factors such as the discovery of vaccines, adherence to social distancing,
more advanced technological tools available today for diagnosis, contract tracing, treatments, mitigation
measures, and prognosis compared to 1918. Hence, there are several substantial differences between the
two pandemics, namely COVID 19 and the Spanish Flu. First, they are both caused by different types of
viruses with different modes of infection. We have denser populations and a far more connected world
with air travel which can contribute to the spread of COVID-19 globally. Specifically, the comparisons
of Covid-19 and Spanish flu provided in this section do not take directly into consideration a number
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of factors enumerated below which could alter the assumed R0 values dynamically and hence the
computed indices:

1. The difference in the awareness among all the countries and the general population on the severity
of the disease and the necessary preventive actions that are needed as a result of internet and
other forms of communications.

2. The difference in the resources available for healthcare.
3. The difference in number of qualified and trained virologists, doctors, nurses, government officials,

government/private institutions, and other important frontline workers.
4. The difference in information content available through research, innovations, and the data from

the past pandemic, all of which can contribute to improved predictions. Researchers worldwide
are working diligently to find a vaccine against the virus causing the COVID-19 pandemic.
The WHO is working in collaboration with scientists, business, and global health organizations to
accelerate the vaccine effectiveness and discovery [51].

5. Other social, economic, and medical changes that occurred in the last 100 years.

Therefore, comparisons of entropies computed in Section 5 and other topological indices in this
section were made with presently available R0 for COVID-19, which itself could dynamically change
with discoveries of vaccine, technological advances to effectively control the epidemic and the role of
super spreaders. Furthermore, entropy measures from Section 5 suggest that the ongoing pandemic left
to itself without such mitigating measures, poses an enormous and unique challenge globally, and the
ongoing battle is nowhere near the end. Hence, significant interventions and countermeasures must
be taken such as therapeutic interventions including vaccines, social distancing, vigorous quarantine
measures, facial masks, improved oral and hand hygiene measures. The availability of preventive and
therapeutic tools against viral infections and their related complications is an important factor for the
disaster risk assessment [52].

5. Thermodynamic Entropy of Pandemic Trees

As demonstrated earlier, a complete k-ary tree Tk
l

is the pandemic tree with an R0 value of k.
The R0 epidemiological measure is exponential similar to other natural disasters such as an earthquake
measured in a logarithmic Richter scale. We introduce here yet another measure of the chaos created
by the COVID-19 pandemic which is based on the thermodynamic Boltzmann’s definition of entropy,
a measure of the degree of disorder. At the very outset, it is pointed out that the thermodynamic
entropy is different from the graph theoretical entropy discussed by Dehmer and co-workers [53–55]
although in principle there should be a correspondence between statistical thermodynamic entropy and
information theoretic entropy. The graph theoretical entropy concept invoked by these authors is based
on Shannon’s information theoretic formulation as applied to graph theoretical invariants. On the
other hand, the thermodynamic entropy is simply based on the celebrated Boltzmann’s definition
and formula for the entropy. Consequently, in the present study, the term entropy refers to the
thermodynamic entropy which is simply based on the number of distinct configurations or the number
of inequivalent ways to label the vertices of a graph under the action of the automorphism group of the
graph. The set RD of functions from the set D of vertices to the set R of colors would form equivalence
classes under the action of the automorphism group. Among these classes, the number of classes
where each vertex is colored with a unique color corresponds to the number of unique ways to label
the graph, and hence, this number measures the number of distinct configurations a graph can take
under the group action.

The entropy of a pandemic tree is measured directly by the number of unique ways of labeling
the pandemic tree. In general, the number of inequivalent ways to label any graph with n vertices is
given by:

NLab =
n!

∣

∣

∣Aut(G)
∣

∣

∣

,
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where Aut(G) is the automorphism group of the graph G under consideration, and |Aut(G)| is the
number of elements in the automorphism group. The automorphism group of a graph with n vertices
is defined as edge-preserving permutations of the vertices or it is comprised of those permutations of
the vertices with permutation matrices P satisfying the condition:

A = PTAP,

where A is the adjacency matrix of the graph. The automorphism groups of several types of polyhedral
graphs were studied recently by Ghorbani et al. [56].

Balasubramanian [15] previously studied the automorphisms of Cayley trees, complete k-ary trees,
etc., and showed that the automorphism group of a Tk

l
tree with l levels is given by:

Aut
(

Tk
l
) = Sk[Sk[Sk . . . . . .] . . . . . .],

where the group is a nested wreath product of the symmetric group Sk recurring l times in the above
product. The wreath product [15] of two groups G and H denoted by G[H] is a group defined by (H1 x

H2 x . . . Hn)ˆ G’, where x is a direct product of two groups, ˆ is a semi-direct product and G′ is a group
isomorphic with G acting on the whole set of vertices. The group is comprised of |H|n|G| operations.
The order of each Sk group composing the wreath product of a pandemic tree is k!. The order of a
nested wreath product group was obtained by Balasubramanian [15] as:

|{[Sk]
}l| = (k!)al , al =

(

kl − 1
)

(k− 1)
.

As it was shown in a previous section, the number of vertices in Tk
l
= al+1 = kl+1−1

k−1 , we arrive at
the result for the number of unique ways to label a pandemic tree Tk

l
as:

NLab =
(al+1)!

(k!)al
,

where NLab is also referred to as the number of different configurations denoted by Ω in statistical
mechanics. The entropy of any system, denoted by S, is defined by the Boltzmann equation and it
measures the degree of disorder. It is given by:

S = kB ln(Ω),

where kB is the Boltzmann constant.
We can obtain the entropy S(l, k) of a pandemic tree using the above equation with Ω defined

as the number of inequivalent ways of labeling the pandemic tree that we have obtained above.
This combined with the Stirling approximation for the factorial of any large number, we arrive at the
following expression for S(l, k) of a pandemic tree Tk

l
as:

S(l, k) = kB{al+1 ln(al+1) − al+1 +
1
2 ln(2πal+1) − al ln(k!)},

al+1 = kl+1−1
k−1 .

In Figure 8 we have plotted S(l, k)/kB as function of both k and l, and we can see that the order of
S increases as a function of k and l. This shows the severity of the ongoing pandemic which has a k

value of 6 and as l goes to 6 nearly the entire susceptible population is infected. Moreover, the entropy
measure of the ongoing COVID-19 pandemic is dramatically larger than that of the 1918 Spanish flu
virus, underscoring the severity on the novel coronavirus 2. Furthermore, entropy is measured in
natural logarithmic scale analogous to the Richter scale of an earthquake and thus the ratios of the
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entropies of COVID-19 to Spanish flu of 1104.6 at level 6 would suggest about 103 greater severity
as measured in a natural log scale. Thus, entropy provides yet another quantitative measure for the
epidemiologists to measure the degree of disorder and hence the severity of the ongoing pandemic.

6. Stochasticity in Pandemic Tree Generation

Our study so far has captured the worst case, when an infected individual spreads the infection to
R0 other individuals, by studying a complete k-ary tree with k = R0 as a particular case. This may not be
the case always except in worst affected locations. In such cases, the pandemic trees will just be R0-ary
trees. Stochasticity in the generation of such trees leads to considering the adjacency matrices of the
trees for implementing distance-based graph algorithms. Degree and eccentricity-based topological
indices can be easily computed from these matrices.

As an illustration, a random tree T of level l = 6 with epicenter of degree R0 = 6 at level 0 and with
every vertex of level i having R0-i children, 0 ≤ i ≤ 5, is considered in Figure 9.

 

 ∑ 𝑑∈ ( )
 𝑀 ∑ 𝑑∈ ( ) 𝑑
 ∑ ∈ ( )

√ 𝑙 + 30 + 120 + 360 + 120 + 720
 ∑ [ + )] ∈ ( ) 
 ∑ [ )]∈ ( ) 

Figure 9. A random tree T with epicenter of degree 6.

A few topological indices of this tree T of level l = 6 are listed below:

1. M1(T) =
∑

vi∈V(T) d2
i
= 1957l2 – 15,660l + 33,270;

2. M2(T) =
∑

viv j∈E(T) did j = 1956l2 – 13,710l+25,440;

3. ABC(T)=
∑

viv j∈E(T)

√

di+d j−2
did j

=
( √

10
6

)

l+ 30
√

2l−3
l2−l

+ 120
√

2l−5
l2−3l+2 + 360

√

2l−7
l2−5l+6+120

√

2l−9
l2−7l+12 +

720
√

2l−11
l2−9l+20 ;

4. PI(T) =
∑

e=uv∈E(T)[nu(e) + nv(e )] = 1957l + 3,816,150;

5. Sz(T) =
∑

e=uv∈E(T)[nu(e) × nv(e )]= 531,706l + 15,153,306.

Evidently such generation of random k-ary trees needs to be considered through computational
techniques based on algorithms such as the Monte Carlo algorithm and subsequent iterative
computation of the various topological indices numerically. Such a technique would also encompass
the possibility of including a super spreader in the random pandemic tree.
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7. Conclusions

In the current study, we have shown that the developed topological indices play an important
role in quantifying the network information contained in pandemic trees. Furthermore, the graph
theoretical techniques presented here can aid in a number of predictions concerning the dynamics of
the ongoing pandemic, for example, how the introduction of an infected person in a pool of uninfected
group would alter the spread dynamics. This is tantamount to introducing a new vertex in the tree and
associated edges. Then, one can recompute the various topological indices to see how the pandemic
evolves as a function of perturbations and quarantines. Such detailed investigations specific to the
pandemic can be the topic of future studies. Finally, we computed the entropies of pandemic trees
and the related Cayley trees, which provided significant new insights into the severity of the ongoing
COVID-19 pandemic as compared to the 1918 Spanish flu which pales into insignificance in terms of
entropy and topological measures compared to the severity of COVID-19.
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