Note

Total domination dot-stable graphs

Stephanie A. Rickett, Teresa W. Haynes*
Department of Mathematics, East Tennessee State University, Johnson City, TN 37614-0002, USA

ARTICLE INFO

Article history:

Received 28 June 2010
Received in revised form 28 February 2011
Accepted 3 March 2011
Available online 31 March 2011

Keywords:

Domination dot-critical
Total domination
Total domination dot-critical graph
Total domination dot-stable graph

Abstract

A set S of vertices in a graph G is a total dominating set if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. Two vertices of G are said to be dotted (identified) if they are combined to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. We note that dotting any pair of vertices cannot increase the total domination number. Further we show it can decrease the total domination number by at most 2. A graph is total domination dot-stable if dotting any pair of adjacent vertices leaves the total domination number unchanged. We characterize the total domination dot-stable graphs and give a sharp upper bound on their total domination number. We also characterize the graphs attaining this bound.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

For notation and graph theory terminology not defined here, we refer the reader to [6]. Let $G=(V, E)$ be a graph with vertex set V of order $n=|V|$ and edge set E, and let v be a vertex in V. The open neighborhood of v is $N_{G}(v)=\{u \in V \mid u v \in E\}$ and the closed neighborhood of v is $N_{G}[v]=\{v\} \cup N_{G}(v)$. If the graph G is clear from the context, we simply write $N(v)$ and $N[v]$ rather than $N_{G}(v)$ and $N_{G}[v]$, respectively. The degree of a vertex v in G is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. A vertex of degree one is called a leaf, and its neighbor is called a support vertex. For a set $S \subseteq V$, the subgraph induced by S is denoted by $G[S]$. For a set $S \subseteq V$, its open neighborhood is the set $N(S)=\cup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S]=N(S) \cup S$. An S-external private neighbor of a vertex $v \in S$ is a vertex $u \in V \backslash S$ which is adjacent to v but to no other vertex of S. The set of all S-external private neighbors of $v \in S$ is called the S-external private neighbor set of v and is denoted as epn (v, S). A set S is a dominating set if $N[S]=V$, and a total dominating set if $N(S)=V$. A total dominating set, abbreviated as TDS, was first defined by Cockayne et al. [5]. Every graph without isolated vertices has a TDS, since $V(G)$ is such a set. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a TDS of G, and a TDS of G of cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set. For more details on total domination in graphs, see the two books [6,7] and a recent survey [9].

Graphs for which a given graph parameter changes (respectively, remains the same) upon a graph modification are called critical (respectively, stable). Both criticality and stability of the domination number of a graph have been studied for various graph modifications including adding an edge, removing an edge, and removing a vertex. Chapter 5 of [6] is a survey of such results. Burton and Sumner [1] studied the effects of a different graph modification, which they called dotting, on the domination number of a graph. In particular they investigated the criticality question, that is, they considered when dotting changed the domination number. Dotting (also referred to as identifying in the literature) can be described as combining two vertices to form one vertex whose open neighborhood is the union of their neighborhoods minus themselves. More formally, dotting (respectively, identifying) two vertices u and v forms a new vertex, denoted as ($u v$), whose open neighborhood is $(N(u) \cup N(v)) \backslash\{u, v\}$. The graph formed from G by dotting u and v is denoted as $G . u v$. Henning and Rad [10] investigated

[^0]

Fig. 1. Dotting example (the darkened vertices represent γ_{t}-sets of the respective graphs).

Fig. 2. Example where $\gamma_{t}(G . a d)=\gamma_{t}(G)-2$.
criticality of the total domination number when the graph is modified by dotting adjacent vertices. In this paper, we consider stability of the total domination number with the dotting modification.

Since a graph with a TDS can have no isolated vertices, for the remainder of this paper, we require that dotting two vertices in a graph G does not produce an isolate in G.uv. We note that dotting two vertices cannot increase the total domination number, but as shown in Fig. 1, the total domination number can decrease or remain the same. For the graphs in Fig. 1, $\gamma_{t}(G)=4, \gamma_{t}(G . a b)=4$, and $\gamma_{t}(G . b c)=3$. In Fig. 2, dotting vertices a and d decreases the total domination number by 2 . Our first result shows that in fact, dotting any pair of vertices can decrease the total domination number by at most 2 .

Proposition 1. Let G be a connected graph of order $n \geq 3$. For any two vertices a and $b, \gamma_{t}(G)-2 \leq \gamma_{t}(G . a b) \leq \gamma_{t}(G)$.
Proof. Clearly dotting two vertices does not increase the total domination number, so the upper bound holds.
For the lower bound, let M be a $\gamma_{t}(G . a b)$-set. We consider two cases.
Case 1: $(a b) \in M$. Let $S=(M \backslash\{(a b)\}) \cup\{a, b\}$. If $N_{G}(a) \cap S \neq \emptyset$ and $N_{G}(b) \cap S \neq \emptyset$, then S is a TDS of G, implying that $\gamma_{t}(G) \leq|S|=|M|+1=\gamma_{t}(G . a b)+1$. Without loss of generality, assume $N_{G}(a) \cap S=\emptyset$. Since M is a TDS of $G . a b$, we know that ($a b$) has at least one neighbor in M. It follows that $N_{G}(b) \cap S \neq \emptyset$. Since G has no isolates, a has a neighbor, say y, in $V \backslash S$. Thus $S \cup\{y\}$ is a TDS of G, and $\gamma_{t}(G) \leq|S|+1=|M|+2=\gamma_{t}(G . a b)+2$.
Case 2: $(a b) \notin M$. Consider M in G. If M total dominates G, then $\gamma_{t}(G) \leq \gamma_{t}(G . a b)$. Assume that M does not total dominate G. Since M is a TDS of $G . a b$, renaming the vertices if necessary, we may assume that M total dominates $G-\{a\}$ but does not dominate a. Let $x \in N_{G}(a)$. Then $x \in V \backslash M$ and x has a neighbor in M. Therefore $S=M \cup\{x\}$ is a TDS of G, and hence $\gamma_{t}(G) \leq|M|+1=\gamma_{t}(G . a b)+1$.

Considering the cases in the proof, we deduce the following corollary.
Corollary 2 ([10]). Let G be a connected graph with order $n \geq 3$. If a and b are adjacent vertices of G, then $\gamma_{t}(G)-1 \leq$ $\gamma_{t}(G . a b) \leq \gamma_{t}(G)$.

As defined in [1], a graph is domination dot-critical if dotting any pair of adjacent vertices decreases the domination number. This concept was further investigated in [2,4,3,11]. Total domination dot-critical graphs were defined similarly and studied in [10]. Here we also restrict our attention to dotting only adjacent vertices, and we study stability for total domination. A graph G is total domination dot-stable, abbreviated as γ_{t}-dot-stable, if for any pair of adjacent vertices $a, b \in V(G), \gamma_{t}(G . a b)=\gamma_{t}(G)$.

In Section 2, we characterize the total domination dot-stable graphs. Then, in Section 3, we give an upper bound on the total domination number of a total domination dot-stable graph and characterize the graphs achieving this bound.

2. Total domination dot-stable graphs

We first show that no graph with an odd total domination number is stable.
Proposition 3. If G is γ_{t}-dot-stable, then $\gamma_{t}(G)$ is even.
Proof. We prove the contrapositive. Assume that $\gamma_{t}(G)$ is odd, and let S be a $\gamma_{t}(G)$-set. Since $\gamma_{t}(G)$ is odd, $G[S]$ has an odd component. The new set formed by dotting any two adjacent vertices, say x and y, in the odd component of S is a TDS for $G . x y$, so $\gamma_{t}(G . x y)<|S|=\gamma_{t}(G)$. Hence G is not γ_{t}-dot-stable.

Theorem 4. A graph G is γ_{t}-dot-stable if and only if for every $\gamma_{t}(G)$-set S the induced subgraph $G[S]$ is a set of independent edges.
Proof. The result is straightforward for graphs with total domination number 2 , so assume that $\gamma_{t}(G) \geq 4$. Let G be a $\gamma_{t}{ }^{-}$ dot-stable graph, and let S be a $\gamma_{t}(G)$-set. Let x_{1} and x_{2} be adjacent vertices in S. Notice that because G is γ_{t}-dot-stable, the set $S^{\prime}=\left(S \backslash\left\{x_{1}, x_{2}\right\}\right) \cup\left\{\left(x_{1} x_{2}\right)\right\}$ is not a TDS of $G . x_{1} x_{2}$. Since S^{\prime} is a dominating set of G. $x_{1} x_{2}$, it must be the case that ($x_{1} x_{2}$) is not total dominated. Thus in G, x_{1} and x_{2} have no neighbors in $S \backslash\left\{x_{1}, x_{2}\right\}$. Since S, x_{1}, and x_{2} are arbitrary, the necessity follows.

For the sufficiency, assume that every $\gamma_{t}(G)$-set induces a set of independent edges. Assume, to the contrary, that G is not γ_{t}-dot-stable. Thus there exists a pair of adjacent vertices a and b such that $\gamma_{t}(G . a b)=\gamma_{t}(G)-1$. Let M be a $\gamma_{t}(G . a b)$-set. We consider two cases.
Case 1: $(a b) \in M$.
Since M is a TDS of G.ab, (ab) is adjacent to a vertex, say x, in M. Notice that, in G, x is adjacent to a or b. Thus $M^{\prime}=$ $(M \backslash\{(a b)\}) \cup\{a, b\}$ is a TDS of G with cardinality $\gamma_{t}(G . a b)+1=\gamma_{t}(G)$. But then M^{\prime} is a $\gamma_{t}(G)$-set where $\{x, a, b\}$ induces a P_{3} or a K_{3} in $G\left[M^{\prime}\right]$, contradicting that every $\gamma_{t}(G)$-set induces an independent set of edges.
Case 2: $(a b) \notin M$.
Since M is a TDS of $G . a b$; $(a b)$ is adjacent to a vertex, say x, in M. Also x is adjacent to a vertex, say y, in M. Thus, renaming the vertices if necessary, we may assume that x is adjacent to a in G. It follows that $M^{\prime}=M \cup\{a\}$ is a $\gamma_{t}(G)$-set for which $\{a, x, y\}$ induces a P_{3} or a K_{3} in $G\left[M^{\prime}\right]$, again a contradiction.

We conclude this section with a characterization of the γ_{t}-dot-stable paths and cycles. The total domination number of paths and cycles is well-known.
Observation 5 ([8]). For $n \geq 3, \gamma_{t}\left(P_{n}\right)=\gamma_{t}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{4}\right\rceil-\left\lfloor\frac{n}{4}\right\rfloor$.
Since dotting two vertices of a P_{n} (respectively, C_{n}) yields a P_{n-1} (respectively, C_{n-1}), Observation 5 yields the following corollary.

Corollary 6. Paths P_{n} and cycles C_{n} with $n \geq 3$ are γ_{t}-dot-stable if and only if $n \equiv 0,3 \bmod 4$.

3. An upper bound

In this section, we establish a sharp upper bound on the total domination number of γ_{t}-dot-stable graphs that offers a slight improvement over the following known upper bound for arbitrary graphs.

Theorem 7 ([8]). For any graph G with no isolates, $\gamma_{t}(G) \leq \frac{2 n}{3}$.
To help establish our upper bound, we first state a couple of observations and a lemma. We note that a star is the only connected graph for which every TDS contains at least one leaf. In particular we observe:

Observation 8. If G is a connected graph with $\gamma_{t}(G) \geq 4$, then G has a $\gamma_{t}(G)$-set containing no leaves.
Theorem 4 and Observation 8 imply the following result.
Observation 9. If G is a connected, γ_{t}-dot-stable graph with $\gamma_{t}(G) \geq 4$, then there exists a $\gamma_{t}(G)$-set S such that each vertex in S has a neighbor in $V \backslash S$.

For a set S, we say that a vertex $x \in V \backslash S$ is component common if x is adjacent to vertices in different components of $G[S]$.

Lemma 10. Let G be a γ_{t}-dot-stable graph with $\gamma_{t}(G) \geq 4$ and $\gamma_{t}(G)$-set S. If u and v are adjacent vertices in S and u is adjacent to a component common vertex, then epn $(v, S) \neq \emptyset$.
Proof. Let u and v be adjacent vertices in S. Without loss of generality, assume that u is adjacent to a component common vertex, say x. Notice that $S^{\prime}=(S \backslash\{v\}) \cup\{x\}$ is a $\gamma_{t}(G)$-set if epn $(v, S)=\emptyset$. Since by definition x is adjacent to a vertex in some other component of $G[S], G\left[S^{\prime}\right]$ does not induce a set of independent edges, contradicting Theorem 4 . Thus $\operatorname{epn}(v, S) \neq \emptyset$.

For γ_{t}-dot-stable graphs, we can now make a slight improvement on the upper bound of Theorem 7 .
Theorem 11. If G is a γ_{t}-dot-stable graph of order n and $\gamma_{t}(G) \geq 4$, then $\gamma_{t}(G) \leq \frac{2(n-1)}{3}$.
Proof. Let G be a γ_{t}-dot-stable graph. By Observation 9 , we choose S to be a $\gamma_{t}(G)$-set such that every vertex in S has a neighbor in $V \backslash S$. By Proposition 3, $\gamma_{t}(G)=2 k$ for some integer $k \geq 2$. By Theorem 4, $G[S]=k K_{2}$. Label the vertices of S as u_{i} and v_{i}, where u_{i} is adjacent to v_{i} in the i th component of $G[S], 1 \leq i \leq k$. To establish our bound, we count the vertices of $V \backslash S$. If $u_{i} \in S$ and epn $\left(u_{i}, S\right) \neq \emptyset$, then we associate a unique vertex from epn $\left(u_{i}\right)$ with u_{i}. We do the same for $v_{i} \in S$. Let P be the set of S-external private neighbors.

Suppose that epn $\left(u_{i}, S\right)=\emptyset$ and epn $\left(v_{i}, S\right)=\emptyset$ for some pair $u_{i} v_{i}$. Then Lemma 10 implies that neither u_{i} nor v_{i} is adjacent to a component common vertex in $V \backslash S$. Hence, $N\left(u_{i}\right) \cap(V \backslash S)=N\left(v_{i}\right) \cap(V \backslash S)$. Let A_{i} denote $N\left(u_{i}\right) \cap(V \backslash S)$. We claim that $\left|A_{i}\right| \geq 2$. To see this, assume that $A_{i}=\{x\}$. Since G is connected with $\gamma_{t}(G) \geq 4, x$ has a neighbor, say y, in $V \backslash S$. Moreover, since S is a TDS, y has a neighbor in $S \backslash\left\{u_{i}, v_{i}\right\}$. Hence, $\left(S \backslash\left\{u_{i}, v_{i}\right\}\right) \cup\{x, y\}$ is a TDS of G which does not induce a set of independent edges, contradicting Theorem 4. Therefore $\left|A_{i}\right| \geq 2$. Let $A=\bigcup_{i=1}^{k} A_{i}$. Note that A does not contain a component common vertex, $A_{i} \cap A_{j}=\emptyset$ for all i and j, and $A \cap P=\emptyset$. Thus again we can count two unique vertices in A for each such $u_{i} v_{i}$ component.

Hence the only vertices in S that we have not associated with a unique vertex in $V \backslash S$ are the ones with no S-external private neighbor while their neighbor in S has an S-external private neighbor. Renaming the vertices if necessary, we may assume that epn $\left(u_{i}, S\right) \neq \emptyset$ and epn $\left(v_{i}, S\right)=\emptyset$. Recall that for u_{i}, we have associated a unique vertex in P.

First assume that v_{i} is not adjacent to a component common vertex. Then $N\left(v_{i}\right) \cap(V \backslash S) \subseteq N\left(u_{i}\right) \cap(V \backslash S)$. Let $B_{i}=\left|N\left(v_{i}\right) \cap N\left(u_{i}\right) \cap(V \backslash S)\right|$. Note that for this case, we can count a unique vertex of B_{i} associated with v_{i}. Let $B=\bigcup_{i=1}^{k} B_{i}$. Note that B does not contain a component common vertex, $B_{i} \cap B_{j}=\emptyset$ for all i and $j, B \cap P=\emptyset$, and $B \cap A=\emptyset$.

The only remaining case is where v_{i} is adjacent to a component common vertex. Let j be the number of such vertices in S, and let c be the number of component common vertices in $V \backslash S$. Now we may assume that $c \geq 1$; for otherwise, $|V \backslash S|=|A|+|B|+|P| \geq|S|$ implying that $\gamma_{t}(G) \leq \frac{n}{2}$, and we are finished. Moreover, Lemma 10 implies that $j \leq \frac{|S|}{2}=k$. Hence $n=|S|+|V \backslash S|=2 k+|A|+|B|+|P|+c \geq 2 k+(2 k-j)+c=4 k-j+c$. To minimize $4 k-j+c$, we must maximize j and minimize c. Thus $n \geq 4 k-k+1=3 k+1$. Hence $\gamma_{t}(G)=2 k \leq \frac{2(n-1)}{3}$.

We conclude by characterizing the graphs achieving the bound of Theorem 11. Let g_{4} be the family of connected graphs of order 4 . Let \mathcal{T} be the family of trees that can be obtained by subdividing each edge of a non-trivial star exactly twice.

Theorem 12. A connected γ_{t}-dot-stable graph G of order n has $\gamma_{t}(G)=2(n-1) / 3$ if and only if G is the cycle C_{7} or $G \in g_{4} \cup \mathcal{T}$.
Proof. If $G \in \mathcal{T} \cup\left\{C_{7}\right\}$, then it is straightforward to see that $\gamma_{t}(G)=2(n-1) / 3$ and every $\gamma_{t}(G)$-set induces a set of independent edges. By Theorem 4, G is γ_{t}-dot-stable. If $G \in g_{4}$, then $\gamma_{t}(G)=2=2(n-1) / 3$ and G is γ_{t}-dot-stable.

For the sufficiency, assume that G is a connected γ_{t}-dot-stable graph with $\gamma_{t}(G)=2(n-1) / 3$. By Proposition $3, \gamma_{t}(G)$ is even. If $\gamma_{t}(G)=2$, then $n=4$. Thus $G \in g_{4}$, and the result holds.

Assume that $\gamma_{t}(G)=2 k \geq 4$. By Observation $9, G$ has a $\gamma_{t}(G)$-set where every vertex in the set has a neighbor outside the set. Among all $\gamma_{t}(G)$-sets with this property, let S be one containing the maximum number of vertices adjacent to component common vertices. Label the vertices of S as we did in the proof of Theorem 11. We prove a series of claims.

Claim 1. At least one vertex of each component of $G[S]$ has an S-external private neighbor.
Proof of claim. Suppose to the contrary that for some $i, \operatorname{epn}\left(u_{i}, S\right)=\operatorname{epn}\left(v_{i}, S\right)=\emptyset$. Lemma 10 implies that neither u_{i} nor v_{i} is adjacent to a component common vertex in $V \backslash S$. Since every vertex in S has a neighbor in $V \backslash S, N\left(u_{i}\right) \cap(V \backslash S)=$ $N\left(v_{i}\right) \cap(V \backslash S)$. Let $X=N\left(u_{i}\right) \cap(V \backslash S)$. Moreover since G is connected with $\gamma_{t}(G) \geq 4$, at least one vertex, say x, in X has a neighbor, say y, in $(V \backslash S) \backslash X$. Note that x is not component common in $V \backslash S$ and y is dominated by $S \backslash\left\{u_{i}, v_{i}\right\}$. Then $S^{\prime}=\left(S \backslash\left\{u_{i}\right\}\right) \cup\{x\}$ is a $\gamma_{t}(G)$-set where every vertex in S^{\prime} has a neighbor in $V \backslash S^{\prime}$ and $\left\{x, v_{i}\right\}$ is a component in $G\left[S^{\prime}\right]$. Since y is adjacent to x and at least one vertex in $S^{\prime} \backslash\left\{x, v_{i}\right\}, y$ is a component common vertex for the set S^{\prime}. It follows that S^{\prime} has at least one more vertex, namely x, with a component common neighbor than S has, contradicting our choice of S. Hence at least one vertex of each component of $G[S]$ has an external private neighbor with respect to S.

Renaming the vertices if necessary, we may assume that epn $\left(u_{i}, S\right) \neq \emptyset$ for $1 \leq i \leq k$. Let epn $\left(u_{i}, S\right)=\left\{x_{i}\right\}$. Since $\gamma_{t}(G)=2 k=2(n-1) / 3$, we have $n=3 k+1$ and $|V \backslash S|=k+1$. Thus there is only one vertex, say x, in $V \backslash S$ that can be adjacent to v_{i} for $1 \leq i \leq k$. Since $k \geq 2$, it follows that $v_{i} x \in E(G)$ for $1 \leq i \leq k$ and x is a component common vertex. Note that $N\left(v_{i}\right) \cap(V \backslash S)=\{x\}$ and epn $\left(v_{i}, S\right)=\emptyset$ for $1 \leq i \leq k$.

Claim 2. No u_{i} is adjacent to x.
Proof of claim. Suppose to the contrary that $u_{i} x \in E(G)$ for some i. Then $\left(S \backslash\left\{v_{i}\right\}\right) \cup\{x\}$ is a $\gamma_{t}(G)$-set that does not induce a set of independent edges, a contradiction.

Claim 3. If $\gamma_{t}(G) \geq 6$, then $V \backslash S$ is an independent set.
Proof of claim. Suppose to the contrary that S is not an independent set. If $x_{i} x_{j} \in E(G)$ for some i and j, then (S \backslash $\left.\left\{u_{i}, v_{i}, u_{j}, v_{j}\right\}\right) \cup\left\{x, x_{i}, x_{j}\right\}$ is a $\gamma_{t}(G)$-set with cardinality less than $\gamma_{t}(G)$, a contradiction. If $x_{i} x \in E(G)$ for some i, then $\left(S \backslash\left\{u_{i}\right\}\right) \cup\{x\}$ is a $\gamma_{t}(G)$-set that does not induce a set of independent edges, contradicting Theorem 4.

Returning to the proof of the theorem, note that if $\gamma_{t}(G) \geq 6$, then $G \in \mathcal{T}$ and we are finished. Assume that $\gamma_{t}(G)=4$. If $x_{i} x \in E(G)$ for some i, then as before G has a $\gamma_{t}(G)$-set that does not induce a set of independent edges, contradicting Theorem 4. Hence $x_{i} x \notin E(G)$. If $x_{1} x_{2} \in E(G)$, then $G=C_{7}$. If $x_{1} x_{2} \notin E(G)$, then $G \in \mathcal{T}$. In both cases, the result holds.

References

[1] T. Burton, D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006) 11-18.
[2] T. Burton, D.P. Sumner, γ-Excellent, critically dominated, end-dominated, and dot-critical trees are equivalent, Discrete Math. 307 (2007) 683-693.
[3] X.-g. Chen, W.C. Shiu, A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745.
[4] Z. Chengye, Y. Yuansheng, S. Linlin, Domination dot-critical graphs with no critical vertices, Discrete Math. 308 (2008) $3241-3248$.
[5] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[8] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35 (1) (2000) 21-45.
[9] M.A. Henning, Recent results on total domination in graphs: a survey, Discrete Math. 309 (2009) 32-63.
[10] M.A. Henning, N.J. Rad, Total domination dot-critical graphs, Manuscript (October) (2009).
[11] N.J. Rad, On the diameter of a domination dot-critical graph, Discrete Appl. Math. 157 (2009) 1647-1649.

[^0]: * Corresponding author. Tel.: +1 6159294349.

 E-mail addresses: haynes@etsu.edu, haynes@mail.etsu.edu (T.W. Haynes).

