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ABSTRACT 

The present article purposes to investigate the solute dispersion through an annular pipe in the presence of 

heterogeneous chemical reactions among the species and wall of the annulus. The solute is considered to 

experience a kinetic reversible phase exchange with the inner wall layer and irreversible absorption into the 

wall. Two kinds of oscillatory flow (Poiseuille and Couette flow) are considered in order to track the complex 

interactions between the velocity distributions and the reaction parameters. The method of moments as 

proposed by Aris-Barton is used to determine the apparent dispersion coefficient. The moment equations has 

been solved by using a standard finite difference implicit scheme, valid for small as well as large times. 

Dispersion coefficient due to the combined effect of reversible and irreversible reactions has been discussed 

in a variety of flow situations. Dispersion coefficient may be enhanced owing to the reversible and 

irreversible heterogeneous reactions in the boundary. On the basis of flow characteristics, radius ratio 

provides a mixed behaviour of the dispersion coefficient. Dimensionless mass proves to be an increasing 

function of reversible and irreversible boundary reaction parameters. 

Keywords: Dispersion coefficient; Reversible reaction; Irreversible reaction; Phase exchange; Damköhler 

number. 

NOMENCLATURE 

D  molecular diffusivity 

cD apparent dispersion coefficient 

Da Damköhler number 

i  time index during navigation 

j space index  

P  Poiseuille number  

Pe Peclet number 

Q  mobile phase concentration 

Qs immobile phase concentration   

r  radial coordinate 

ir  internal radius  

or external radius  

Sc Schmidt number 

t  time 

u axial velocity

2  skewness 

3  kurtosis 

z  axial coordinate 

 kinematic viscosity

p frequency of pressure pulsation

w  frequency of wall oscillation

  irreversible reaction rate constant
  Dirac delta function

p amplitude of pressure pulsation

w amplitude of wall oscillation

q q-th order central moment

  phase exchange rate 

  density 

  aspect ratio  

1. INTRODUCTION

In solute transport processes, the dispersion is one 

of the mechanisms which is used to understand the 

transport of substances in a flowing stream. 

Because of its extensive applications in various 

filed of science and technology, the study of 

longitudinal dispersion of tracer is of considerable 

interest to the scientific community. Transport in 

presence of wall reactions is getting more attention 
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since it is essential to numerous industrial and 

physiological circumstances, e.g., chromatography, 

electrophoresis, human arteries, flow through 

fractures etc. The behaviour of the dispersion 

coefficient is significantly influenced by the 

pulsatile nature of stream, particularly, when mean 

pressure gradient is smaller than the amplitude of 

the pulsating pressure gradient. 

Taylor (1953) was the pioneer who carried out the 

first fundamental study on dispersion revealing the 

fact that, rate of broadening of species is due to the 

joint interactions among radial diffusion and 

velocity shear in the axial direction. Aris (1956) 

considered longitudinal diffusion for extension of  

Taylor's theory and developed the celebrated 

`method of moments' to examine the response of the 

statistical varience for large times. Barton (1983) 

then detect  certain errors in Aris’s  method of 

moments and established a new approach known as 

Aris-Barton method of moments which is true  for 

all time. 

The study on solute dispersion in a time-dependent 

Poiseuille and Couette flows have been covered by 

assuming pressure gradient fluctuation that can alter 

the flow  (Aris ( 1960); Mazumder and Das (1992);  

Sarkar and Jayaraman (2004)), whereas some have 

made the periodic movement of the boundary wall 

responsible for the flow (Bandyopadhyay and 

Mazumder (1999), Paul (2011)). Using self-

developed derivative expansion method, 

Sankarasubramanian and Gill (1973) studied the 

dispersion of solute under catalytic wall reaction. In 

a pulsatile flow through annulus, the consequences 

of wall absorption on dispersion has been discussed 

by Sarkar and Jayaraman (2004); Mazumder and 

Mondal (2005).  Further more, they have 

highlighted the application to their model in 

catheterized artery. A solution of convection-

diffusion equation in a two immiscible viscous fluid 

flowing between two parallel plates under chemical 

reaction has been derived analytically by Kumar, 

Umavathi and Basavaraj (2012). Utilizing a singular 

perturbation technique, the solute transport 

(reactive) via Newtonian fluid flowing across a thin 

or a long curved pipe has been studied by Marušić-
Paloka and Pažanin (2011). In a subsequent work of 

Pažanin (2013) also discussed the same under the 

consideration of a Micropolar fluid flowing through 

a circular pipe. In solute diffusion, Mikelić, 
Devigne and van Duijn (2006) investigated the 

dispersion in a model flow through a semi-infinite 

two-dimensional channel, for large Pe clet  and 

Damkohler  numbers. Rosencrans (1997) worked 

on Taylor dispersion in a curved channel and 

proposed that the effective diffusion can be 

minimalized by the consideration of curvature 

effects. Also, if we assume a straight channel 

boundary, it will increase the value of effective 

diffusion. By extending  homogenization technique, 

Wu and Chen (2014) studied the transverse 

variation of concentration for the scalar transport 

along a straight pipe. In a recent work of Wu, Fu 

and Wang, (2016), the configuration of the 

comprehensive spatial concentration distribution 

has been appropriately considered and it is reported 

that instead of the flat cross-sections, solute 

concentration develops uniformly dispersed across a 

family of fixed curved transverse surfaces. However 

these articles were commonly restricted only with 

first-order irreversible reactions. Using 

homogenization technique, Ng and Bai (2005) 

studied the transport of a reactive material under the 

presence of reversible sorptive phase exchange at 

the boundary of parallel plates where the flow 

pulsation occurred due to movement of upper plate. 

Studies exist in the literature where irreversible and 

reversible boundary reactions are considered while 

discussing the dispersion process ( Ng (2006);  Ng 

and Rudraiah, (2008)). 

More specifically, the present article considers the 

effect of pipe’s annularity and flow pulsation to 

explore the mechanism of dispersion by the 

combined impact due to kinetic reversible phase 

exchange as well as irreversible heterogeneous 

reactions between the species and inner wall. The 

prime scope of the present work is to make a 

comparative study between various kinds of 

reactions and flows which are of great importance 

in the spreading of tracers in environmental and 

biological processes.  

2. THE PROBLEM UNDER 

CONSIDERATION 

An incompressible viscous fluid is supposed to flow 

through an annular pipe having radii denoted as a  

and b ( )a b , where the flow is considered 

unsteady, fully developed, laminar and axi-

symmetric. The geometry of the annulus is fixed by 

its radius ratio  
b

a

 
 
 

 whereas its hydraulic 

diameter 2( )d a b   determines the region of 

flow.  Using a cylindrical coordinate system, the 

geometry of the annulus as depicted in Fig. 1, 

which indicates that radial and axial coordinates are 

represented by r and z respectively. The bars over 

each quantities meaning that they are dimensional.  

 

z

r

b

a
 

Fig. 1. Schematic diagram of the setup under 

consideration. 

 

In this investigation the aspect ratio is infinite 

because of the infinite axial extent of the system 

which is also a main reason for longitudinal 

dispersion. Thus the independence of velocity, u , 

of z  and   is confirmed. 

Following Schlichting (1979), the momentum 

equation which satisfies the velocity distribution in 

the longitudinal direction is, 
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1 1u p u
r

t z r r r



            

    (1) 

where   is the density,   is the kinematic 

viscosity and p  represents fluid pressure 

respectively.  

As dispersion is known to largely influence by the 

flow patterns, our aim is to capture the complex 

dependency between the dispersion coefficient and 

the reaction parameters in a variety of flow 

situations such as Poiseuille and Couette flows 

respectively. 

2.1   Convection-Diffusion Equation 

We have assumed that a Newtonian fluid is flowing 

through the annular gap of a pipe, also a chemical 

species is suspended into the solvent which is 

totally miscible. The species are involved with two 

different kinds of reactions, viz., kinetic reversible 

phase exchange and irreversible absorption at inner 

boundary of annulus. It has been observed that 

some part of substances stick to the wall of tube 

while the remaining particles flow along with fluid. 

Hence to recognize the type of chemical substance, 

two phases are considered in the modelling of 

species: mobile phase and immobile phase. Species 

that flows with fluid is known as mobile phase and 

that which is fixed at the wall is known as immobile 

phase. Let the Q  is taken as mobile phase 

concentration and the concentration of the immobile 

phase be sQ . If they are in equilibrium state, 

possess a constant ratio which is termed as partition 

coefficient, i.e., 

sQ

Q
   (2) 

where   is known as partition coefficient or a 

chemical specific constant. If it is impossible to 

reach the equilibrium state, the following first-order 

kinetics describes the exchange of the two phases 

(Ng (2006); Ng and Rudraiah, (2008)): 

( )s
s

Q
K Q Q

t


  


 

(3) 

here K  is rate constant of  reversible reaction. 

The transport equation that governs the 

concentration ( , , )Q t r z  is  

2

2
( , )

Q Q Q D Q
u r t D r

t z r r rz

     
         

 
(4) 

where D  considered as constant molecular 

diffusivity of the solute. 

The initial condition is supposed that 

(0, , ) ( ) ( ),Q r z G r z b r a                    (5) 

The boundary conditions for the above transport 

equation is given by (Ng (2006); Ng and Rudraiah, 

(2008)) 

( ) ats
s

QQ
D Q K Q Q r b

r t


       

 
  (6) 

0      at
Q

r a
r


 


                                 (7) 

where ( )G r  taken as function of r , ( )z  

considered as Dirac delta function. Eq.(6) represents 

absorbing and reflecting boundary conditions at the 

inner boundary of the annulus such that both the 

processes (wall absorption and retention) are not 

dependent on each other and it is possible to 

prescribed their rates individually. If we assume the 

nature of the chemical species is of inert in type w.r.t 

the wall material ( 0)   and there is no storage on 

the inner wall ( 0)sQ  , the above system reduces to 

the conventional convection-diffusion equation with 

simple impermeable boundary conditions, a case 

extensively studied in the literature ( Mazumder and 

Mondal (2005); Paul and  Mazumder (2008)). 

The dimensionless quantities proposed for the 

present problem are listed below.   

0 0

2

2

, , , ,

, , ,

, ,

s
s

QQ r z
Q Q r z

Q dQ d d

t ud Kd
t u Da

Dd

d
Sc

D d D







    



   

 

     


            (8) 

Utilizing Eq. (8), the above system of equations can 

be rewritten as, 

2

2

1 1
( , )

Q Q Q
u r t r

t z

Q

Sc r r r z

                 
 

(9) 

with the conditions 

o(0, , ) ( ) ( ), ( )iQ r z G r z r r r    (10) 

( ) at is

Q
Q Da Q Q r r

r


      


 
(11) 

o0 at
Q

r r
r


 


 

(12) 

Here o ( 1 / (1 ))r    and ( / (1 ))ir    are the 

outer and inner radius of the annular pipe in 

dimensionless form. Sc is known as Schmidt 

number measures the dominance among viscous 

diffusion and molecular diffusion in mass transfer 

processes. 

The concentration of the immobile phase, sQ  

mentioned in Eq. (11) can be obtained from 

( , ) [ ( , , ) ( , )]s i s

Da
Q z t Q z r t Q z t

t Sc


  


 

(13) 

with ( ,0) 0s zQ  . 

The parameters aD ,   and  represent the 
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heterogeneous reactions at the inner boundary of the 

annular tube. They respectively are the Damkohler  

number ( when 1Da  , it indicates that rate of 

reaction is higher than rate of diffusion),  

irreversible absorption parameter (if 1  , 

depletion of huge portion of mass at very short 

duration) and phase partition ratio or retention 

parameter (if 1  , indicates that partition occur 

more quickly within phases while reverse will be 

considered for 1  ).  

2.2   Poiseuille Flow 

Let us consider a pulsatile flow due to the periodic 

pressure gradient *1
1 Re( )pi t

p

p
P e

z




         

 , 

and no slip condition holds  ( , ) ( , ) 0u a t u b t   

at walls of the tube, the velocity  (sa )( y)pu u   in 

dimensionless form is given by, 

( ) ( , )p ps pou u r u r t   (14) 

where

2 2 2

2 2

log
( ) ( )

4 4 log( / )

                         ( log log )
4log( / )

ps o i
o i

i o o i
o i

P P r
u r r r r

r r

P
r r r r

r r

    


  

 
2

1 0 2 02

( , )

Re ( ) ( ) 1 p

po

i tp
p p

p

u r t

P
i C J i i r C Y i i r e

 




     



with 

0 0
1

0 0 0 0

( ) ( )

( ) ( ) ( ) ( )

p o p i

p i p o p o p i

Y i i r Y i i r
C

J i i r Y i i r J i i r Y i i r

 

   






 

0 0
2

0 0 0 0

( ) ( )

( ) ( ) ( ) ( )

p i p o

p i p o p o p i

J i i r J i i r
C

J i i r Y i i r J i i r Y i i r

 

   






 1i   ; p is the amplitude and 
p

p d





  is 

the frequency of pressure pulsation. 

2.3   Couette Flow 

Let us consider a pulsatile flow due to the axial 

movement of outer wall of the annular pipe 

 ( , ) 1 Re( ) , ( , ) 0wi t
wu a t U e u b t

     and the 

pressure gradient is constant *1 p
P

z
 
   

, the 

flow profile in dimensionless form is given by 

( ) ( , )w ws wou u r u r t   (15) 

where 

2 2
2 ( )log

( )
4 4 log( / )

o i
ws

o i

r r rP P
u r r

r r


   

 

2 2log log log( / )
     

4 log( / ) log( / )

i o o i e i

o i o i

r r r r R r rP

r r r r


  

  2

1 0 2 0( , ) Re ( ) ( ) wi t
wo w wu r t C J i i r C Y i i r e

     
with 

0
1

0 0 0 0

( )

( ) ( ) ( ) ( )

w w i

w i w o w o w i

Y i i r
C

J i i r Y i i r J i i r Y i i r


   






0
2

0 0 0 0

( )

( ) ( ) ( ) ( )

w w i

w i w o w o w i

J i i r
C

J i i r Y i i r J i i r Y i i r


   







 

U , represents the steady component of velocity 

due to the movement of the outer wall, w  is the 

amplitude and w
w d




  is the frequency of the 

wall oscillation. 
3 *

2

d P
P


  is the Poiseuille number 

and e

ud
R


  is the Reynolds number. ‘Re (.)’ 

indicates the real part of a complex number. 

3. MOMENT EQUATIONS 

 Following Aris (1956), the thq moment of solute 

distribution (within a mobile phase) in the 

longitudinal direction as 

( ) ( , ) ( , , )qq
t r z Q t r z dzQ




  

 

(16) 

Also the thq   moment for solute distribution 

(within an immobile phase) can be defined as 

( ) ( ) ( , )qq
s st z Q z t dzQ




                               (17) 

Using Eqs. (16) and (17), in Eqs. (9)- (13) become  

( ) ( )
( 1)

( 2)

1 1
( , )

                                            )
1

( 1

q q
q

q

Q Q
r u r t

t Sc r r r
q

Q

Q

q q
Sc





   
       



 

 

(18) 

With 

( )

( )
( ) ( ) ( )

( )

o

( ) for  q 0
(0, )

0 f

 

 or  q 0

[ ] at 

0 at ,

q

q

i
q q q

s

q

G r
r

Q
Q Da Q Q r r

r

Q
r

Q

r
r


   

        
 


  

   
(19) 

It will be apparent that ( ) 1G r   for oir r r  . 

In the immobile phase the equation for the moments 

of the mass distribution is 
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( ) ( ) ( )d
( , )

d

q q q
s si

Da
Q Q t r Q

t Sc
      

 

(20) 

with ( ) (0) 0.q
sQ    

An angle bracket is employed to symbolize the 

averaging of the cross-sectional area of annulus, as 

o( ) ( )

2 2
o

2
( ) ( , )

ii

r
q q

r
t rQ t r dr

r
Q

r


   
 

(21) 

Now with the help of Eq. (21), the integral moment 

Eqs. (18) and (19) can take the form as 

 

( ) ( )

2 2
o

( ) ( )

( 1) ( 2)

2 d 1
( , )

d

           ( , ) ( )

1
               q ( , ) ( 1)

i
i

i

i

q q

q q
s

q q

r
Q t r

t Sc r r

Da Q t r Q t

u r t Q q q
Sc

Q

Q 

 

   

 

  (22) 

with,  

( ) (0) 1 for  q 0

               0 for  q 0

q
Q  

 
 

 

(23) 

The distribution of solute concentration can be 

describe with respect to the central moments as 

follows 

o

o

2

0

2

0

( ) d d d

( )

d d d

i

i

r

q
r

r

r

q
g Qr z z r z

t

r rQ z



















  

  
        (24) 

Where 

(1)

(0)

d

d
g

z v
z

v

QQ

Q Q
   
  

 

 

is the first moment or centroid of the solute 

distribution. (0)Q  represents the actual amount of  

solute in the bulk flow. 

For values   q 2,3 and 4  in Eq. (24), the second, 

third and fourth order central moments are:  

(2)

2
2 (0)

(3)

3
3 2(0)

(4)

2 4
4 3 2(0)

( ) ,

( ) 3 , .

( ) 4 6 ,

g

g g

g g g

Q

Q

Q

t z

t z z

t

Q

z z z
Q

Q



 

  


  


   



   



      (25) 

When analyzing the phenomena of dispersion, Aris 

(1956) revealed the physical significance of an 

integral moments having concentration  mentioned 

in Eq.(25). The integral moment Eq.(18),  

represents sequence of inhomogeneous equations 

for 0,1,2,3,......;q   and can be solved for 

sufficiently excessive values of q  for the 

distribution to be developed at any degree of 

accuracy. As finally distribution leads to normality 

so the first two moments are eventually enough for 

the description of distribution where the third and 

fourth moments should be zero. First three and four 

moments provide very significant information about 

the progress of dispersion. The complete nature of 

the slug can be efficiently described by those 

integral moments:  

The zeroth order moment provides the whole area 

under the distribution curve, which in other way 

relating to the overall mass of the mobile phase. 

Observing at the initially located source, first order 

moment is useful to find the position of the center 

of mass distribution. Among them the variance or 

second order central moment ( 2 ) about mean is 

the most important since the rate of change of 2  

with respect to time is same as dispersion 

coefficient. According to Aris (1956), the form of 

the apparent dispersion coefficient cD proposed as 

2
c

d
D

dt


                                               (26) 

The coefficient of skewness 

3

2
2 3 2( / )    and 

kurtosis 2
3 4 2( / 3)     are also essential for 

finding the solution of mean concentration 

distribution in the axial direction. 

4. NUMERICAL SOLUTION 

A standard finite difference method (FDM) 

constructed on Crank-Nicolson implicit scheme has 

been implemented for the solution of differential 

Eqs. (18) and (20) with initial and boundary 

conditions in Eq. (19) as of difficulties in moment 

equation for 1q  . The entire width of the annulus 

is divided into ( 1)M   equal slice of mesh size r , 

denoted by grid point j . Thus the inner and outer 

walls of the annulus are addressed by 1j   and 

j M  individually, i.e., ijr r ( 1)j r   . The 

time is indexed by the grid point i  where each of 

the step size is assumed to be t . The general form 

of time discretization is ( 1)it t i    , hence the 

initial time 0t   is found for fixed 1i  . ( ) ( , )q
Q i j  

represent the particular values of  ( )q
Q  at the grid 

points i  and j  respectively.  The proposed FDM 

scheme reduce the differential equations into a tri-

diagonal coefficient matrices as: 

( ) ( )

( )

( 1, 1) ( 1, )

                                   ( 1, 1) ,

q q
j j

q
j j

P i j Q i j

R i j S

Q Q

Q

    

  
 

 

(27) 

 where jP , jQ , jR  and jS  are termed as element 

of  matrix. 



S. Debnath et al. / JAFM, Vol. 11, No. 2, pp. 405-417, 2018.  

 

410 

The finite difference form of the initial condition is, 

( ) (1, ) 1 for 0

0 for 0

q
q

q

jQ  
 

 
 

(28) 

and that of boundary conditions are 

( ) ( )

( ) ( )

( ) ( )

( 1,0) ( 1,2) 2 ( )

( 1,1) 2 ( 1),

(at the surface of the inner cylinder)

( 1, 1) ( 1, 1),

(at the surface of the outer  cylinde

 

r)

q q

q q
s

q q

i Q i r Da

i rDaQ i

i M Q i M

Q

Q

Q

       

   

    

   (29) 

where ( ) ( )q
sQ i  can be computed from the relation 

( ) ( )

( )

( ) ( 1,1)

( 1)

1

q q
s

q
s

Da
iQ t Q i

Sc
i

Da
t

S

Q

c

       
    

   (30) 

with the initial condition ( ) (0) 0q
sQ  . 

Utilizing the Thomas algorithm (Anderson, 

Tannehill and Pletcher (1984)), the solution of 

Eqs. (27) - (30) has been done by means of a 

MATLAB code. The computation steps are as: (i) 

From Eqs. (14) and (15), the velocity distributions 

( , )u r t of Poiseuille and Couette flows are 

estimated first. (ii) utilizing the results of ( , )u r t  

obtained from the previous step at every grids, the 

solution of the concentration ( )q
Q  is computed 

from the moment Eq. (18). (iii) this step will find 

the solutions of ( )q
sQ from Eq. (20) as we already 

know the values of ( ).q
Q  and (iv) lastly, using 

Simpson's one-third rule, cross sectional average 

( )q
Q  is calculated from Eq. (21)  as the 

solutions of ( , )u r t , ( )q
Q  and ( )q

sQ are all known  

at the matching grid positions.  

Numerical computations have been executed for 

steady, oscillatory and combined flow situations 

by their individual effect on dispersion process 

under the variation of different parameters and 

velocity distributions. We know the Crank-

Nicolson implicit scheme is unconditionally 

stable for arbitrarily any fixed values 

of 2/ ( )t r  , also suitably small mesh 

size o( ( ) / ( 1))ir r r M     of spatial and 

temporal ( 0.00001)t   discretization have been 

confirmed an accuracy of 510  in the results.  

In  all  the  cases  we  have  taken  5 ,p w p     

31, 1, 0.5, 10 .w Re P Sc       Both the time 

and space intervals are needed to be small to 

observe the pulsatile behavior in dispersion and to 

maintain the accuracy of the outcomes.  

5. DISTRIBUTIONS OF MEAN 

CONCENTRATION 

According to very popular works of Taylor (1953), 

for a shear-dependent flow, the distribution of 

solute concentration is centered on a point which 

travels with the mean speed of the flow. Taylor 

dispersion process describes an asymptotic stage for 

transport of solute across transversely restricted 

flow region. The mean concentration distribution in 

the longitudinal direction forms a Gaussian like 

distribution during the transport process. When the 

major effect is convection in comparison to 

dispersion, it is estimated that resulting curve will 

considered nearly Gaussian (Levenspiel and Smith 

(1957)) then the concentration might be 

characterized by way of series in Hermite 

polynomials. The Aris’s method of moment is 

useful for finding the central moments, again using 

higher order central moments it is likely to 

approximate the average axial concentration 

distribution Qm(z,t) of tracer across the flow region 

via help of Hermite polynomial representation of 

non-Gaussian curves (Mehta, Merson and McCoy 

(1974)). The cross-sectional mean concentration 

( , )mQ z t is defined as 

2(0)

0

( , ) ( ) ( ) ( )m n n

n

z t t e aQ tQ H





             (31) 

where 

(1)

2 (0)
( ) / 2 ,g g

Q
z

Q
z z     and iH  

represents the Hermite polynomial and is satisfying 

the recurrence relation as 

1 1( ) 2 ( ) 2 ( ), 0,1,2,i i iH H iH i           

and 0( ) 1.0H     

The coefficients ia 's are 

 1/2
0 2 1 2

1/2
3 0 2 4 0 3

1 / 2 , 0,

             2 / 24, / 96

a a a

a a a a



 

  

 
 

 

(32) 

Thus, utilizing the values of various central 

moments obtained from Eq. (25), the mean 

concentration distribution of chemical species in the 

axial direction can be estimated from Eq. (31) at 

any fixed time. 

6. RESULTS AND DISCUSSION 

To study the longitudinal dispersion of reactive 

material flowing through an annular pipe, a 

pulsatile nature of Poiseuille and Couette flows are 

considered due to its versatile applications. In this 

article, a dispersion study is carried out using the 

Aris-Barton’s methodology and the following cases 

were examined to verify the accuracy of the 

numerical scheme: 

Case-I: If 0Da  , the present problem can be 

reduced to  the study of S. Paul (2011) when the 

flow unsteadiness is due to the upper wall 

oscillation. To this end, the model responses outlaid 

in Fig. 2 displays complete agreement with those 

obtained in the study of solute dispersion of S. Paul  
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Fig. 2. Variation of the dispersion coefficient cD  with time when 0Da  , 0.1  , 10w  , (a) for 

small times; (b) for large times. 

 

 

(2011) without reversible reaction. (see Figs. 2(a, b) 

totally coincide with Figs. 7(a, b) in (S. Paul (2011) 

when irreversible reaction parameter value is 0 ).  

Case-II: If the inner boundary of annular pipe is 

inert, the present model becomes a circular pipe 

model when 0  , a case studied by Mazumder 

and Das (1992) under time dependent poiseuille 

flow. Figure 3 shows the axial distribution of mean 

concentration due to combined flow when 0  , 

0Da   and 0  , etc., qualitatively agrees the 

result of Mazumder and Das (1992) for pipe flow, 

such that, the increase of dispersion times lead to 

decrease the peak of the distribution. However, the 

quantitative differences realized in Fig. 3 is 

attributed to differing normalization scales adopted 

in the present study. 

 

−0.2 −0.1 0 0.1 0.2
0

5

10

15

20

z − zg

Q
m

 

 

 0.3

 0.4

t = 0.1

 0.2

 
Fig. 3. Axial distribution of mean concentration 

with time for a combined flows under periodic 

pressure gradient when  Da = 0 , Γ = 0 , 

pα = 1 , vp=1.5, and η = 0 . 

 

Variation of dispersion coefficient with respect to 

time is shown in Fig. 4 for a variety of steady flows 

with different values of the reaction parameters. A 

wide range of time is considered to track the 

asymptotic approachment of the dispersion 

coefficient. As already mentioned earlier two types 

of flow patterns ((i) flow due to pressure gradient, 

(ii) flow due to the axial movement of the outer 

cylinder and two types of reaction parameters 

((i) Damkohler number Da , and (ii) irreversible 

absorption parameter   have been considered for 

the present study giving rise to an array of figures 

with two rows and two columns. Profiles in the first 

column of Fig. 4 are for flow because of pressure 

gradient while next column describes nature of 

dispersion coefficient when the flow is due to 

movement of the upper wall of the annulus 

respectively. The two successive rows explain 

respectively the effects of   and Da  on the 

dispersion coefficient in various flow circumstances 

as mentioned above. 

From Fig. 4, initially, dispersion coefficient is 

found to increase with time in a significant manner 

though as time goes the increments get slower in 

any flow situation. Flow due to the steady 

component of wall oscillation, Figs. 4(b, d) show 

that dispersion coefficient increases with respect to 

both reversible and irreversible reaction parameters. 

It is remarkable to note that for flow driven by 

pressure gradient, cD  is increasing with  and Da  

for times 12t  and 10t  respectively. Again, after 

that critical times, for both reversible and 

irreversible boundary reactions, the increase of 

reaction parameters may lead to reduce the value of 

the dispersion coefficient. [This fact can be realized 

further from Fig. 10] 

For the case of purely oscillatory flow, time 

assessment of dispersion coefficient is shown in 

Figs. 5, and 6 for small and large time respectively. 

During the initial time, dispersion coefficient with 

the variation of reaction parameters is found to be 

irrespective of the flow situations (Fig. 5).  It has 

shown in Fig. 5, in any flow situation the increase 

of reaction parameters that are associated with the 

heterogeneous irreversible and reversible reactions 

(i.e.,  and Da ) on the inner tube wall may lead to 

increase the dispersion coefficient. It is worthy to 

note that the response of dispersion coefficient with 

reaction parameter should not considered as final, 

situation may be different depending on other factor 

such as duration of time, reaction strength, radius 

ratio etc. This fact can be partially realized later 

from Fig. 9. The gradual development of a second 

peak in the dispersion curve is noticeable from any 

of the Fig. 5. For pressure driven flow the peak is 

almost suppressed; whereas it is partially expressed 

in outer wall driven flow. When the time is large,  
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Fig. 5. At small times, variation of the dispersion coefficient against time for purely oscillatory flow 

for different reaction parameters and velocity profiles. Other descriptions are as in Fig. 4. 

 

somewhat similar qualitative effects of different 

reaction parameters on the dispersion coefficient 

can be seen from Fig. 6. 

For combined flow, the response of dispersion 

coefficient with time (small and large) are displayed 

in Figs.7 and 8 separately. The arrangement of the  
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Fig. 4. For steady flow, variation of the dispersion coefficient with time for two different kinds of 

reaction parameters and also for two different kinds of flow. (a, b) Effect of heterogeneous 

irreversible reaction (  ) when 2Da  , (c, d) effect of heterogeneous reversible 

reaction ( Da ) when 3  . (a, c) For flow driven by pressure gradient, (b, d)  

for flow driven by axial motion of the outer wall of the annulus. 
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Fig. 6. Same as Fig. 5, but at large times. 
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Fig. 7. For combined flow, variation of the dispersion coefficient against time at small times for 

different reaction parameters and velocity profiles. Other descriptions are as in Fig. 4. 

 

figures is same as the previous figures. It can be 

seen from Fig. 7 that, similar to the case of purely 

oscillatory flow, in this case also dispersion 

coefficient indicates an increasing trend with the 

growth of reaction parameters relating to boundary 

reactions. More vivid effects of the reaction 

parameters can be noted in Fig. 8, though the 

qualitative nature of the dispersion coefficient 

remains the same as in initial time (Fig. 7) under the 

variation of the reaction parameters. Also, 

responses of the dispersion coefficient seem to be 

more sensitive at large time, i.e., at large time 

effects are more pronounced. 

The effect of radius ratio   on solute dispersion 

has been demonstrated in Fig. 9 when the combined 

effect of both steady and oscillatory velocity 

components are assumed. Fig. 9(a) is due to  
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Fig. 9. Temporal variation of dispersion coefficient cD for various values of radius ratio   under 

different types of unsteady flow situations where unsteadiness is caused by the (a) sole oscillation of 

the pressure gradient and (b) sole oscillation of the outer wall of annular tube. when 3   and 

Da = 2.  
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Fig. 10. Flow driven by steady pressure gradient, variation of the dispersion coefficient with time for 

two different kinds of reaction parameters, (a): effect of heterogeneous irreversible reaction ( ) 

when 2Da  , (b): effect of heterogeneous reversible reaction  ( Da ) when 3.   
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Fig. 8. Same as Fig. 7 but at large times. 
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Fig. 11. (a, b) Dimensionless mass as a function of heterogeneous irreversible reaction parameter   

against time, (c, d) dimensionless mass for the reversible reaction parameter Da  against time. 

Other descriptions are as in Fig. 4. 

 

periodic pressure gradient such that larger values of 

  makes a significant decrements on cD . Also 

large values of   leads to increase the value of 

dispersion coefficient when the outer wall 

movement of an annular pipe is the reason of flow 

pulsation (Fig. 9(b)). Hence from the present model, 

the relation among cD  and  are completely 

depending on the flow geometry.  

When 0q  , Eq. (22) becomes, 

(0) (0)

2 2

21
( , , , ,...) ( , )    i

i

o i

r
t Da t r dt

Sc r
Q Q

r
   

    

(0) (0)

2 2

21
( , ) ( )i

i s

o i

r
Da t r dt t dt

Sc r
Q

r
Q        

(33)   

Here (0) ( , )it rQ  and (0) ( )sQ t  can be found from the 

solution of Eqs.(18) and (20) respectively. Eq. (33) 

signifies the actual mass of the reactive species 

where the 1st and 2nd term of the right side of 

Eq.(33) represent  the effects of irreversible 

boundary absorption and phase exchange 

respectively. When 0Da   , (0) 1Q  , 

representing total mass in the annular gap is 

constant with time. It can be seen from Fig.11 that 

dimensionless mass 

(0)

(0)

( , ,...)

( ,0,...)Q

Q t

t


 and 

(0)

(0)

( , ,...)

( ,0,...)

t DaQ

tQ
 are increasing functions of the 

corresponding parameter and time t . 

For steady flow, the mean of the concentration 

distribution in the axial direction has been shown in 

Fig. 12. Flow driven by pressure gradient, the 

concentration curves head may rise with the 

augmentation of the both  and Da , the respective 

irreversible and reversible parameters for 

heterogeneous reactions at the inner boundary. An 

opposite scenario has been observed from the flow 

driven by the axial motion of the outer cylinder, 

such as, stronger  or Da  both lead to a fall of the 

peak of the concentration profile. 

7. CONCLUSIONS 

The paper aims to investigate the effect of 

heterogeneous reaction on the dispersion coefficient 

through an annulus. As we know the flow 

conditions may significantly control the dispersion 

process, both Poiseuille and Couette flow are taken 

into consideration for analysis. The coupled effects 

of the reaction parameters on the dispersion 

coefficient are examined in two different flow 

conditions. 

The study disclose the following attributes of 

transport of species: 

i. For all times, cD , on account of steady part of 

outer wall oscillation is an increasing function 

of both   and Da  respectively. 

ii. At small time, cD , owing to steady part of 

periodic pressure gradient is an increasing 

function of both   and Da  respectively.  
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Fig. 12. Axial distribution of mean concentration for two different kinds of steady flows with 

different values of the reaction parameters at a fixed time, 5. t   Other descriptions are as in Fig. 4. 

 

However, after that critical time cD  is 

decreased by the reaction parameters. 

iii. In any flow situation dispersion coefficient due 

to purely oscillatory as well as combined flows 

are increased by heterogeneous irreversible and 

reversible reactions at the inner tube wall. 

iv. In a Poiseuille flow, cD is decreased by 

increasing radius ratio of the annular tube which 

in contrast of the results obtained from Couette 

flow. 

v. In a Couette flow, both  or Da  lead to a fall 

of the head of the concentration profile. 

However, a reverse effect has been captured for 

Poiseuille flow. 
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