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Abstract: Given a graph G(V, E) a labeling 0 : VUE — {1,2,...,k} is called
an edge irreqular total k-labeling if for every pair of distinct edges uv and xy,
d(u) 4+ d(uv) + 0(v) # 9(x) + d(zy) + d(y). The minimum k for which G has an
edge irregular total k-labeling is called the total edge irregularity strength. In
this paper we consider series composition of uniform theta graphs and obtain
its total edge irregularity strength.

We have determined the exact value of the total edge irregularity strength
of this graph. We have further given an algorithm to prove the result.
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1. Introduction

A basic feature for a system is that its components are connected together by
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physical communication links to transmit information according to some pat-
tern. Moreover, it is undoubted that the power of a system is highly dependent
upon the connection pattern of components in the system. A connection pat-
tern of the components in a system is called an interconnection network, or
network, of the system.

Interconnection networks are becoming increasingly pervasive in many dif-
ferent applications with the operational costs and characteristics of these net-
works depending considerably on the application. For some applications, inter-
connection networks have been studied in depth for decades. This is the case
for telephone networks, computer networks (telecommunication) and backplane
buses. However in the last fifteen years we have seen rapid evolution of the in-
terconnection network technology that is currently being infused into a new
generation of multiprocessor systems.

Some interconnection network topologies are designed and some borrow
from nature. For example hypercubes, complete binary trees, butterflies and
torus networks are some of the designed architectures. Grids, hexagonal net-
works, honeycomb networks and diamond networks, for instance, bear resem-
blance to atomic or molecular lattice structures. They are called natural archi-
tectures.

The advancement of large scale integrated circuit technology has enabled
the construction of complex interconnection networks. Graph theory provide
a fundamental tool for designing and analyzing such networks. Graph Theory
and Interconnection Networks provides a thorough understanding of these in-
terrelated topics. One of the main objectives of researchers is the application of
Graph Theory to the study and design of interconnection networks. The prob-
lems usually considered include the analysis of characteristic parameters of the
network (diameter, connectivity measures, etc.), the study of special substruc-
tures (rings, trees, etc), routing algorithms, modularity properties and specific
networks (symmetric networks, permutation networks, loop networks, etc).

Graph labelings, have often been motivated by practical considerations such
as coding, X-ray crystallography, radar tracking, remote control, radio astron-
omy, communication networks, network flows etc.. Their theoretical applica-
tions too are numerous, not only within the theory of graphs but also in other
areas of mathematics such as combinatorial number theory, linear algebra and
group theory admitting a given type of labeling [7]. They are also of interest
on their own right due to their abstract mathematical properties arising from
various structural considerations of the underlying graphs. An enormous body
of literature has grown around the theme. For a dynamic survey of various
graph labelings along with an extensive bibliography, one may refer to Gallian
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[7].

Motivated by the notion of the irregularity strength and irreqular assign-
ments of a graph introduced by Chartrand et al. (refer [4]) in 1988 and various
kinds of other total labelings, the total edge irreqularity strength of a graph
was introduced by Baca, Jendrol, Miller and Ryan [1] as follows: For a graph
G(V,E) alabeling 0 : VUE — {1,2,...,k} is called an edge irreqular total k-
labeling if for every pair of distinct edges wv and zy, 9(u) + O(uv) + d(v) #
d(z) + d(xy) + O(y). Similarly, 0 is called an vertez irreqular total k-labeling
if for every pair of distinct vertices u and v, d(u) + > J(e) over all edges e
incident to u # 9(v) + >_ d(e) over all edges e incident to v.

The minimum & for which G has an edge irregular total k-labeling is called
the total edge (vertex) irreqularity strength of G. The total edge (vertex) irreg-
ular strength of G is denoted by tes(G) (tvs(G)).

We begin with few known results on tes(G).

Theorem 1. (see [1]) Let G be a graph with m edges. Then tes(G) >
[#52]
2.

Theorem 2. (see [1]) Let G be a graph with maximum degree A. Then
tes(G) > [AFL].

Theorem 3. (see [3]) A graph G(V, E) of order n, size m, and maximum
degree 0 < A < ﬂ‘% satisfies tes(G) = [2].

Theorem 4. (see [3]) Every graph G(V, E) of order n, minimum degree
d > 0, and maximum degree A such that A < ﬂL satisfies tes(G) = [ 2],

Theorem 5. (see [3]) For every integer A > 1, there is some n(A) such
that every graph G(V, E) without isolated vertices with order n > n(A), size
m and maximum degree at most A satisfies tes(G) = [Z£2].

Conjecture. (see [9]) For every graph G with size m and maximum de-
gree A that is different from Kj;, the total edge irregularity strength equals

mas{[ 2] [S£1]).

For K5, the maximum of the lower bounds is 4 while tes(K5) = 5. Con-
jecture has been verified for trees by Ivanc¢o and Jendrol [9] and for complete
graphs and complete bipartite graphs by Jendrol et al. in [10].

In this paper we prove that the bound on tes given in Theoreml is sharp
for the Series parallel graph.
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2. Series Parallel Graph

In graph theory, series-parallel graphs are graphs with two distinguished ver-
tices called terminals, formed recursively by two simple composition operations.
They can be used to model series and parallel electric circuits.

There are several ways to define series-parallel graphs. The following defini-
tion basically follows the one used by David Eppstein [6]. A series-parallel graph
(sp graph) is usually defined recursively by using parallel and series composi-
tions. This classical definition justifies another name of these graphs, 2-terminal
sp graphs, since we assume that every such graph has two nodes distinguished
as poles and denoted by S (for South) and N (for North).

Definition 1. A sp graph G with poles S and N is defined as either:

(i) an edge (S, N)
or can be constructed as in (ii) or (iii)

(ii) G is a parallel composition of at least two sp graphs G1, Ga, ..., Gi(l > 2),
denoted by G = ||G1|| || G2 || .- ||Gi|| - This operation identifies the South poles
S; of the component graphs into the South pole S of G, and similarly the North
pole N; become N of G.

(iii) G is a series composition of atleast two sp graphs G, Ga, ..., Gi(k > 2),
denoted by G = G1 o Gy o ... o G. This operation identifies N; and S;y; for
i=1,....,k — 1 and assigns 51 to S and Ny to N.

In this paper we concentrate on series composition of uniform ©-graphs.

Series parallel graphs can be characterized in many ways. The oldest and
the most popular characterization due to Duffin [5] provides a Kuratowski-
like condition which states that the graph G is series-parallel if and only if it
contains no subgraph homeomorphic to K4, the complete graph on four nodes
(also known as Wheatstone bridge). Some recently invented characterization
of sp graphs are given in [11].

Every series-parallel graph has treewidth at most 2 and branchwidth at most
2. The maximal series-parallel graphs, graphs to which no additional edges can
be added without destroying their series-parallel structure, are exactly the 2-
trees, [5, 2].

SPGs may be recognized in linear time [2] and their series-parallel decom-
position may be constructed in linear time as well. Besides being a model of
certain types of electric networks, these graphs are of interest in computational
complexity theory, because a number of standard graph problems are solvable
in linear time on SPGs [8], including finding the maximum matching, maxi-
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Level 0 Level 1 Level (r +1) Level (2r 1 2) Level ({ -1y 1 (£-1) Level (Ir +1

Figure 1: Levels of sp(m,r,1)

mum independent set, minimum dominating set and Hamiltonian completion
in graphs. Some of these problems are NP-complete for general graphs. The
solution capitalizes on the fact that if the answers for one of these problems are
known for two SP-graphs, then one can quickly find the answer for their series
and parallel compositions.

Definition 2. A generalized theta graph ©(n, m) or simply a theta graph
with n vertices has two vertices N and S of degree m such that every other
vertex is of degree 2 and lies in one of the m paths joining the vertices N and S.
The two vertices N and S are called North Pole and South Pole respectively. A
path between the South Pole and North Pole is called a longitude. A longitude
is denoted by L. In the literature O (n, 3) is called a theta graph.

A theta graph ©(n,l) is said to be uniform if |L;| = |La| = ... = |L;|, where
L; is a longitude of ©O(n,1). As our study is on series composition of uniform
theta graphs we shall use the following notation hereafter.

Notation 1. The series-parallel graph G = G o G o G3...G;, where
G; = O(rm+ 2,m,r), with m the number of longitudes and r vertices on each
longitude, i = 1,2, ...,1 is denoted by sp(m,r,l). The levels of G are addressed
as Level 0, Level 1, ..., Level (r + 1), Level (r + 2),..., Level (Ir +1 —1) and

(a) ()
Figure 2: a) tes(sp(3,1,2)) = 5; b) tes(sp(3,2,2)) =7
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Figure 3: tes(sp(3,3,2)) =9

Level (Ir +1) as shown in Figure 1.

sp(m,r,1) has Im(r + 1) edges, and (Ir 4+ 1) levels, where r = 1,2, ...,p (for
some finite p). By Theorem1[1], we have tes(sp(m,r,1)) > [M} . As the

first result in this section we prove that the lower bound is sharp for sp(m,r,1).
We begin with | = 2.
3. Main Results

Lemma 1. tes(sp(3,1,2)) = 5.

Proof. Let sp(3,1,2) be labeled as in Figure 2 (a). It is easy to check that
tes(sp(3,1,2)) = 5.
We now consider sp(3,r,2), r > 2.

Procedure tes(sp(3,r,2))
Input: Series-parallel graph, sp(3,7,2), r > 2.

Algorithm: Let k(r) = tes(sp(3,1,2)).

(1) Label the vertices and edges of sp(3,1,2) as in Lemma 1.

(2) Having labeled sp(3,1,2), label sp(3,7,2), r > 2 as follows:

The graph sp(3,r,2), r > 2 is obtained by introducing r vertices on each
longitude and hence the vertex at level r of sp(3,r — 1,2) are duplicated as
vertices at level r of sp(3,7,2) and the vertices at level r 4+ 1 of sp(3,r —1,2)
are merged into the vertex at level r + 1 of sp(3,r,2).
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Figure 5: tes(sp(4,2,2)) =9

(i) Label vertices and edges upto level 2r as in sp(3,r — 1,2).

(ii) Label all the vertices of sp(3,7,2) at level 2r + 1 and the south pole as the
tes value of sp(3,r,2).

(iii) The edges e; = (uj,w;), 1 < j < 3, with vertex labels [(u;) and [(w;),
between level 2r and 2r + 1 are labeled from bottom to top as 3k(r —1) —
L = (Uuy) + L(wy)-

(iv) The edges e¢; = (u;,w;), 1 < i < 3, with vertex labels [(u;) and I(w;),
connecting south pole to vertices at level 2r +1 are labeled as 3k(r —1) +
2+ — (I(w) + Uwy)).

End Procedure tes(sp(3,7,2)).

Output: tes(sp(3,r,2)) = [w-‘ .

Proof of Correctness: We prove the result by induction on r. When r = 1,
the result is true by Lemma 1. Assume the result for » — 1. Consider sp(3,r, 2).
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Figure 6: tes(sp(3,1,3)) =7

Since the labeling of sp(3,r—1,2) is an edge irregular k—labeling, it is clear that
the labeling of vertices and edges of sp(3,r,2) obtained by adding consecutive
integers as in step 2 is also an edge irregular k—labeling. We know by actual
verification that the edge sum labels obtained in Lemma 1 are distinct. Hence
the edge sum labels of sp(3,7,2) are also distinct. Labeling of sp(3,2,2) and
sp(3,3,2) are shown in Figure 2 (b) and Figure 3. O

Labeling of sp(4,1,2) and sp(4,2,2) are shown in Figure 4 and Figure 5.
Thus we have the following theorem.

Theorem 2. Let sp(3,r,2) be a series parallel graph. Then tes(sp(3,7,2)) =
"6(r+1)+2—‘ r>1
3 R

We now proceed to obtain tes value for sp(m,r, 3). To prove the exact result
for sp(m,r,1), I > 2, we prove that for sp(3,r,3) the result holds good.

Lemma 2. tes(sp(3,1,3)) =T7.

Proof. Let sp(3,1,3) be labeled as in Figure 6. It is easy to check that
tes(sp(3,1,3)) =T7.

The following algorithm yields the total edge irregularity strength of sp(3,r, 3).
Procedure tes(sp(3,r,3))
Input: Series-parallel graph, sp(3,7,3).

Algorithm: Let k(r) = tes(sp(3,1,3)).

(1) Label the vertices and edges of sp(3,1,3) as in Lemma 2.

(2) Having labeled sp(3,1,3), label sp(3,r,3), r > 2 as follows:

(i) Label vertices and edges upto level 3r as in sp(3,r — 1, 3).
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Figure 8: tes(sp(3,3,3)) = 13

(ii) The unlabeled vertices of sp(3,r,3) and the south pole receive the tes value
of sp(3,r,3).

(iii) The edges e; = (uj,w;), 1 < j < 3, with vertex labels [(u;) and [(w;),
between level 3r and 3r + 1 are labeled from bottom to top as 3k(r —1) —
L = (Uuy) + 1(wy)-

(iv) The edges e; = (vj,q;), 1 < j < 3, with vertex labels [(v;) and I(g;),
between level 3r + 1 and 3r + 2 are labeled from bottom to top as [(u3)
+ Uws) + (ugws) +j — (I(v;) + Uay))-

(iv) Label the edges e; connecting the vertices to the south pole from bottom
to top as 3k(r — 1) + 5+ i — 2k(r).

End Procedure tes(sp(3,7,s)).
Output: tes(sp(3,7,3)) = {w—‘ '

Proof of Correctness: We prove the result by induction on ».When r = 1,
the result is true by Lemma 2. Assume the result for r» — 1. Consider sp(3,r, 3).
Since the labeling of sp(3,7—1, 3) is an edge irregular k—labeling, it is clear that
the labeling of vertices and edges of sp(3,r,3) obtained by adding consecutive
integers as in step 2 is also an edge irregular k—labeling. We know by actual
verification that the edge sum labels obtained in Lemma 2 are distinct. Hence
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Figure 9: tes(sp(3,1,4)) =9

the edge sum labels of sp(3,7,3) are also distinct. Labeling of sp(3,2,3) and
sp(3,3,3) are shown in Figure 7 and Figure 8. [J

Theorem 3. Let sp(3,r,3) be a series parallel graph. Then tes(sp(3,r,3)) =
"9(r+1)+2—‘ r>1
3 T Z L

As we labeled the vertices and edges of sp(3,r,3), we observed the following
which we give as a remark.

Remark 1. By labeling sp(3,r,2), r > 2 we noted that there where 2
levels of vertices and edges that were yet to be labeled. Similarly while labeling
sp(3,7,3), r > 2 we found that there were 3 levels of vertices and edges to be

labeled. Hence we can conclude that for sp(3,r,1), r > 2 there would bel levels
to be labeled.

By Theorem 2 and 3 we can generalise the result for [, for which the base
case sp(3,1,1) is obtained as follows. The labeling of sp(3,1,1) is obtained
from sp(3,1,1—1). The remaining vertices are labeled as tes(sp(3,1,1)) and the
edges are labeled from bottom to top as in step 2 (iii), (iv) and (v) of Procedure
tes(sp(3,7,3)) respectively so that the sums received are consecutive at [ levels.
By the above procedure we get the following result.

Theorem 4. Let sp(m,r1), | > 2 be a series parallel graph. Then
tes(sp(m,r,l)) = [M} ,r > 1.

Labeling of sp(3,1,4) is shown in Figure 9.

4. Conclusion

In this paper, we consider series-parallel graphs sp(m,r,[) of uniform theta
graphs and prove that they are total edge irregular and its optimal tes value
is sharp, for [ > 2. Further our study of total edge irregularity strength is
extended to the special case of [ = 1.
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