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Abstract:
The need for linear model, of the nonlinear system, while tuning controllers limits the use of classic controllers.
Also, the tuning procedure involves complex computations. This is further complicated when it is necessary
to operate the nonlinear system under different operating constraints. Continues Stirred Tank Reactor (CSTR)
is one of those non-linear systems which is studied extensively in control and chemical engineering due to
its highly non-linear characteristics and its diverse operating range. This paper proposes two different control
schemes based on reinforcement learning algorithm to achieve both servo as well as regulatory control. One
approach is the direct application of Reinforcement Learning (RL) with ANN approximation and another is
tuning of PID controller parameters using reinforcement learning. The main objective of this paper is to handle
multiple set point control for the CSTR system using RL. The temperature of the CSTR system is controlled
here for multiple setpoint changes. A comparative study is also done between the two proposed algorithm and
from the test result, it is seen that direct RL approach with approximation performs better than tuning a PID
using RL as oscillations and overshoot are less for direct RL approach. Also, the learning time for the direct RL
based controller is lesser than the later.
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1 Introduction

A typical non-linear process, which is diversely used in control research and most chemical industrial appli-
cations, is the Continuous Stirred Tank Reactor (CSTR). Controlling the reaction temperature and the chemical
composition according to the varying product demand in a CSTR remains a major challenge for control experts
[1–3]. Advanced control strategies were tried in the past [4–6] for monitoring and control of CSTR parame-
ters. Most of these control design requires a linear model of the process around the operating point. When it
is necessary to operate the nonlinear system under different operating zones, the control design also should
be adaptive. Such control designs demand piecewise linear modes of the system and also the calculations are
complex in nature.

In the recent past, RL has been a widely researched domain [7–9] to handle nonlinear, dynamic control
problems. RL based controllers have exhibited better performance than PID controllers on chemical process
control applications [10]. In RL, a learning agent learns to take good control actions for a given situation by
maximizing a reward function through interactions with the problem environment. This machine learning
approach has been successfully tried in various domains, including system identification, sequential decision-
making problems and optimal control problems [11–15] under stochastic conditions.

Generally, RL works with finite and discrete samples in the state and action spaces. The challenges faced
while applying RL for control system applications, where state and action spaces are continuous, are discussed
and solved using efficient computation techniques [16–18]. The nonlinear function approximating potentiality
of Artificial Neural Network (ANN) has been coalesced with RL based controllers to handle continuous state
control problems with improved stability. ANN was used to approximate the discrete functions involved in the
RL based control problems, like, the action (policy) function, value function or the reward function [19–21] while
handling nonlinear continuous control problems. The growing need for controller designs for nonlinear and
dynamic systems promoted the research in adaptive control approaches. Adaptive PID controllers were tuned
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using RL based approaches to address dynamic control problems like wind turbine control, robotic control
and engine control [22–25]. Adaptive neural controllers were also designed to demonstrate stability in tracking
control problems for nonlinear and multi-input multi-output processes [26–28].

This paper proposes two RL based adaptive control schemes for a nonlinear chemical process control, where,
multiple operating conditions are customary. In this work, temperature control problem of a CSTR model is
used for conducting experiments. In the first approach, ANN-RL, a direct RL based controller was trained us-
ing value iteration algorithm. For tracking control, the desired system state along with the current system state
was used as inputs for the RL agent. The obtained optimal policy function was approximated using an ANN
to make it continuous. In the second approach, PID-RL, the RL agent was trained to update a PID controller’s
parameters according to the current and desired state situations. Observed results indicate the direct RL ap-
proach with function approximation performs faster and smoother compared to the RL tuned adaptive PID
controller approach.

2 Reinforcement learning

In Reinforcement learning (RL), the agent iteratively learns, through interactions with the working environ-
ment, to map situations to optimal actions. The solution of this optimal controller learning problem is Markov
Decision Process (MDP), which can be expressed by a 5-tuple with:

– S represents a set of state variables (discretization is needed to handle the continuous spaces of state)

– A represents set of action variables (discretization is needed to handle continuous action)

– Psa –state transition probability which represents the distribution over which state variables could transit to
if an action is taken in a particular state.

– γ ϵ [0, 1) –represents discount factor

– 𝑅 ∶ 𝑆 × 𝐴 → ℝ -represents reward function

The main objective of RL is to take actions over time so that the expected total payoff value can be maximized.
The expected (E) total payoff, also known as the value function V, when executing a policy π on a system with
initial state s0, is defined below in eq. (1):

V𝜋 (s) = E [R (s0) + 𝛾R (s1) + 𝛾2R (s2) … |s0 = s, 𝜋] (1)

This value function Vπ (s) is the expected cumulative reward which is discounted by the factor γ. The optimal
value function V*(s) is the value function obtained while executing the optimal policy, which satisfies the well-
known Bellman equations [29]:

𝑉∗(𝑠) = 𝑅(𝑠) + max𝑎 ∈ 𝐴 𝛾 ∑𝑠′∈𝑆 𝑃𝑠𝑎(𝑠′) 𝑉∗(𝑠′) (2)

Where, R(s) denotes the immediate reward and the second term denote the maximum, for all actions, of the
expected cumulative discounted reward.

The policy function π: S→A does the mapping from the current state to the controller action. The optimal
policy function π*: S→A is also defined below in eq. (3):

𝜋∗(𝑠) = arg max𝑎 ∈ 𝐴 ∑𝑠′∈𝑆 𝑃𝑠𝑎(𝑠′) 𝑉∗(𝑠′) (3)

This optimal policy function will maximize the total payoff. This optimal policy could be found by two iterative
learning algorithms: policy iteration and value iteration. Policy iteration starts with selecting a policy and eval-
uating it by calculating the value function for improvement. This evaluation and improvement process repeated
till optimal policy is achieved. Alternatively, the value iteration algorithm uses a truncated policy evaluation
process. This makes the value iteration algorithm converge faster than the policy iteration algorithm for appli-
cations with a large set of action values.
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3 Continuous Stirred Tank Reactor (CSTR) process

A Continuous Stirred Tank Reactor (CSTR) model is regarded as one of the most challenging unit operations
because of its high non-linearity and large-scale operation. The chemical reaction that takes place inside the
CSTR is either endothermic or exothermic and to maintain a constant temperature, the heat produced inside the
unit must be added or removed. In the CSTR model considered for experiments, the reaction is an irreversible
exothermic one. The heat is removed by the coolant flow through the jacket around the system. The produced
heat is removed in terms of the difference in temperature between the fluid of the reactor and the coolant in the
jacket. The constant temperature maintenance is a very challenging task because of its physical and chemical
behavioral complexity.

The nonlinear system dynamics can be explained by two ordinary differential equations (ODE) which are
given below in (4).

𝑑𝑇𝑅𝑑𝑡 = 𝑄𝐼𝑁 (𝑇𝐼 − 𝑇𝑅)𝑉𝐶 + 𝑘1𝐶𝐴𝑒−(𝐸/𝑅)/𝑇𝑅 + 𝑘2𝑄𝐶 (1 − 𝑒− 𝑘2𝑄𝐶 ) (𝑇𝑐 − 𝑇𝑅) (4)

𝑑𝐶𝐴𝑑𝑡 = 𝑄𝐼𝑁 (𝐶𝐼 − 𝐶𝐴)𝑉𝐶 − 𝑘0𝐶𝐴 𝑒−(𝐸/𝑅)/𝑇𝑅

Temperature and concentration are the two state variables and the coolant flow rate is considered as the ma-
nipulated variable in this process. To get a regulatory response the inlet flow rate is treated as disturbance
parameter. The nominal process parameters used for modeling are shown in Table 1.

Table 1: CSTR parameters.

Process variables Operating values

Product flow rate(QIN) 100 l/min
Input product concentration(CI) 1 mol/l
Input temperature(TI) 350 K
Coolant temperature (TC) 350 K
Container volume(VC) 100  l
Activation energy term(E/R) 104 K
Reaction rate constant (k0) 7.2*1010/min
Plant constant (k1) 1.44*1013 K l/min/mol
Plant constant (k2) 0.01/l
Plant constant (k3) 700 l/min

3.1 ANN-RL controller

The conventional RL algorithm works on system’s finite state-action spaces. To make this algorithm work for
continuous state space, discretization into finite steps is needed for both state and action spaces. The discretiza-
tion in state-action space heads to controller errors, which is practically equivalent to quantization errors to
digital control frameworks. As a remedy, the number of discretization steps can be increased but this pro-
posal fails to measure because of the exponential increase in discretization. As a consequence, the error in
discretization leads the control performance to more oscillation and overshoots near the set point. The impacts
of discretization on continuous time frameworks look quite similar to the impacts of estimation errors; since
the approximate state is only accessible to achieve control in both of the cases.

This discretization error issue is resolved by exploiting the generalization capability of neural networks;
to predict the precise control over continuous state domain from the available information on the discretized
state. This ANN-RL algorithm is the first approach which is executed for the CSTR system, for both servo and
regulatory mechanism. The neural network approach is applied here directly to learn the optimal policy matrix
from the measured matrix of optimal policy, for the discretized state.

In Figure 1 the function F(Sc, Sd) is optimal policy function,�̃�∗(𝑆𝑐, 𝑆𝑑), as studied above.
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Figure 1: Feed forward neural network structure to learn the best policy.

In this approach, value iteration algorithm is implemented over the discretized states and the training is
carried out for the radial basis function (RBF) neural network, with those discretized values. As input and
output, the state variables in the continuous domain will be taken by the RBF neural network for control action
approximation. The algorithm for this methodology is given in Table 2.

Table 2: ANN-RL algorithm with policy approximation.

1. Define the operating range of TR, CA, TD (desired) and Qc
2. Initialize R and γ.
3. Discretize TR, CA, TD and Qc into N1,N2, N3 and Nc levels
4. For each combination of TR, CA and TD initialize V(S):=0
5. Repeat the loop for N number of iterations

Repeat the loop for all state-action combination𝑉∗(𝑠) = 𝑅(𝑠) + max𝑞𝑐 ∈ 𝑄𝑐 𝛾𝑉∗(𝑠′)
End
End

6. Repeat the loop for all state-action combination𝜋∗(𝑠) = arg max𝑞𝑐 ∈ 𝑄𝑐 𝑉∗(𝑠′)
End

7. Use TR, CA, TD and π*(s) to train the RBF neural network. Assume �̃�∗ (𝑠) as
the approximation to 𝜋∗ (𝑠) calculated by the RBF neural network.

8. For the continuous control execute the following
a) Get current state, 𝑆𝑐 of the system and desired state 𝑆𝑑
b) Compute ̃𝑞𝑐 (𝑠) = �̃�∗ (𝑠)
c) Fix the coolant flow rate at ̃𝑞𝑐 (𝑠)
d) Go to a)

4 RL-PID controller

Despite enormous advancement in control engineering, PID is still considered as the most commonly used
controller for many practical cases in control domain because of its simple architecture and robust performance.
At every instant, the controller computes the difference between a desired set point and the measured process
variable and based on that it will correct the control action.

The PID controller can be represented by the equation given below:

𝑢 (𝑡) = 𝐾𝑝𝑒 (𝑡) + 𝐾𝑖 𝑡∫
0

𝑒 (𝜏) 𝑑𝜏 + 𝐾𝑑 𝑑𝑒 (𝑡)𝑑𝑡 (5)

To get the best performance for a PID control scheme, the PID controller parameters (Kp, Ki, Kd) have to be
determined and adjusted properly. These parameters could be tuned offline or online approaches. In offline
tuning, a linearized model of the plant, around the operating point, is used for tuning the controller parame-
ters. But the changing control objective or the change in system dynamics makes it necessary to tune the PID
parameter online. There are a number of self-tuning methods proposed for adaptive PID controllers. In this
paper, reinforcement learning approach to tune the PID parameters has been suggested.

In the proposed method, the learning agent learns to change the PID parameters for any given system state
and for any given desired state. The RL based PID tuning and controller implementation algorithm is given in
Table 3.
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Table 3: PID tuning using RL.

1. Define the operating range of TR, CA, TD, Kp, Ki and Kd
2. Initialize R and γ.
3. Discretize TR, CA, TD, Kp, Ki and Kd into N1,N2, N3, Nc1, Nc2 and Nc3 levels
4. For each combination of TR, CA and TD initialize V(S):=0
5. Repeat the loop for N number of iterations

Repeat the loop for all state-action combination𝑉∗(𝑠) = 𝑅(𝑠) + max{𝑘𝑝,𝑘𝑖,𝑘𝑑} ∈ {𝐾𝑝, 𝐾𝑖 ,𝐾𝑑} 𝛾𝑉∗(𝑠′)
End
End

6. Repeat the loop for all state-action combination𝜋∗(𝑠) = arg max{𝑘𝑝,𝑘𝑖,𝑘𝑑} ∈ {𝐾𝑝, 𝐾𝑖 ,𝐾𝑑} 𝑉∗(𝑠′)
End

7. For the continuous control execute the following
a) Get current state, 𝑆𝑐 of the system and desired state 𝑆𝑑
b) Compute 𝜋∗ (𝑠)
c) Fix the PID controller parameters at 𝜋∗ (𝑠)
d) Go to a)

5 Results

For testing both control strategies a CSTR system as in (4) was used. The goal is to track the reactor temperature
(TR) as required, by manipulating the flow rate of the coolant around the CSTR jacket. The operating range of
the reactor temperature was assumed to be 450 ± 10°K. In the first control learning approach, the learning agent
learns to manipulate the coolant flow rate directly based on the current and desired state combination. In the
second approach, the agent learns to modify the PID controller parameters {Kp, Ki, Kd} for every current and
desired state combination. This PID will manipulate the coolant flow for continuous control.

5.1 Direct RL with ANN (ANN-RL)

In Reinforcement Learning, the MDP starts with the discretization of all continuous variables. State variables
(TR, CA), the desired variable (TD) and the action variable (Qc) were discretized into 20 steps. This gives 8000
combinations of current and desired state variable with 20 possible actions for MDP to work with. So the di-
mensions of the value function and policy function were 20 × 20 × 20 each. A feed-forward neural network
with three inputs (TR, CA, TD) and one output (Qc) was trained to learn the discontinuous best policy function.
During the implementation, the sensors will feed TR and CA to the network and the required TD value fed to
the network by the user. The network will give necessary Qc value for tracking or regulating control.

The system response, for tracking control, obtained with RL controller with policy function approximation
is shown below. The desired state and actual state variables are shown in Figure 2. The corresponding action
taken is shown in Figure 3.
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Figure 2: Tracking temperature control response of CSTR under ANN-RL control.

Figure 3: Action taken by ANN-RL during tracking control.

To check the robustness of the above algorithm, regulatory response is also considered in this context. Here,
the inlet flow rate (QIN) is taken as the disturbance parameter and the variation given to it is plotted in Figure
4, along with the system response. From Figure 4, it is clear that the system is able to track the desired temper-
ature (460K) easily without much oscillation after introducing disturbance to the system. Figure 5 shows the
action taken by the controller to maintain the desired temperature when the system was disturbed.

Figure 4: Regulation of CSTR temperature under ANN-RL control.
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Figure 5: Action taken by ANN-RL during regulatory control.

5.2 RL tuned PID (RL-PID)

The objective here is to train a control agent to adapt the PID controller parameters according to the current
and desired state variables. For MDP, the state and desired state variables were discretized as in the previous
approach. This gives 8000 possible state variable combinations. The search range for the proportional (Kp),
integral (Ki) and derivative (Kd) control gains were fixed between −10 to 10. These are the action variables for
the RL agent. So each of them were discretized into 20 steps, which gives 8000 controller settings for the RL
agent to choose and implement.

The system response, for tracking control, obtained with RL tuned PID controller is shown below. The de-
sired state and actual state variables are shown in Figure 6. The corresponding action taken by the PID controller
is shown in Figure 7.

Figure 6: Tracking temperature control response of CSTR under RL-PID control.

Figure 7: Action taken by RL-PID during tracking control.
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To show the action taken by the RL agent in this approach, a portion of the response is taken and shown
below. The variation in reactor temperature and the corresponding changes in the PID controller parameters
are shown in Figure 8.

Figure 8: PID parameter variations.

For a regulatory response, a similar disturbance was introduced in the chemical inlet flow rate (QIN) as in
the previous approach. The desired reactor temperature was set at 460°K. The system response under inlet
disturbance and the corresponding action taken by the RL tuned PID controller are shown in Figure 9 and
Figure 10 respectively.

Figure 9: Regulation of CSTR temperature under RL-PID control.

Figure 10: Action taken by RL-PID during regulatory control.

The performances of the controllers were evaluated both in the learning phase and implementation phase.
During the learning phase, the time taken to complete one iteration and the time taken for the entire learning
to converge were measured. It was observed that ANN-RL approach takes lesser time per iteration and also
to converge. In the RL-PID approach, the RL agent takes action on the PID controller parameters which in
turn modifies the controller output. This makes RL-PID slower than ANN-RL during the learning phase. In
the implementation phase the peak overshoot, settling time and the rate at which the oscillation decay were
measured during both servo and regulatory response analysis. The ANN-RL controller ensures lesser overshoot
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and faster settling time while the RL-PID controller gives better decaying of process variable oscillations. The
worst case observations after multiple testing on the controller performances are given in Table 4.

Table 4: Controller performance assessment.

Learning phase Servo response Regulatory response

Time per
iteration
(min)

Conver-
gence time
(min)

Overshoot
(%)

Settling
time (min)

Decay
Ratio

Over-
shoot
(%)

Settling
time
(min)

Decay
Ratio

ANN-RL 0.3 26.208 0.13 4.5 1/2 0.176 4 1/4
RL-PID 2.4 288.0 0.826 5.5 1/3.8 0.783 10 1/5.42

6 Conclusion

Most Reinforcement learning problems are single goal-oriented, where the learning agent takes the current
state of the system as input and learns to take optimal action through iterative learning. This paper presents
two different RL based approaches for temperature control of nonlinear CSTR process, where multiple goal
tracking is necessary. In the first approach, the learning agent takes the current state and the desired state
as the input and learns to take direct control actions on the system. To minimize the effects of discretization,
which was necessary to handle continuous variable for MDP, an ANN based policy function approximation
was used. In the second approach, the RL agent learns to modify a PID controller parameters based on the
current and desired state conditions. It is observed that the direct RL with ANN gives smoother transitions
for tracking control compared to that of an RL tuned adaptive PID controller. Also, the time taken by the RL
tuned PID during the learning and control execution phases are more compared to the direct RL approach.
A major challenge for the proposed approaches is the number of state variables in the system under control.
Commonly the RL based approaches suffer the curse of dimensionality and the proposed approach adds one
more dimension in the form of the “desired state”. This might increase the learning time while working with
higher order systems. This increase in the problem dimension could be avoided by exploring a time-varying
reward function approach for handling similar tasks.

A Nomenclature

a, A Action variable and its constraint set
s, S State vector and its constraint set
R(s) Reward function
Psa Probability of reaching “s” upon execution of “a”
Vπ(s) Cumulative discounted reward
π* Optimal policy
V*(s) Optimal value
Qc Coolant Flow rate (lpm)
CA Concentration of A in the reactor (mol/l)
TR Temperature of reactor fluid (K)
QIN Product Flow rate (lpm)
CI Input product concentration (mol/lit)
TI Input temperature (K)
TC Coolant Temperature (K)
VC Container volume (l)
E/R Activation energy term (K)
k0 Reaction rate constant (1pm)
k1, k2, k3 CSTR Plant constants
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