International Journal of Pure and Applied Mathematics

Volume 99 No. 1 2015, 11-21

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu

doi: http://dx.doi.org/10.12732/ijpam.v99i1.2

TOTAL EDGE IRREGULARITY STRENGTH OF SERIES PARALLEL GRAPHS

Indra Rajasingh¹, S. Teresa Arockiamary² §

¹School of Advanced Sciences

VIT University

Chennai, 600 127, INDIA

²Department of Mathematics

Stella Maris College

Chennai, 600 086, INDIA

Abstract: Given a graph G(V, E) a labeling $\partial: V \cup E \to \{1, 2, ..., k\}$ is called an edge irregular total k-labeling if for every pair of distinct edges uv and xy, $\partial(u) + \partial(uv) + \partial(v) \neq \partial(x) + \partial(xy) + \partial(y)$. The minimum k for which G has an edge irregular total k-labeling is called the total edge irregularity strength. In this paper we consider series composition of uniform theta graphs and obtain its total edge irregularity strength.

We have determined the exact value of the total edge irregularity strength of this graph. We have further given an algorithm to prove the result.

AMS Subject Classification: 05C78

Key Words: irregular total labeling, interconnection networks, total edge irregularity strength, series parallel graphs, labeling

1. Introduction

A basic feature for a system is that its components are connected together by

Received: March 25, 2014

© 2015 Academic Publications, Ltd. url: www.acadpubl.eu

\$Correspondence author

physical communication links to transmit information according to some pattern. Moreover, it is undoubted that the power of a system is highly dependent upon the connection pattern of components in the system. A connection pattern of the components in a system is called an *interconnection network*, or *network*, of the system.

Interconnection networks are becoming increasingly pervasive in many different applications with the operational costs and characteristics of these networks depending considerably on the application. For some applications, interconnection networks have been studied in depth for decades. This is the case for telephone networks, computer networks (telecommunication) and backplane buses. However in the last fifteen years we have seen rapid evolution of the interconnection network technology that is currently being infused into a new generation of multiprocessor systems.

Some interconnection network topologies are designed and some borrow from nature. For example hypercubes, complete binary trees, butterflies and torus networks are some of the *designed* architectures. Grids, hexagonal networks, honeycomb networks and diamond networks, for instance, bear resemblance to atomic or molecular lattice structures. They are called *natural* architectures.

The advancement of large scale integrated circuit technology has enabled the construction of complex interconnection networks. Graph theory provide a fundamental tool for designing and analyzing such networks. Graph Theory and Interconnection Networks provides a thorough understanding of these interrelated topics. One of the main objectives of researchers is the application of Graph Theory to the study and design of interconnection networks. The problems usually considered include the analysis of characteristic parameters of the network (diameter, connectivity measures, etc.), the study of special substructures (rings, trees, etc.), routing algorithms, modularity properties and specific networks (symmetric networks, permutation networks, loop networks, etc.).

Graph labelings, have often been motivated by practical considerations such as coding, X-ray crystallography, radar tracking, remote control, radio astronomy, communication networks, network flows etc.. Their theoretical applications too are numerous, not only within the theory of graphs but also in other areas of mathematics such as combinatorial number theory, linear algebra and group theory admitting a given type of labeling [7]. They are also of interest on their own right due to their abstract mathematical properties arising from various structural considerations of the underlying graphs. An enormous body of literature has grown around the theme. For a dynamic survey of various graph labelings along with an extensive bibliography, one may refer to Gallian

[7].

Motivated by the notion of the irregularity strength and irregular assignments of a graph introduced by Chartrand et al. (refer [4]) in 1988 and various kinds of other total labelings, the total edge irregularity strength of a graph was introduced by Bača, Jendrol, Miller and Ryan [1] as follows: For a graph G(V, E) a labeling $\partial: V \cup E \to \{1, 2, ..., k\}$ is called an edge irregular total k-labeling if for every pair of distinct edges uv and xy, $\partial(u) + \partial(uv) + \partial(v) \neq \partial(x) + \partial(xy) + \partial(y)$. Similarly, ∂ is called an vertex irregular total k-labeling if for every pair of distinct vertices u and v, $\partial(u) + \sum \partial(e)$ over all edges e incident to v.

The minimum k for which G has an edge irregular total k-labeling is called the total edge (vertex) irregularity strength of G. The total edge (vertex) irregular strength of G is denoted by tes(G) (tvs(G)).

We begin with few known results on tes(G).

Theorem 1. (see [1]) Let G be a graph with m edges. Then $tes(G) \ge \lceil \frac{m+2}{3} \rceil$.

Theorem 2. (see [1]) Let G be a graph with maximum degree Δ . Then $tes(G) \geq \left\lceil \frac{\Delta+1}{2} \right\rceil$.

Theorem 3. (see [3]) A graph G(V, E) of order n, size m, and maximum degree $0 < \Delta < \frac{m! 10^{-3}}{8n}$ satisfies $tes(G) = \left\lceil \frac{m+2}{3} \right\rceil$.

Theorem 4. (see [3]) Every graph G(V, E) of order n, minimum degree $\delta > 0$, and maximum degree Δ such that $\frac{\Delta}{\delta} < \frac{n_1 0^{-3}}{4}$ satisfies $tes(G) = \left\lceil \frac{m+2}{3} \right\rceil$.

Theorem 5. (see [3]) For every integer $\Delta \geq 1$, there is some $n(\Delta)$ such that every graph G(V, E) without isolated vertices with order $n \geq n(\Delta)$, size m and maximum degree at most Δ satisfies $tes(G) = \lceil \frac{m+2}{3} \rceil$.

Conjecture. (see [9]) For every graph G with size m and maximum degree Δ that is different from K_5 , the total edge irregularity strength equals $max\{\lceil \frac{m+2}{3} \rceil, \lceil \frac{\Delta+1}{2} \rceil \}$.

For K_5 , the maximum of the lower bounds is 4 while $tes(K_5) = 5$. Conjecture has been verified for trees by Ivančo and Jendrol [9] and for complete graphs and complete bipartite graphs by Jendrol et al. in [10].

In this paper we prove that the bound on *tes* given in Theorem1 is sharp for the Series parallel graph.

2. Series Parallel Graph

In graph theory, *series-parallel graphs* are graphs with two distinguished vertices called *terminals*, formed recursively by two simple composition operations. They can be used to model *series* and *parallel electric circuits*.

There are several ways to define series-parallel graphs. The following definition basically follows the one used by David Eppstein [6]. A series-parallel graph (sp graph) is usually defined recursively by using parallel and series compositions. This classical definition justifies another name of these graphs, 2-terminal sp graphs, since we assume that every such graph has two nodes distinguished as poles and denoted by S (for South) and N (for North).

Definition 1. A sp graph G with poles S and N is defined as either:

- (i) an edge (S, N) or can be constructed as in (ii) or (iii)
- (ii) G is a parallel composition of at least two sp graphs $G_1, G_2, ..., G_l (l \ge 2)$, denoted by $G = ||G_1|| ||G_2|| ... ||G_l||$. This operation identifies the South poles S_i of the component graphs into the South pole S of G, and similarly the North pole S_i become S_i of G.
- (iii) G is a series composition of at least two sp graphs $G_1, G_2, ..., G_k (k \ge 2)$, denoted by $G = G_1 \circ G_2 \circ ... \circ G_k$. This operation identifies N_i and S_{i+1} for i = 1, ..., k-1 and assigns S_1 to S and N_k to N.

In this paper we concentrate on series composition of uniform Θ -graphs.

Series parallel graphs can be characterized in many ways. The oldest and the most popular characterization due to Duffin [5] provides a Kuratowski-like condition which states that the graph G is series-parallel if and only if it contains no subgraph homeomorphic to K_4 , the complete graph on four nodes (also known as Wheatstone bridge). Some recently invented characterization of sp graphs are given in [11].

Every series-parallel graph has treewidth at most 2 and branchwidth at most 2. The maximal series-parallel graphs, graphs to which no additional edges can be added without destroying their series-parallel structure, are exactly the 2-trees, [5, 2].

SPGs may be recognized in linear time [2] and their series-parallel decomposition may be constructed in linear time as well. Besides being a model of certain types of electric networks, these graphs are of interest in computational complexity theory, because a number of standard graph problems are solvable in linear time on SPGs [8], including finding the maximum matching, maxi-

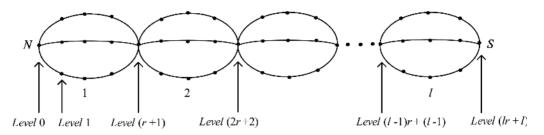


Figure 1: Levels of sp(m, r, l)

mum independent set, minimum dominating set and Hamiltonian completion in graphs. Some of these problems are NP-complete for general graphs. The solution capitalizes on the fact that if the answers for one of these problems are known for two SP-graphs, then one can quickly find the answer for their series and parallel compositions.

Definition 2. A generalized theta graph $\Theta(n, m)$ or simply a theta graph with n vertices has two vertices N and S of degree m such that every other vertex is of degree 2 and lies in one of the m paths joining the vertices N and S. The two vertices N and S are called North Pole and South Pole respectively. A path between the South Pole and North Pole is called a longitude. A longitude is denoted by L. In the literature $\Theta(n,3)$ is called a theta graph.

A theta graph $\Theta(n,l)$ is said to be uniform if $|L_1| = |L_2| = ... = |L_l|$, where L_i is a longitude of $\Theta(n,l)$. As our study is on series composition of uniform theta graphs we shall use the following notation hereafter.

Notation 1. The series-parallel graph $G = G_1 \circ G_2 \circ G_3...G_l$, where $G_i = \Theta(rm+2,m,r)$, with m the number of longitudes and r vertices on each longitude, i = 1, 2, ..., l is denoted by sp(m,r,l). The levels of G are addressed as Level 0, Level 1, ..., Level (r+1), Level (r+2), ..., Level <math>1, ..., Level (r+l-1) and

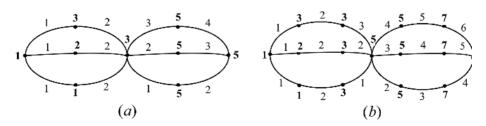


Figure 2: a) tes(sp(3,1,2)) = 5; b) tes(sp(3,2,2)) = 7

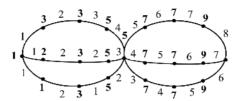


Figure 3: tes(sp(3,3,2)) = 9

Level (lr + l) as shown in Figure 1.

sp(m,r,l) has lm(r+1) edges, and (lr+l) levels, where r=1,2,...,p (for some finite p). By Theorem1[1], we have $tes(sp(m,r,l)) \geq \left\lceil \frac{lm(r+1)+2}{3} \right\rceil$. As the first result in this section we prove that the lower bound is sharp for sp(m,r,l). We begin with l=2.

3. Main Results

Lemma 1. tes(sp(3,1,2)) = 5.

Proof. Let sp(3,1,2) be labeled as in Figure 2 (a). It is easy to check that tes(sp(3,1,2)) = 5.

We now consider $sp(3, r, 2), r \ge 2$.

Procedure tes(sp(3, r, 2))

Input: Series-parallel graph, $sp(3, r, 2), r \ge 2$.

Algorithm: Let k(r) = tes(sp(3, r, 2)).

- (1) Label the vertices and edges of sp(3,1,2) as in Lemma 1.
- (2) Having labeled sp(3,1,2), label sp(3,r,2), $r \ge 2$ as follows:

The graph sp(3, r, 2), $r \ge 2$ is obtained by introducing r vertices on each longitude and hence the vertex at level r of sp(3, r - 1, 2) are duplicated as vertices at level r of sp(3, r, 2) and the vertices at level r + 1 of sp(3, r - 1, 2) are merged into the vertex at level r + 1 of sp(3, r, 2).

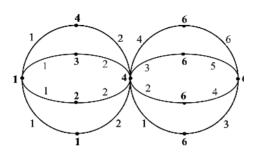


Figure 4: tes(sp(4,1,2)) = 6

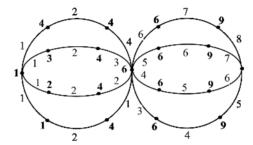


Figure 5: tes(sp(4,2,2)) = 9

- (i) Label vertices and edges upto level 2r as in sp(3, r-1, 2).
- (ii) Label all the vertices of sp(3, r, 2) at level 2r + 1 and the south pole as the tes value of sp(3, r, 2).
- (iii) The edges $e_j = (u_j, w_j)$, $1 \le j \le 3$, with vertex labels $l(u_j)$ and $l(w_j)$, between level 2r and 2r+1 are labeled from bottom to top as $3k(r-1)-1+j-(l(u_j)+l(w_j))$.
- (iv) The edges $e_i = (u_i, w_i)$, $1 \le i \le 3$, with vertex labels $l(u_i)$ and $l(w_i)$, connecting south pole to vertices at level 2r + 1 are labeled as $3k(r-1) + 2 + i (l(u_i) + l(w_i))$.

End Procedure tes(sp(3, r, 2)).

Output: $tes(sp(3, r, 2)) = \left\lceil \frac{6(r+1)+2}{3} \right\rceil$.

Proof of Correctness: We prove the result by induction on r. When r = 1, the result is true by Lemma 1. Assume the result for r - 1. Consider sp(3, r, 2).

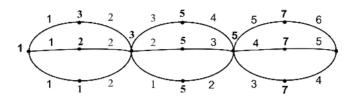


Figure 6: tes(sp(3,1,3)) = 7

Since the labeling of sp(3,r-1,2) is an edge irregular k-labeling, it is clear that the labeling of vertices and edges of sp(3,r,2) obtained by adding consecutive integers as in step 2 is also an edge irregular k-labeling. We know by actual verification that the edge sum labels obtained in Lemma 1 are distinct. Hence the edge sum labels of sp(3,r,2) are also distinct. Labeling of sp(3,2,2) and sp(3,3,2) are shown in Figure 2 (b) and Figure 3. \square

Labeling of sp(4,1,2) and sp(4,2,2) are shown in Figure 4 and Figure 5. Thus we have the following theorem.

Theorem 2. Let sp(3, r, 2) be a series parallel graph. Then $tes(sp(3, r, 2)) = \left\lceil \frac{6(r+1)+2}{3} \right\rceil$, $r \ge 1$.

We now proceed to obtain tes value for sp(m, r, 3). To prove the exact result for sp(m, r, l), $l \ge 2$, we prove that for sp(3, r, 3) the result holds good.

Lemma 2. tes(sp(3,1,3)) = 7.

Proof. Let sp(3,1,3) be labeled as in Figure 6. It is easy to check that tes(sp(3,1,3)) = 7.

The following algorithm yields the total edge irregularity strength of sp(3, r, 3).

Procedure tes(sp(3, r, 3))

Input: Series-parallel graph, sp(3, r, 3).

Algorithm: Let k(r) = tes(sp(3, r, 3)).

- (1) Label the vertices and edges of sp(3,1,3) as in Lemma 2.
- (2) Having labeled sp(3,1,3), label sp(3,r,3), $r \ge 2$ as follows:
- (i) Label vertices and edges upto level 3r as in sp(3, r-1, 3).

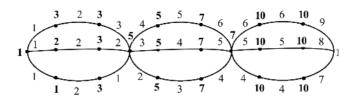


Figure 7: tes(sp(3,2,3)) = 10

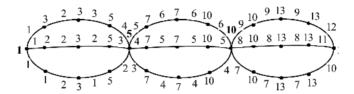


Figure 8: tes(sp(3,3,3)) = 13

- (ii) The unlabeled vertices of sp(3, r, 3) and the south pole receive the tes value of sp(3, r, 3).
- (iii) The edges $e_j = (u_j, w_j)$, $1 \le j \le 3$, with vertex labels $l(u_j)$ and $l(w_j)$, between level 3r and 3r+1 are labeled from bottom to top as $3k(r-1)-1+j-(l(u_j)+l(w_j))$.
- (iv) The edges $e_j = (v_j, q_j)$, $1 \le j \le 3$, with vertex labels $l(v_j)$ and $l(q_j)$, between level 3r + 1 and 3r + 2 are labeled from bottom to top as $l(u_3) + l(u_3) + l(u_3) + j (l(v_j) + l(q_j))$.
- (iv) Label the edges e_i connecting the vertices to the south pole from bottom to top as 3k(r-1) + 5 + i 2k(r).

End Procedure tes(sp(3, r, s)).

Output:
$$tes(sp(3, r, 3)) = \left\lceil \frac{9(r+1)+2}{3} \right\rceil$$
.

Proof of Correctness: We prove the result by induction on r. When r = 1, the result is true by Lemma 2. Assume the result for r - 1. Consider sp(3, r, 3). Since the labeling of sp(3, r - 1, 3) is an edge irregular k-labeling, it is clear that the labeling of vertices and edges of sp(3, r, 3) obtained by adding consecutive integers as in step 2 is also an edge irregular k-labeling. We know by actual verification that the edge sum labels obtained in Lemma 2 are distinct. Hence

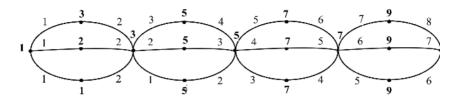


Figure 9: tes(sp(3, 1, 4)) = 9

the edge sum labels of sp(3, r, 3) are also distinct. Labeling of sp(3, 2, 3) and sp(3, 3, 3) are shown in Figure 7 and Figure 8. \square

Theorem 3. Let sp(3, r, 3) be a series parallel graph. Then $tes(sp(3, r, 3)) = \left\lceil \frac{9(r+1)+2}{3} \right\rceil$, $r \ge 1$.

As we labeled the vertices and edges of sp(3, r, 3), we observed the following which we give as a remark.

Remark 1. By labeling sp(3,r,2), $r \geq 2$ we noted that there where 2 levels of vertices and edges that were yet to be labeled. Similarly while labeling sp(3,r,3), $r \geq 2$ we found that there were 3 levels of vertices and edges to be labeled. Hence we can conclude that for sp(3,r,l), $r \geq 2$ there would be l levels to be labeled.

By Theorem 2 and 3 we can generalise the result for l, for which the base case sp(3,1,l) is obtained as follows. The labeling of sp(3,1,l) is obtained from sp(3,1,l-1). The remaining vertices are labeled as tes(sp(3,1,l)) and the edges are labeled from bottom to top as in step 2 (iii), (iv) and (v) of Procedure tes(sp(3,r,3)) respectively so that the sums received are consecutive at l levels. By the above procedure we get the following result.

Theorem 4. Let $sp(m,r,l),\ l\geq 2$ be a series parallel graph. Then $tes(sp(m,r,l))=\left\lceil \frac{lm(r+1)+2}{3}\right\rceil,\ r\geq 1.$

Labeling of sp(3,1,4) is shown in Figure 9.

4. Conclusion

In this paper, we consider series-parallel graphs sp(m,r,l) of uniform theta graphs and prove that they are total edge irregular and its optimal tes value is sharp, for $l \geq 2$. Further our study of total edge irregularity strength is extended to the special case of l = 1.

References

- [1] M. Bača, S. Jendrol, M. Miller, J. Ryan, On irregular total labelings, *Discrete Mathematics*, **307** (2007), 1378-1388, **doi:** 10.1016/j.disc.2005.11.075.
- [2] H. Bodlaender, A Partial k-arboretum of graphs with bounded tree width, *Theoretical Computer Science*, **209**, No. 1-2 (1998), 1-45, **doi:** 10.1016/SO304-3975(97)00228-4.
- [3] S. Brandt, J. Miškuf, D. Rautenbach, On a conjecture about edge irregular total labelings, *Journal of Graph Theory*, **57** (2008), 333-343, **doi:** 10.1002/jgt.20287.
- [4] G. Chartrand, M. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congressus Numerantium, 64 (1988), 187-192, doi: 10.1.1.68.7982.
- R.J. Duffin, Topology of series-parallel networks, Journal of Mathematical Analysis and Applications, 10, No. 2 (1965), 303-313, doi: 10.1016/0022-247(65)90125-3.
- [6] Eppstein David, Parallel recognition of series-parallel graphs, *Information and Computation*, **98**, No. 1 (1992), 41-55, **doi:** 10.1109/SFCS.1985.16.
- [7] J.A. Gallian, A dynamic survey of graph labeling, *The Electronic Journal of Combinatorics*, **19**, #DS6 (2012), **doi:** 10.1.1.219.4788.
- [8] Hall Rhiannon, Oxley james, semple charles and whittle Geoff. On matroids of branch-width three, Journal of Combinatorial Theory, Series B86, 1 (2002), 148-171.
- [9] J. Ivančo, S. Jendrol, Total edge irregularity strength of trees, *Discussiones Mathematicae Graph Theory*, **26** (2006), 449-456, **doi:** 10.7151/dmgt.1337.
- [10] S. Jendrol, J. Miškuf, R. Soták, Total edge irregularity strength of complete graphs and complete bipartite graphs, *Electronic Notes Discrete Mathe*matics, 28 (2007), 281-285, doi: 10.1016/j.disc.2009.03.006.
- [11] S. Shinoda, Y. Khajitani, K. Onaga, W. Mayeda, Various characterizations of series-parallel graphs, In: *Proceedings of International symposium of Circuits and Systems*, Tokyo (1979), 100-103.