
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(44), DOI: 10.17485/ijst/2016/v9i44/105312, November 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Transparent Proxy Cache Server using Raspberry Pi
 Anu Rose Jolly1*, M. Kalyan Chakravarthi1, Naveen Kumar Jindal2 and Dinesh Birlasekaran2

1School of Electronics Engineering, VIT University, Chennai - 600127, Tamil Nadu, India;
jlaavr4@gmail.com, maddikerakalyan@vit.ac.in

2VIDEO BU, ION, Nokia India Pvt. Lmtd, Kandanchavadi, Chennai – 600096, Tamil Nadu, India;
naveen_kumar.jindal@nokia.com, dinesh.birlasekaran@nokia.com

Keywords: Traffic, Quality of Service, Surge, Raspberry Pi, Latency, Proxy, Cache, IP-Spoofing

Abstract
Objectives: The online traffic surge rates have rapid growth in the recent years. The rate has gone high, making the service
providers unable to provide the quality of service they assure. The surging cannot be controlled and the only solution lays
on the other side, so the providers are forced to choose another methodology of delivering the service in quality. Methods/
Statistical Analysis: In this paper the process of implementing an alternative is proposed. The work is concentrated on
creating a Raspberry Pi to work as a transparent cache server with the smart phones enacting as the client. Findings:
The issues of streaming videos are ending up being more critical to customers as they pay for over-the-top substance
yet, still experience exceptionally less than impressive streams. To get a quick response and decrease access latency,
utilizing a cache memory is prudent. A transparent proxy cache server wipes out numerous disadvantage of ordinary
methodology. Transparent proxy cache server can be conveyed in two levels, one at switch level and another at router level.
The attention is primarily on http result reserve which stores URLs of Previously accessed query results. These caches
might be deployed in various machines, acting about as a proxy cache cluster, or exists together in the same machine. In this
proposed framework we introduce a straight forward web store middle server, to upgrade the execution. The only work to
be done regarding the promise of content availability is continuous monitoring of the cache. Application/Improvement:
The proposed methodology can serve the right speed of content delivery by facilitating access of data from the cache while
giving no hint that the data has been retrieved through IP-spoofing of the server which here is a small sized computer the
Raspberry Pi.

1. Introduction
Data centre platforms and cloud1 endure disappoint-
ments and performance degradation from extensive
movement surges brought about by both external (e.g.,
DDoS assaults) or internal (e.g operator errors, work-
load changes, routing misconfigurations)2 factors. Traffic
overload could have significant financial and bandwidth
availability implications for data providers. The multidi-
mensional surge in content delivery for end-users3 has
lead to blast of new content designs and an exponential
increment in the size and complexity4 on the advanced
content delivery network.

Content delivery is a fundamental idea to meet the
heterogeneous prerequisites of web clients5 utilizing dif-
ferent web access innovations6. Be that as it may, content
adaptation interferes along with the effectiveness of web
caching7.

Transparent Caching is a one of a kind innovation
that at the same time benefits a substance proprietor, net-
work operator, and in particular a broadband or remote
subscriber. Online video activity keeps on spiralling
upward every second. It works over a much more exten-
sive arrangement of over the top content and traffic8 (as
much as 75% of an provider subscriber broadband traf-
fic is video streams9 and document downloads10), it is

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 2

Transparent Proxy Cache Server using Raspberry Pi

implanted inside the carrier network and gives the pro-
vider control over what to store, when to store, and how
fast to quicken the delivery11. Transparent cache needs
to address the high demand of Internet content thirst as
could reasonably be expected12. It naturally ingests and
serves content as it gets to be well known and typically
does not require operator assistance to constantly alter
the system or the reserving answer for backing another
mainstream service13.

Transparent Caching does not require alteration
of any framework or program settings for the end user.
The execution advantages ought to be programmed as
the main proof of storing ought to be better end-to-end
execution to the client14. Deployed throughout a carrier
network, it will enhance endorsers’ experience and lessen
transporters’ peering costs15, yet just in the event that it
conveys the components and insight required to adjust
to continually changing client conduct and substance
designs, and above all, scales economically to tens or sev-
eral gigabits every second16.

2. Experimental Setup

Figure 1. Real-time hardware setup.

Figure 2. Block diagram of the real time set up.

The work is based on the process of converting the
Raspberry Pi as the Server while the Micro SD card on
the RPi acts as the cache and the smart phones acts as the
client. The monitoring of the cache is done as well as the
system testing is done by generating the traffic and check-
ing the sync of cache with the server and the client. The
whole implementation is shown in Figure 1 and Figure 2.

2.1 Server
The Raspberry Pi acts as the server for the system.
Raspberry Pi is a low-cost credit card sized computer
having chips and I/O connectors. The basic board with its
features is shown in Figure 3.

The particularities which make Raspberry Pi different
from other embedded boards are:

•	 Broadcom BCM2836 Arm7 Quad Core Processor
augmented Single Board Computer at 900 MHz

•	 1 GB RAM with 40 pin extended GPIO and 4 x
USB 2 ports

•	 4 pole Stereo output and Composite video port
output at 1080 P with Full size HDMI and CSI
camera port

•	 Micro SD port for loading your operating system
and storing data

•	 Micro USB power source
10/100 Ethernet Port to rapidly associate the

Raspberry Pi to Internet

Figure 3. Raspberry Pi.

The step to trigger the OS into raspberry Pi follows the
under-given sequence

Indian Journal of Science and Technology 3Vol 9 (44) | November 2016 | www.indjst.org

Anu Rose Jolly, M. Kalyan Chakravarthi, Naveen Kumar Jindal and Dinesh Birlasekaran

•	 Step 1. Booting the OS
•	 The OS booting follows a few steps:
•	 Step 2. Selecting the images
•	 The latest image file for the OS is downloaded

from raspberrypi.org/downloads.
•	 Step 3. Unzipping the image file
•	 7-zip supports the unzipping of the downloaded

image file.
•	 Step 4. Writing to Micro SD card
•	 SD card is mounted with the image file using the

Win32 Disk Imager software. The image and the
device are selected for writing the image. SD card
class determines the speed of the mounting pro-
cess.

•	 Step 5. Inserting SD card into RPi
•	 The SD card is inserted into RPi. On power on

the Rpi has the OS loaded.
•	 Step 6. Accessing RPi

There are 2 methodologies available to access the
Raspberry pi. Firstly the GUI can be launched from the
boot screen by using the command statrx and secondly
by using the putty terminal which is an open source emu-
lator having a serial console with network file transfer
application used to see the results.

2.2 SQUID and NMT
Squid is a Unix-based proxy server that reserves Internet
content more like a requestor than its origin point. Squid
underpins storing of a wide range of sorts of Web articles,
including those got to through HTTP and FTP. It caches
the often accessed Web pages, media documents and
other contents and quickens the response time as well as
reduces bandwidth congestion.

The squid analyser gives the statistics of data that
has been accessed through the cache. The squid user
access report gives the information based on the majorly
accessed sites, the sites and users, the elapsed time for a
request and produces the report for each user with the
period of access.

The squid config file is changed in order to act as a web
filtering. This increases the security defence, by enabling
the setup to successfully handle the virus’s threats and
attacks. The changes made in the config file are shown in
Figure 4.

The blocked URLs and the text to be displayed when
accessing restricted URLs are entered in .txt files to

respective folders to work as expected. The files are shown
as in Figure 5 and Figure 6.

Figure 4. The SQUID config file.

Figure 5. Text to be displayed.

Figure 6. Blocked URLs.

2.3 Client
The smart phone acts as the client which accesses the
server through the transparent cache. The smart phone
communicates through the Wi-Fi adapter connected to
the RPi. The configuration of the client occurs when the
Rpi is configured for the adapter to act as an Access Point.
This feature is enabled by using hostapd; configuration
shown in Figure 7, which is used for access points and
authentication servers.

Figure 7. Udhcpd config file.

The hosted cannot enable the IP to the adapter and
for the same we use udhcp and dnsmasq which acts as
a small DHCP server by enabling the range of accessible
IPs and enabling tethering on smart phones respectively.
The respective change in configuration and installations is
shown in Figure 8 and Figure 9.

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 4

Transparent Proxy Cache Server using Raspberry Pi

Figure 8. Hosted config file.

Figure 9. Dnsmsq installation.

The pi has to find the location of the config file from
the /etc/default/hostapd as shown in Figure 10.

The wpa_ supplicant file is edited as shown in Figure
11 for the required configuration of the Wi-Fi hotspot
which links the client to the TC. This file is used to exe-
cute the key arrangement with a WPA Authenticator and
it controls the IEEE 802.11 authentication of the wlan
driver.

Figure 10. Default hostapd file.

The setting up of communication between the clients
and the Wi-Fi requires NAT. For the same the following
Figure 12 has the steps leading to Figure 13.

Figure 11. Enabling authentication for the hotspot generated.

Figure 12. Starting IP forwarding on boot up.

Figure 13. Changes in sysctl config.

After all these changes the system is rebooted along
with service network being restarted. The present ifconfig
will be as in Figure 14.

Figure 14. If config file.
The after effect of the above configuration changes

and installations the Wi-Fi hotspot is enabled and so the
client can access it. The Figure 15 shows the Wi-Fi made
visible in the client.

Indian Journal of Science and Technology 5Vol 9 (44) | November 2016 | www.indjst.org

Anu Rose Jolly, M. Kalyan Chakravarthi, Naveen Kumar Jindal and Dinesh Birlasekaran

Figure 15. Wi-Fi created viewed in the client.

2.4 TC (Transparent Cache)
The SD card in the Raspberry Pi acts as the Cache in the
implemented system. The transparent caching enables
quickening of origin caching. This permits mezzanine
substance to be offloaded to a committed media server for
ensuing change to versatile bitrates for adaptive delivery.

A transparent cache has the features of multiservice
caching; automatically selection to popular content, its
transparent to both subscriber or the server and content
origin or the client, based on the operator settings and
can be controlled by the administrator.

2.5 TC Testing
To verify that each time the client tries to access the server
the request is sent to the cache and if it is a cache miss
then only forwarded to the server. No direct pull from the
server is made by the client. The log file is configured to
list the client trying to access the data and the mode in
which the data is pushed through the cache by using the
variables like TCP_MISS, TCP_HIT, TCP_REFRESH_
MODIFIED, TCP_REFRESH_UNMODIFIED. The log
files are shown as below in Figure 16.

2.6 Traffic Generation
Python, the high level programming language is used for
programming. The several libraries of python like requests
and urllib are used for the accessing of http requests and
Urls. The Urls can be called in loops for simple program-

ming while to create traffic they are to be accessed parallel
and for that to be implemented we use multi threading.
The Figure 17 shows the flowchart for the implementa-
tion.

Figure 16. Log file format.

Figure 17. Program Flow chart for traffic generation.

3. Results
By deploying the methodology proposed it can be made
sure that the data is obtained from the cache and the con-
tent delivery of the provider can be evaluated as well as
the betterment of the service can be done by looking at
the data hit rate. Figure 18 and 19 shows the report gener-
ated by the Squid analyzer. In the report the time taken
for data access can be viewed and it leads to a better note
that the cache hit rate can increase the data availability
and thus the providers can satisfy the upcoming online
traffic surge.

4. Future work
The work can be extended to have a continuous check of
the cache in every defined time instance and the probabil-
ity of cache hit be increased so that very little server access
is being done. The traffic generation can be extended by

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 6

Transparent Proxy Cache Server using Raspberry Pi

increasing the incoming content traffic and the resultant
outcomes in order leading to know the efficiency of the
system.

Figure 18. The User specific report with the elapsed time for
each site.

Figure 19. Report of the sites and users accesses it along with
the top no of sites being accessed.

5. Conclusion
The methodology can be a boon to the providers to handle
the increasing online traffic and so that they can handle
the online traffic surge. This work effectively gives a solu-
tion to control the hit rate to the server caused by traffic
surge. This can be implemented to upgrade the service
quality the providers give and to the customers the sat-
isfaction of quality of reception of the content delivered.

6. Acknowledgement
We would like to thank the VIT University and Nokia for
giving us such an opportunity to carry out this research
work and also for providing us the requisite resources and
infrastructure for carrying out the research. The results
of this work required a considerable measure of direction
and would thank my guides for the timely guidance and
suggestions which helped in the fulfilment of the work.

7. References
1.	 Wang Y, Zhang Y, Singh Y. Net fuse: Short-circuiting

traffic surges in the cloud. IEEE ICC - Next-Generation
Networking Symposium; 2013. p. 1-5.

2.	 Xu W, Wang F, Bhattacharyya S, Zhang Z. A real-time
network traffic profiling system. 37th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks. USA. 2007. p. 595-605.

3.	 A Study of the Impact of Network Traffic Pacing from
Network and End-User Perspectives. Available from: http://
www.nal.ics.es.osaka-u.ac.jp/personal/s-hanay/icccn11.
pdf. 2011

4.	 Jonckheere MTS, Nez-Queija RN, Prabhu B. Performance
analysis of traffic surges in multi-class communication net-
works. IEEE 22nd International Tele-traffic Congress; 2012.

5.	 Fudan CW, Fudan JW, Zeng J. Network traffic aware-
ness architecture for universal redundancy elimination.
International Conference on Electronic & Mechanical
Engineering and Information Technology; Harbin, China.
2011.

6.	 Bouchenak S, Cox A, Dropsho S, Mittal S, Waenepoel W.
Caching dynamic web content: Designing and analyzing
an aspect-oriented solution. Lecture Notes in Computer
Science. 2006; 4290:1-21.

7.	 Buchholz S, Schill A. Adaptation aware web caching:
Caching in the future pervasive web. Kommunikation in
Verteilten Systemen (KiVS) Part of the Series Informatik
Aktuell. 2003: 55-66.

8.	 Jia X, Li D, Du H. On optimal replication of data object at
hierarchical and transparent web proxies. IEEE Transactions
on Parallel and Distributed Systems. 2005; 16(8):673-85.

9.	 Nishimura S, Shimamura M, Koga H, Ikenaga T.
Transparent caching scheme on advanced relay nodes
for streaming services. International Conference on
Information Networking; Japan. 2012. p. 404-19.

10.	 Rohini G, Srinivasan A. Multi server based cloud-assisted
real-time translating for Http live streaming. Indian Journal
of Science and Technology. 2016 Jan; 9(3):1-5.

http://rd.springer.com/bookseries/558
http://rd.springer.com/bookseries/558
http://rd.springer.com/book/10.1007/978-3-642-55569-5
http://rd.springer.com/book/10.1007/978-3-642-55569-5
http://rd.springer.com/bookseries/2872
http://rd.springer.com/bookseries/2872
http://www.indjst.org/index.php/indjst/search/authors/view?firstName=G .&middleName=&lastName=Rohini&affiliation=Department of Information Technology, Adhiyamaan College of Engineering, Krishnagiri, Hosur %E2%80%93 635109,Tamil Nadu&country=IN
http://www.indjst.org/index.php/indjst/search/authors/view?firstName=A.&middleName=&lastName=Srinivasan&affiliation=Department of Computer Science and Engineering, MNM Jain Engineering College, Thorapakkam,Chennai - 600097, Tamil Nadu&country=IN

Indian Journal of Science and Technology 7Vol 9 (44) | November 2016 | www.indjst.org

Anu Rose Jolly, M. Kalyan Chakravarthi, Naveen Kumar Jindal and Dinesh Birlasekaran

11.	 Gao Y, Zhang Y, Zhou Y. A cache management strategy for
transparent computing storage system. Communications
in Computer and Information Science. 2012; 320:651-8.

12.	 Dhomeja LS, Malkani YA, Shaikh AA, Keerio A. Transparent
caching of virtual stubs for Improved performance in ubiq-
uitous environments. International Journal of UbiComp.
2011; 2(4):1-14.

13.	 Lenon J, Gardenghi C, Augusto M, Bardi GA. An authenti-
cation middleware for squid proxy-cache: A single sign-on
approach. 12th International Conference on Computational
Science and its Applications; 2012. p. 138-41.

14.	 Transparent Distributed Web Caching with Minimum
Expected Response Time. 2003. Available from: http://
www.nlc-bnc.ca/obj/s4/f2/dsk3/ftp04/MQ65661.pdf

15.	 Bouras C, Konidaris A, Kostoulas D. Predictive prefetch-
ing on the web and its potential impact in the wide
area. World Wide Web. 2004 Jun; 7(2):143-79.

16.	 Kalarani S, Uma GV. Improving the efficiency of retrieved
result through transparent proxy cache Server. 4th
International Conference on Computing, Communications
and Networking Technologies; India. 2013. p. 1-8.

http://rd.springer.com/bookseries/7899
http://rd.springer.com/bookseries/7899

