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a b s t r a c t

Scheduling is a decision-making mechanism that enables the sharing of resources among several activi-

ties by determining their execution order on the set of available resources. In distributed systems, it is a

great challenge to schedule multiple workflows submitted at different times. In particular, concurrent

workflow scheduling with time constraints makes the problem more complex in the cloud due to the

dynamics of the cloud such as elasticity, non-homogeneous resource types, various pricing schemes,

and virtualization. A well-managed deadline workflow scheduling is required to improve end-user satis-

faction and system performance. In the meantime, the intrinsic uncertainty in the cloud increases the dif-

ficulties of scheduling problems. Therefore, it is a great challenge to improve system performance and

optimize several scheduling criteria simultaneously. To address the above issues, a novel concurrent

workflow scheduling method for heterogeneous distributed environments based on the new Multi-

Criteria Decision Making (MCDM) method i.e., TOPSIS (Technique of Order Preference by Similarity to

Ideal Solution) is presented. A weighted sum of execution time, cost and communication time are used

to find out the optimal resource among the existing resources as per the workflow task requirements.

The proposed method minimizes the makespan and execution cost of the workflow and improves the

resource efficiency under uncertain environment. The performance of the proposed work is compared

with the state-of-the-art algorithms such as Cloud-based Workflow Scheduling Algorithm (CWSA),

Earliest Finish Time-Maximum Effective Reduction (EFT-MER) and Heterogeneous Earliest-Finish-Time

(HEFT) algorithms based on deadline constraint and resource utilization. Our experimental results

demonstrate that the proposed T-CCWSA outperforms current state-of-the-art heuristics with the criteria

of achieving the deadline constraint, minimizing the cost of execution and resource efficiency.

� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Complex scientific applications like Bio-informatics, Earth
Science, Astronomy and disaster modeling can be represented nat-
urally in the form of workflows (Arabnejad et al., 2019; Partheeban
and Kavitha, 2018). One of the benefits of workflow representation
is that the workflow can be reusable, reproducible and even trace-
able through other workflows (Guo et al., 2018; Iyenghar and
Pulvermueller, 2018). In the meantime, computing systems where

catastrophe can occur will become useless, if the completion of
workflow execution takes more than some specified time. These
workflow-based applications are highly demanding and challeng-
ing for processing huge amounts of data in real-time workflow
tasks with the desired cost reduction of computing resources
(Ghafouri et al., 2018).

Workflow scheduling is a process of mapping the workflow
tasks to the computing resources. The relationship among work-
flow tasks is multiple inter-dependent due to complex operations.
Therefore, the inter-relationship between parent-child and the
data/control dependencies are represented by the Directed Acyclic
Graph (DAG). Each workflow task has various execution times, pri-
orities and time limits associated with the other workflow
(Emmanuel et al., 2018; Zhou et al., 2018). Efficient workflow
scheduling is essential to achieve user Quality of Service (QoS)
requirements, e.g. minimizing execution time and at the same time
maximizing the system performance, e.g. use of resources.
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Moreover, in order to achieve good efficiency, various workflow
applications require different scheduling strategies in distributed
systems. Most of the literature investigated the homogeneous
computing system, while some studies centered on heterogeneous
systems each with different QoS constraints. The existing methods
tend to be process-oriented and/or data-oriented rather than
resource-oriented, and they lack efficient task to resource mapping
strategies (Aziz et al., 2015). In addition, in traditional scheduling,
parameters like task communication time and computation time
have been considered to be deterministic (Khorsand et al., 2016;
Wang et al., 2018; Zhou et al., 2018; Su et al., 2015). In fact, in
real-world situations, various factors involved in the scheduling
problems are often imprecise or uncertain in nature (Zavadskas
and Podvezko, 2016; Pan and Deng, 2018; Jiang and Hu, 2018;
Sun and Deng, 2019). Especially, human-defined factors are
involved in the scheduling problems. Until now, researchers have
drawn considerable attention to the problems of modeling and
handling of uncertain information (Yager, 2018; He and Jiang,
2018; Kang et al., 2019; Yang et al., 2018; Deng, 2018; Zavadskas
et al., 2017).

With the vast proliferation of cloud resources with varying con-
figurations, it is challenging to choose an optimal resource to sat-
isfy and fulfill the business strategies and satisfy the users’ QoS
requirements, with objectives that are often contradictory with
one other (Cusumano, 2010; Assunção et al., 2010; Jatoth et al.,
2017; Martino et al., 2016; Hajji and Mezni, 2017; Capuano et al.,
2018; Capuano et al., 2017; Carrasco et al., 2015). The most suit-
able resource should be sought, considering multiple incompatible
qualitative and quantitative criteria. It is quite significant to con-
sider how to optimize workflow scheduling while satisfying the
various QoS requirements of users. Therefore, the selection of cloud
resources can be considered as a MCDM problem (Abdel-Basset
et al., 2018). MCDM’s objective is to identify the best alternative
among other alternatives in the presence of several adverse deci-
sion criteria. In scheduling problem, MCDM’s goal is to evaluate
and rank alternatives (VMs) based on the user’s QoS constraints.

Of late, MCDMmethods provided solutions to several real-world
problems. MCDM is an operations research sub-discipline that
explicitly identifies the best alternative from the pool of potential
alternatives (Chen et al., 2008; Yue, 2011) by analyzing several
attributes or criteria that may be concrete or vague. From the last
few decades, the MCDM techniques have been built in the subjec-
tive order of preference to identify, classify, and choose alternatives
(Behzadian et al., 2012). MCDMhas beenwidely used inmany fields
(Abdel-Basset et al., 2018; Abdel-Basset et al., 2019), and in various
MCDM studies, the Technology for Order Preference by Similarity to
an Ideal Solution (TOPSIS) method (Hwang and Yoon, 1981) has
been successfully applied in different fields (Shidpour et al., 2013;
Chang et al., 2018). Originally, TOPSIS was developed by Hwang
and Yoon (Hwang and Yoon, 1981) to find the best alternative, iden-
tified as the one with the shortest distance from the Positive Ideal
Solution (PIS) and the longest distance from the Negative Ideal
Solution (NIS) (Olson, 2004; Kao, 2010; Wang and Luo, 2010; Lotfi
et al., 2013; Sarraf et al., 2013). The TOPSISmethod ismore efficient,
robust and simpler than other MCDM models. Furthermore, the
number of criteria and alternatives in TOPSIS is not limited. The
TOPSIS method has a generous impact on real-world decision-
making problems and works well for various applications
(Bulgurcu, 2012; Mir et al., 2016). Still, less attention is paid to
the use of MCDM by researchers in cloud computing. Our proposal
using TOPSIS addresses these issues in the selection process of
resources and optimizes workflow scheduling in the cloud.

This paper’s significant contributions are summarized below.

� Proposed a Multi-Criteria Decision-Making model for ranking
the cloud resources based on QoS parameters.

� A novel algorithm named T-CCWSA for scheduling dynamic
workflows.
� Implemented the TOPSIS algorithm with T-CCWSA to achieve
optimal solutions to perform workflow scheduling.

The rest of the work is organized as follows. Section 2 provides a
precise study of literature on workflow scheduling and highlights
the major works and proposals. Section 3 gives an overview of
problem formulation. In continuation, Section 4 discusses the gen-
eralized mechanism of TOPSIS and the detailed description of the
proposed solution to the workflow scheduling problem shall be
discussed in Section 5. Section 6 delivers the evaluation report of
the arrived results and its comparison charts. Towards the end of
this paper, in Section 7, the possible scope of future work in the
workflow scheduling is suggested.

2. Related work

Recently, workflow scheduling in heterogeneous distributed
environments has received significant interest, and various studies
presented numerous workflow scheduling approaches to achieve
near-optimal solutions. Workflow scheduling can be classified as
either single or multi workflow scheduling. Single workflow
scheduling approaches can be roughly divided into QoS constraint
scheduling and Best-effort scheduling (Yu et al., 2008). The Best-
effort scheduling (Arabnejad and Barbosa, 2014; Daoud and
Kharma, 2008; Zhou et al., 2016) aims to minimize the schedule
length while ignoring the QoS constraints of various users. The
QoS constraint scheduling (Abrishami et al., 2012; Arabnejad and
Barbosa, 2014; Azad and Navimipour, 2017; Wu et al., 2016;
Zheng and Sakellariou, 2013) tries to improve the scheduling per-
formance under QoS constraints, such as minimizing time under
budget constraint or minimizing cost under deadline constraint.

Multiple workflow scheduling can be divided into either offline
or online scheduling. Offline scheduling does not deal with work-
flows arrived after the schedule is generated. In the literature,
many algorithms for offline scheduling have been proposed. Zhao
and Sakellariou (Zhao and Sakellariou, 2006) presented two
fairness-based strategies: finish time fairness policy and current
time fairness policy. In both policies, fairness is based on the prin-
ciple of ‘‘slowdown”, it is the ratio of expected execution time
when a workflow is scheduled alone and the expected execution
time when all workflows are scheduled together. The difference
between the two policies is that the current time fairness policy
determines the slowdown value for all the workflows, whereas
the finish time fairness policy estimates the slowdown value for
the selected workflow only. However, these two algorithms are
only involved in offline scheduling when all the workflows are
known in advance.

Xu et al. (2017) proposed an Expansion Slot Backfill (ESB) algo-
rithm for multiple workflow scheduling under deadline con-
straints. This algorithm’s objective is to minimize the number of
idle time slots and maximize resource utilization. It schedules all
workflows using a sequential strategy based on the priority order.
For each workflow, priority is computed based on the resource uti-
lization or the relative urgency degree. In turn, every new task will
try to backfill the earliest time slot. If the earliest time slot is not
sufficient to backfill, it is extended. Overall, an ESB algorithm
makes better use of small-time slots which fail to satisfy new task
backfill requirements in comparison with existing approaches.

Online scheduling allows users to submit workflows at any
time. A few algorithms were proposed for scheduling online
workflows.

Finish Time Fairness algorithm has been modified by Tian et al.
(2012) described in Zhao and Sakellariou (2006) and proposed a
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dynamic E-fairness scheduling algorithm. For each newly arrived
workflow, the E-fairness algorithm uses the slowdown value and
decides which workflow should be scheduled next. Yu and Shi
(2008) proposed the RANK HYBD algorithmwhich addresses work-
flows submitted at different times by various users. This algorithm
schedule the lowest rank workflow tominimize the workflowwait-
ing time. But this approach does not achieve high fairness. For
example, if the ranks of tasks in subsequent workflows are less than
that of unscheduled tasks in previously arrived workflows, the
remaining tasks in the prior workflows will not be scheduled.

The Fairness Dynamic Workflow Scheduling (FDWS) algorithm
presented in Arabnejad and Barbosa (2012), addressed both the
unfairness that occurs in RANK HYBD (Yu and Shi, 2008) and the
postponement of the selection of task that occurs with Online
Workflow Management (OWM) (Hsu et al., 2011). The OWM and
RANK HYBD algorithms have been proposed to minimize the aver-
age completion time of all workflows. On the other hand, the FDWS
algorithm aims to reduce the waiting and execution time of each
workflow. The FDWS algorithm exceeds the RANK HYBD and the
OWM algorithms in terms of average makespan, win (%) and,
Scheduling Length Ratio (SLR).

Arabnejad et al. (2014) surveyed both offline and online schedul-
ing of concurrent workflows and proposed a modified version of
max-min and min-min (Maheswaran et al., 1999) algorithms. The
authors compared the FDWS algorithm with OWM, RANK HYBD,
modified max-min, and min-min algorithms, and found that the
FDWS performs best. The above online scheduling algorithms
address only fairness in the sharing of resources among workflows
andminimize the makespan. But in the pay-as-you-gomodel, users
use resources and services andpayonly forwhat theyuse. Therefore,
from the user’s point of view, time and cost are the twomost impor-
tant factors. The online strategy outlined in Arabnejad and Barbosa
(2014) acknowledges cost and time but aims to minimize each
workflow’s turnaround time within the user-defined budget.

Arabnejad and Barbosa (2015) and Arabnejad and Barbosa
(2017) presented a Multi Workflow Deadline-Budget Scheduling
(MWDBS) algorithm for concurrent workflows under deadline
and budget constraints. The MWDBS algorithm has a higher suc-
cess rate than other algorithms, especially for highly concurrent
scenarios, i.e. those with lower arrival intervals. However, this
approach does have drawbacks under the inconsistent model,
because it selects each task based on the upward rank
(Topcuoglu et al., 2002) (ranku) priority without considering the
cost of execution. Therefore, an acceptable trade-off is not achieved
between the users’ deadline and budget constraints.

Compared to current scheduling strategies, where the full sched-
ule is generated when a workflow arrives, the proposed approach
continuously generates a new schedule for each workflow task dur-
ing its actual execution time to mitigate the impact of cloud uncer-
tainty on scheduling performance. This work has also attracted
attention to a method called TOPSIS based onMCDS.Workflow task
mapping is carried out by the TOPSIS algorithm which maps work-
flow tasks to cloud resources by considering multiple substantial
factors. The involvement of the TOPSIS algorithm supports multiple
objective functions to optimize scheduling performance.

3. Problem formulation

In the cloud, workflows can be modeled as
W ¼ w1;w2;w3 . . . ;wnf g. A workflow wi 2W , can be modeled as

wi ¼ Gi;QoSi; T
i
a

n o

, where Gi;QoSi, and T i
a represent workflow’s

structure, quality of service constraints and arrival time respec-
tively. Workflow’s structure Gi of workflow wi can be further
described as a directed acyclic graph (DAG) Gi ¼ T i; Eið Þ, where

T i ¼ ti1; t
i
2; . . . ; tiN

� �

is a set of vertices and N represents the count

of workflow tasks; the vertex tij denotes the j
th task in a workflow

wi. Also, Ei# T i � T i denotes the directed edges among tasks. An

edge eik;j 2 Ei of the form tik; t
i
j

� �

exists if there is a precedence con-

straint between the tasks tik and tij, where tik is an immediate prede-

cessor of task tij and the task tij is an immediate successor of task tik.

The pred tij

� �

denotes the set of tasks consisting of all tij’s immediate

predecessors, and succ tij

� �

represents the set of tasks consisting of

all tij’s immediate successors. For a certain workflowwi 2W quality

of constraints can be modeled as QoSi ¼ coni; coni
val

� �

, where coni

and coni
val represent user-specified constraints such as deadline or

budget and user-specified constraint value for deadline or budget.
The cloud platform provides an infinite number of VMs with

various configurations (Zhu et al., 2016; Calheiros and Buyya,
2014). Let VT ¼ vt1;vt2;vt3 . . . ;vtmf g represent m types of virtual

machines available in the cloud. The parameter vmvtu
k represents

the k
th VM of type vtu. The price of the virtual machine denoted

as price vmvtu
k

� �

is the cost per unit interval of time. It is worth not-

ing that virtual machines can be acquired and terminated at any
point in time. Also, virtual machines are charged per unit interval
of time, and any partial use of the unit of time will be charged
for the whole period.

In multiple workflow scheduling, the symbol ET i
j;k denotes the

execution time of a task tij on VM vmvtu
k

. Besides, the symbols

EST i
j;k and EFT i

j;k denotes the earliest start time and earliest finish

time of a task tij on VM vmvtu
k .The earliest time at which a task tij

can begin its execution on VM vmvtu
k is known as the earliest start

time and calculated as follows.

EST i
j ¼

T i
a; if pred tij

� �

¼ NULL

max
tip2pred tt

j

� �

EST i
p þMET i

p þMTT i
p;j

n o

; otherwise

8

>

>

>

<

>

>

>

:

ð1Þ

where MTT i
p;j denotes the minimum data communication time from

predecessor task tip to current task tij and MET i
j represent the mini-

mum execution time of a task tij on VM vmvtu
k 2 VT that have mini-

mum execution time among all VM types in the cloud and
computed as

MET i
j ¼ min

vmvtu
k

�VT
ET i

j;k

n o

ð2Þ

Apparently, the estimated finish time, EFT i
j;k can be computed as

EFT i
j;k ¼ EST i

j;k þMET i
j;k ð3Þ

In an arbitrary workflow scheduling, the latest finish time LFT i
j

of task tij is the period before which task completes its computa-

tion, such that finish time of workflow wi is less than the user-

specified deadline, di. It is defined as

LFT i
j ¼

di; if succ tij

� �

¼ NULL

min
tip2succ ti

j

� �

LFT i
p �MET i

p �MTT i
p;j

n o

; otherwise

8

>

>

>

<

>

>

>

:

ð4Þ

Due to precedence constraints in a workflow, the task can not
be executed until it gathers all of the data from its immediate pre-
decessors, we have the following constraint.

FT i
p;k þ DT i

p;j 6 ST i
j;k 8e

i
p;j 2 Ei ð5Þ
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where FT i
p;k denotes task tip’s finish time on VM vmvtu

k and DT i
p;j

denotes the data transfer time between task tip and tij. In workflow

scheduling environments, finish time FT i of workflowwi is the max-
imal finish time of all its tasks and defined as

FT i ¼ max
ti
j
2 wið Þ

FT i
j;k

n o

ð6Þ

The cost cij;k for executing task tij on VM vmvtu
k is calculated as

cij;k ¼ price vmvtu
k

� �

�
ET i

j;k

Nt

( )

ð7Þ

where price vmvtu
k

� �

is the cost of the VM vmvtu
k per one interval of

time and Nt is the unit of time interval.
To ensure the deadline of a workflow, all the workflow tasks in

wi must finish their execution before its deadline di. Consequently,
this brings with it another constraint

FT i
6 di; 8wi 2W ð8Þ

Subjecting to aforementioned constraints in (5) and (8), the pri-
mary goal of optimization is to minimize the Total Execution Cost
(TEC) of completing workflow set W, which can be computed as

Minimize TEC ¼
X

jVMj

k¼1

priceðvmvtu
k Þ � pk ð9Þ

where jVMj represents the number of acquired VMs and pk denotes

the number of time units of leased VM vmvtu
k .

Resource utilization is also an important metric for cloud ser-
vice providers to evaluate the performance of a cloud platform.
Therefore, we are also focusing on maximizing the average
resource utilization of VMs, that can be defined as

Maximize
X

jVMj

k¼1

wtkð Þ=
X

jVMj

k¼1

atkð Þ ð10Þ

where wtk and atk denote VM’s vmvtu
k working time and active time

(idle time + working time).

4. TOPSIS approach

This section introduces the basic concept of Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS). The TOPSIS
algorithm is presented in Algorithm 1 and steps are given below.

Step a Constitute a Decision Matrix (D) of size p x q, where p
represents the number of alternatives and q represents the number
of criteria respectively. Alternatives are denoted by Virtual Machi-
nes (VMs) and criteria are represented by objective functions as
shown in Table 1.

Step b Transform the dimensional attributes into non-
dimensional attributes by comparing against each criterion. The
decision matrix in Table 1 is normalized using Eq. (1)

DMij ¼
X ij
ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

p

i¼1

X2
ij

s ð11Þ

where i={1,2,3, . . ., p}, j={1,2,3, . . ., q} and X ij denotes i
th alternative

and j
th criteria in matrix D.

Step c For each criterion, weight values are given in accordance
with the relevance of the criteria in the scheduling process. A
weighted normalized decision matrix is generated by multiplying
each element (Dij) in normalized D with the weight values corre-

sponding to each criterion.

v ij ¼ wj � Dij where i={1,2,3, . . ., p}, j={1,2,3, . . ., q} and wj

denotes the weight value of the j
th objective.

Step d Positive Ideal Solution Sþ identified with the value of cri-
teria having a positive impact and the Negative Ideal Solution S�

associated with the value of criteria having a negative impact on
the solution are given by

Sþ ¼ fVþ1 ;V
þ
2 ;V

þ
3 ; . . . ;Vþq g

S� ¼ fV�1 ;V
�
2 ;V

�
3 ; . . . ;V�q g

In this context, ET, DT, and C are seen as criteria that have a pos-
itive impact and must be minimized

Step e Calculate separation measures. The separation of each

alternative from Positive Ideal Solution Sþ and Negative Ideal Solu-
tion S� are computed as,

S� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

3

j¼0

V ij � Vþj

� �2

v

u

u

t

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

3

j¼0

V ij � V�j

� �2

v

u

u

t

where S� and S0 denotes the shortest distance from Positive Ideal

Solution Sþ and the longest distance from Negative Ideal Solution
S� to the alternative respectively and j represent the number of
criteria.

Step f Compute Relative Closeness (RC) to the ideal solution

with respect to Sþ and defined as,

RCi ¼
S0

S0 þ S�

Step g Rank RCi according to the preference

Algorithm1: TOPSIS

Input : Task, ET, DT, and C
Output : Ranked Computing Resources
Set criteria as ET, DT, and C
Compute Decision Matrix

D½ET�  SizeofTask=MipsOfVM

D½DT�  FileSizeOfTask=BandwidthOfVM

D½C�  ProcessingCostPerUnitTime � ExectionTimeOfTask

Normalize the Decision Matrix
Compute Weighted Normalized Decision Matrix

Calculate Sþ and S�

Sþ  set of benefit attributes i.e., more is better
S�  set of negative attributes i.e., less is better

Determine the separation of measures from Sþ and S� for each
alternative

Compute Relative Closeness (RC)
Rank the VMs

Table 1

Decision Matrix.

ET DT C

VM1 ET11 DT12 C13

VM2 ET21 DT22 C33

VM3 ET31 DT32 C33

– – – –

– – – –

VMp ETp1 DTp2 Cp3
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5. TOPSIS inspired cost-efficient concurrent workflow

scheduling (T-CCWSA) algorithm

Workflow scheduling is widely known to be an NP-complete
problem, and finding the optimal schedule within an acceptable
time is not feasible. This paper proposes a T-CCWSA algorithm,
which allows resource provisioning and scheduling decisions to
satisfy each workflow’s deadline while minimizing the execution
cost. The algorithm generally maintains a resources pool that is
scaled in and out according to the current task requirements that
are ready for execution. Its main objective is to make efficient
use of these resources as a cost-controlling mechanism without
compromising the workflow deadline.

In traditional scheduling, when a new workflow arrives, all of
the workflow tasks are immediately mapped to the virtual
machines. Unlike others, the proposed method adds the waiting
tasks to the taskPool and only ready tasks are mapped to the
VMs. The T-CCWSA algorithm consists of five phases: Task Merg-
ing, Workflow Pre-Processing, WQ Task Processor, Task Scheduler,
Task Monitor.

5.1. Task merging

To reduce the runtime overhead of the algorithm, the work-
flow is pre-processed to merge pipeline tasks (Figs. 1 and 2) into
a single task. It helps to save the data transfer time to the next
pipeline stage and also accelerates the generation of dynamic
scheduling/provisioning plan. When the user submits a new
workflow, Tasks Merge Algorithm merges the pipeline tasks into
a single task.

Intuitively, task merge can prevent data communication time
from delaying workflow tasks’ start time. Here we illustrate
how to merge tasks’ predecessors to minimize tasks’ starting
time.

Scenario 1: A scenario which focuses on minimizing the task’s
starting time with only one predecessor

Let us assume two tasks tij and tik are sequence tasks and tik is

the successor of tij. Since task tik can not start its execution

till it receives the dataset from the task tij , the start time of the

task tik should satisfy the condition ST i
k;r P ST i

j;s þ ET i
j;s þ DT i

s;k . On

merging the tasks tij and tik , the communication time between

tasks tij and tik is zero. The sequence tasks merging steps are given

below.

Step a: For a task tij, if it has only one successor tik and tik has only

one parent tij then replace tij and tik with the task tijþk

Step b: Set tijþk as the parent of tik
0s children

Fig. 1 depicts the sequence tasks merging process. The advan-
tages of sequence tasks merging have twofold: 1. All the merged
tasks are sequence tasks without impacting the tasks’ precedence
rules. 2. Reduces task monetary cost as we do not need to transfer
the dataset.

Scenario 1 is illustrated with an example in Fig. 1 Let us assume

the task tik has only one predecessor task tij as shown in Fig. 1, and

task tij has been scheduled to VM vmvtu
s with finish time i.e.,

ST i
j;s þ ET i

j;s = 40s. Besides, the data communication time is assumed

to be DT i
s;k ¼ 15s. According to Scenario 1, we merge two tasks tij

and tik . It helps to avoid the communication time between tasks

tij and tik when they run on different resources and also reduces

the run time overhead.
Scenario 2: A scenario which focuses on minimizing the task’s

starting time with multiple predecessor tasks

Let us assume that task tij contains multiple predecessor

tasks, and pred tij

� �

¼ fti1; t
i
2; . . . ; tikg. Let maxETsub tij

� �

as the

maximum finish time among the predecessors of tij, denoted by

maxETsub tij

� �

¼ max
ti
l
2pred ti

j

� � ET til
� �� �

. If the finish time of two

merged tasks does not exceed the maximum finish time
maxETsub , then the tasks could be merged together. Multiple pre-
decessor tasks merging implementation steps are outlined below.

Step a: For a task tij find out all predecessor tasks

grouppred tij

� �

¼ fti1; t
i
2; . . . ; tikg.

Step b: Sort the tasks according to their finish time in ascending

order

Step c: Take two tasks which have the minimum finish time. If

ET ti1 þ ti2
� �

6 ET ti3
� �

then merge the two tasks as a new taskti1þ2
Step d: Update the predecessors, successors, Finish time and resort

the tasks according to new finish time

Step e: Repeat steps b to d until the predecessor group is empty

Fig. 2 depicts the procedure of merging predecessor tasks. The
advantages of predecessor tasks merging have twofold: a. It does
not affect the successors’ execution time b. The execution cost of
tasks can be reduced.

Scenario 2 is illustrated with an example in Fig. 2. Assume that

task tik has three predecessor tasks ti1, t
i
2 and ti3 as shown in Fig. 2. It

is assumed that all tasks are mapped to the same VM instance type

VM vmvtu
s and each task’s execution time is 20m, 30m, and 60m

Fig. 2. The process of predecessor tasks merging.

Fig. 1. The process of sequence tasks merging.
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respectively. Task tik can not start its execution until the task ti3 fin-

ish its execution since the task ti3 has the longest execution time :

However, if we change the relationship between ti1 and ti2 as a

sequence as shown in Fig. 2, the total execution time of ti1 and

ti2 is less than 50m and not more than 60m. Therefore, if ti1 and

ti2 tasks are merged, it helps to reduce the number of VMs used,

prevents the data transfer time between ti1 and ti2 when they run

on different resources and also decreases the run time overhead.

5.2. Workflow pre-processing

When a user submits a new workflow wi to the scheduler,
Workflow Pre-Processor merges the pipeline tasks and determines

the earliest start time EST i
j and latest finish time LFT i

j for each task

in a workflow wi. Then all the tasks are categorized as ready and
waiting tasks. Tasks without any predecessors are called as ready
tasks and are added to the ready task pool (readyTaskPool), other-
wise, the tasks are called as waiting tasks and are added to the task
pool (taskPool). The workflow Pre-Processor algorithm is presented
in Algorithm 2.

Algorithm2: Workflow Pre-Processor

5.3. WQ task processor

WQ Task Processor moves the waiting tasks to the ready task
pool. The strategy for moving the tasks from taskPool to readyTask-

Pool is presented in Algorithm 3. For each task in the taskPool ,

whose EST i
j equals the current time Timecurrent and predecessors of

the task has completed their execution are removed from the task-

Pool and added to the readyTaskPool. After that, all tasks in ready-

TaskPool are sorted in ascending order of the latest start time.

Algorithm3: WQ Task Processor

5.4. Task Scheduler

Task Scheduler attempts to execute the task tij at minimal cost

before its latest finish time LFT i
j. First, for all the set of idle VMs,

TOPSIS algorithm is called to get the optimal VM which can finish

the task tij before LFT i
j with minimal cost and task will be assigned.

If idle VM is not available then the TOPSIS algorithm is called for all
the VM types in cloud to find a VM type such that it meets the
task’s latest finish time with minimum cost. A new VM will be
acquired to execute the task.

Algorithm4: TaskScheduler

5.5. Task monitor

Task Monitor constantly collects the task state information and

if any tasks complete its execution then it recalculates the EST i
j and

LFT i
j for the successor tasks. For each successor, it gets all the pre-

decessors’ task information and If all the predecessors are executed
then the task is moved to the ready task pool from the task pool.
The task monitor algorithm is presented in Algorithm 5.

Algorithm5: TaskMonitor

6. Performance evaluation

This section presents a comparison of the T-CCWSA, with
recently published Cloud-based Workflow Scheduling Algorithm
(CWSA) (Rimal and Maier, 2017), Earliest Finish Time – Maximum
Effective Reduction (EFT-MER) (Lee et al., 2015) and Heteroge-
neous Earliest-Finish-Time (HEFT) (Topcuoglu et al., 2002) that
match our goal and conditions. These algorithms are briefly
explained below.

The cloud-based Workflow Scheduling Algorithm (CWSA) is
designed for online scheduling. When a new workflow arrives,
computing resources are sorted by their computational speeds in
descending order. To minimize the cost of execution, this algo-
rithm inserts workflow tasks into idle slots of the resources. If it
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is not feasible, the minimum completion time approach is applied
to schedule the tasks.

Earliest Finish Time – Maximum Effective Reduction (EFT-MER)
algorithm applies the earliest finish time (EFT) to generate the base
execution plan for all the workflow tasks. Further, the Maximum
Effective Reduction (MER) refines the base execution plan by merg-
ing the resources with less workload to fill idle time slots on other
resources.

HEFT algorithm assigns an upward rank to each workflow task
based on the maximal length to the exit task. Subsequently, it
selects the task with the highest upward rank and assigns it to
the resources with minimum finish time.

To evaluate the performance impact of algorithms, we consider
1. Total cost as in Eq. (9) 2. Resource Utilization as in Eqs. (10) and
3. Planning Success Rate (PSR) expressed by Eq. (12) and defined in
Zheng and Sakellariou (2013) and Zheng and Sakellariou (2012).
The PSR provides the percentage of valid schedules obtained in a
given experiment.

PSR ¼ 100�
Number of simulation runs that successfully meet deadline

Total number of simulation runs
ð12Þ

6.1. Experimental workflows

The performance of T-CCWSA is evaluated with different work-
flows used in different scientific fields: LIGO, Epigenomics, Cyber-
Shake, and Montage. These workflows have diverse structural
properties such as pipeline, aggregation, distribution, and redistri-
butions as well as different composition as shown in Fig. 3. Mon-
tage, an astronomy application stitches a series of images to
create personalized sky mosaics. Montage tasks require high
intense I/O and CPU with low processing capacity. The LIGO work-
flow aims to detect gravitational waves. This workflow requires a
large memory with a high CPU. The Epigenomics is used in bioin-
formatics to automate genome sequencing operation. Moreover,
these tasks demand high power computational processors with
limited I/O regulations. Cybershake is best suited for simulating
the earthquake hazards using synthetic seismograms. These work-
flow tasks require large memory and high CPU. To ease the evalu-
ation of scheduling algorithms, Bharathi et al. (2008) developed a
set of synthetic workflows of various sizes that resembles concrete
scientific workflows. Synthetic workflows are characterized by
DAG in XML format and are available in Workflow Generator. For
assessing the results of the proposed algorithm in terms of perfor-
mance, experiments are carefully designed and carried out for the
above-specified workflows with the varying number of tasks: small
(about 25 tasks), average (about 100 tasks) and large (about 1000
tasks).

6.2. Experimental settings

The cloud service providers provide various types of VMs with
varying configurations. The VM configurations of EC2 cloud offer-
ings (Anwar and Deng, 2018) are shown in Table 2. It is assumed
that for each type of VM, the processing capacity in terms of
floating-point operations per second (FLOPS) is available from the
provider or can be estimated (Schad et al., 2010). The estimated
time of execution of workflow tasks in various types of virtual
machines is obtained based on their processing capacity. The
change in CPU performance of each VM is modeled based on the
results presented by Schad et al. (2010). Also, each virtual
machine’s performance is reduced by a maximum of 24% based
on the normal distribution. Its average mean is found to be 12%
along with a 10% standard deviation. Similarly, the data transfer
time in the same data center is increased by a maximum of 19%
(Schad et al., 2010), based on the normal distribution. Its average
mean is found to be 9.5% along with a 5% standard deviation. The
average bandwidth is set based on Amazon’s Elastic Block Store
(Amazon Elastic Block Store) i.e., 20 MBps. The VM billing time is
set to 10-minute interval and the estimated acquisition delay is
set to one minute similar to Meena et al. (2015).

To evaluate the performance metrics, the deadline factor
BaseDeadline is considered. We introduce a deadline factor d simi-
lar to Abrishami et al. (2013), based on which we vary the deadli-
nes for workflows. We vary d from 0.3 to 1.5 with a step length of
0.3. For this, all workflow tasks are executed on the fastest

resources and the minimum time to run the workflow W i
MET is

obtained. W i
MET is the lower limit of the i

th workflow execution

time. The deadlines are established according to the rule specified
in Eq. (13).

Dwi
¼ T i

a þW i
MET � ð1þ dÞ ð13Þ

where T i
a is the workflow arrival time, W i

MET is the minimum time

required to execute the submitted workflow and d is the deadline
factor defined as follows. For ‘BaseDeadline’: 0:3 6 d 6 1:5

The deadline factor d was varied with 0.3 disparity

Fig. 3. Workflow structures differed in terms of characterization.

Table 2

VM Instance specifications.

Type of VM ECU Memory(GiB) Cost($/h)

m3.medium 1 3.75 0.067

c3.xlarge 4 3.75 0.21

m3.xlarge 4 15 0.266

c3.2xlarge 8 15 0.42

m3.2xlarge 16 30 0.532
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6.3. Performance impact of workflow deadline

Fig. 4 presents the performance impact of workflow deadline of
the proposed T-CCWSA as well as existing algorithms – CWSA,
EFT-MER, and HEFT. To evaluate the performance of the algorithms
across varying workflow deadlines, BaseDeadline is gradually
increased from 0 to 1.5 with an increment of 0.3.

It can be seen in Fig. 4a that when the deadline factor increases,
the cost of the four algorithms descends slightly. It is because
extending workflow deadline enables more laxity time to complete
workflows execution within their deadline. Therefore, more paral-
lel tasks can be assigned to the same virtual machine for execution,
so that fewer VMs are used. Further, VMs with low configurations
and pricing can also meet workflows’ deadlines, which further
reduces the overall cost. The experimental results in Fig. 4a shows
that the cost of T-CCWSA is less than CWSA, EFT-MER, and HEFT on
average by 9.23%, 11.92%, and 26.54% respectively. The following
facts can be attributed to the superiority of the proposed
T-CCWSA. First, the T-CCWSA algorithm schedules tasks to virtual
machines only when they are ready. Next merging of pipeline tasks
reduces the execution cost of tasks as we do not need to transfer
the dataset.

Fig. 4b shows that the utilization of T-CCWSA, CWSA, EFT-MER
and HEFT algorithms has a rising trend with an increase in
BaseDeadline. This is because when the BaseDeadline is increased,
the deadlines of the workflows are longer, which helps to execute
more parallel tasks consecutively on the same resource, thus
reducing the idle time slots. Also, the average resource utilization
of the proposed T-CCWSA is 4.8%, 11.8%, and 22% higher than
CWSA, EFT-MER, and HEFT respectively. T-CCWSA’s high resource
utilization is reasonable because there is no data dependency

among the ready tasks assigned to virtual machines for their exe-
cution; hence, idle time slots on resources can be reduced as much
as possible. But in other comparative algorithms, all the workflow
tasks are immediately mapped to the virtual machines, which limit
such algorithms to schedule tasks based on run time information.

6.4. Performance impact of workflow count

To evaluate the performance of the four algorithms in the con-
text of workflow count, we gradually increase the workflow count
from 500 to 2500 with an increment of 500, while fixing the dead-
line base. The experimental results of T-CCWSA, CWSA, EFT-MER,
and HEFT are illustrated in Fig. 5.

It can be seen from Fig. 5a, the total execution cost increases lin-
early with the count of workflows. The reason is evident because
more workflows involve more VMs with longer working time,
resulting in higher costs. Furthermore, the experimental results
exhibit that the T-CCWSA’s total cost is less than CWSA, EFT-
MER, and HEFT on average by 5.26%, 6.57%, and 20.52%,
respectively.

From Fig. 5b, we can observe that the resource utilization of
algorithm T-CCWSA, CWSA, EFT-MER and HEFT is stable at
79.40%, 74.65%, 67.60%, and 57.40%, regardless of the change of
the workflow count. These experimental results demonstrate that
the proposed T-CCWSA algorithm has significant advantages in
improving resource utilization of cloud resources.

6.5. Planning success rate

Fig. 6a shows the results obtained for CYBERSHAKE at different
combinations of deadline factor. When the deadline factor is

Fig. 4. Performance impact of workflow deadline.

Fig. 5. Performance impact of workflow count.
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relatively small, the average Planning Success Rate (PSR) of the
T-CCWSA algorithm is relatively high. When the deadline factor
is increased, the PSR of the T-CCWSA algorithm is consistent with
the CWSA algorithm. Compared with that in other algorithms, the
PSR of the HEFT algorithm is less.

Fig. 6(b–d) show the PSR obtained for the EPIGENOMICS, LIGO
and Montage applications. As seen from Fig. 6b–d among CWSA,
EFT-MER, HEFT, and T-CCWSA, the proposed algorithm obtains
good performance for the range of deadline values. By increasing
the deadline factor, more laxity time is available to execute the
workflow resulting in an increase in the PSR value for T-CCWSA.
The reason for the better performance of the T-CCWSA algorithm
is, it schedules tasks to virtual machines only when they are ready.
As a result, it lowers the schedule length of the workflow tasks.
Therefore, it creates a schedule with a lower cost within the
defined deadline.

6.6. Discussion

The above results show that the proposed algorithm has a supe-
rior performance over the baseline algorithms CWSA, EFT-MER,
and HEFT. The intuition behind such performance superiority is
as follows:

� The T-CCWSA algorithm schedule tasks to virtual machines only
when they are ready.
� Data transfer cost is reduced by merging the pipeline tasks.
� T-CCWSA’s high resource utilization is reasonable because only
the ready tasks are dynamically scheduled to VM and the idle
time slots are cut down as much as possible.
� The performance of the T-CCWSA is enhanced by implementing
MCDM, TOPSIS method as a decision maker. The TOPSIS method
finds the ideal resource among the available resources by con-
sidering three criteria as execution time, execution cost and
data transfer time of the tasks.

7. Conclusion

Most of the existing concurrent workflow scheduling algo-
rithms have focused on offline scheduling; Only very few
addressed online scheduling. This paper presents an algorithm
called T-CCWSA (TOPSIS inspired Cost-Efficient Concurrent Work-
flow Scheduling Algorithm) to reduce the cost and improve the
resource utilization for cloud platforms under user-defined dead-
line constraint for dynamic concurrent workflows. The Proposed
T-CCWSA makes a good make good trade-off between cost, sys-
tem’s resource utilization. For simulation, the CloudSim tool is
used and the obtained results are compared with baseline algo-
rithms such as CWSA, EFT-MER, and HEFT on diverse real-world
scientific workflows. Observations reveal that the presented
scheme provides better results in terms of cost-effective realistic
schedules. As future work, this algorithm can be extended by con-
sidering other QoS parameters such as energy, security, reliability
and multiple pricing schemes from various cloud service providers.
Therefore, the combination of these issues opens a direction of our
future works. In addition, workflow scheduling is part of classical
multi-objective optimization problem, and applying multi-
objective evolutionary algorithms to solve it is another concern.
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