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Abstract 
The decycling number of a graph G , denoted by )(G , is the smallest number of vertices that can 

be deleted from G  so that the resultant graph contains no cycles. The cycle packing number of a graph G  
denoted by )(Gc , is the maximum number of vertex disjoint cycles in G . It is clear that )()( GGc . We 
find certain networks for which decycling number equals the cycle packing number.  
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sibiling tree; X -tree; l -siblings tree; l -complete binary tree; k -dimensional generalised binary fat tree; 
 

1  Introduction 

 Let ),( EVG  be a simple graph with vertex set )(GV  and edge set )(GE . A set of vertices of G  
whose removal leaves an acyclic graph is referred to as a decycling set or a feedback vertex set of G . The 
minimum cardinality of the decycling sets in G  is defined to be the decycling number and is denoted by 

)(G . Determining the decycling number of a graph is equivalent to finding the greatest order of an induced 
forest in G . The problem of determining the decycling number )(G  of a network G  is NP-complete even 
for planar graphs, bipartite graphs and perfect graphs1 . A minimum decycling set in a Wavelength Division 
Multiplexing Network2 , sets up routes between given pairs of nodes in the network and determines the 
minimum number of wavelength converters that are used in order to reduce the number of wavelengths used to 
set up the communications. Decycling sets also have applications in combinotorial circuit designs3 , deadlock 
prevention in operating systems4,5 , monopolies in synchronous distributed systems6,7 , constraint satisfaction 
problem and bayesian inference in artificial intelligence8  and VLSI chip design9 . 
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 Another parameter that is closely related to the decycling number is the cycle packing number, which 
is the maximum number of vertex-disjoint cycles in a graph G . We denote this parameter by )(Gc . 
Determining the cycle packing number of a graph is also known to be NP-complete10 . It has applications in 
computational biology and reconstruction of evolutionary trees11 . It also has application in kidney exchange 
programs12 . 

2  Decycling Number of Certain Graphs 

Chang et al.13  have observed the following result.  

Lemma 2.1 For any graph G , )()( GcG , where )(G  is the decycling number of G  and )(Gc  is the 
cycle packing number of G .   
     In this paper, we compute the decycling number )(G  of G , when G  is a hypertree, slim tree, Christmas 

tree, k -rooted sibiling tree, X -tree, l -siblings tree, l -complete binary tree or a fat tree. Our stratergy is to 
obtain )(Gc  for a given graph G  and prove that the lower bound in lemma 2.1 is sharp for the graph.  

 
2.1  Hypertree 

  
 A tree is a connected graph that contains no cycles. The most common type of tree is the binary tree. 

It is so named because each node can have at most two descendents. A binary tree is said to be a complete 
binary tree if each internal node has exactly two descendents. These descendents are described as left and right 
children of the parent node. Binary trees are widely used in data structures because they are easily stored, easily 
manipulated, and easily retrieved. Also, many operations such as searching and storing can be easily performed 
on tree data structures. Furthermore, binary trees appear in communication pattern of divide-and-conquer type 
algorithms, functional and logic programming, and graph algorithms. A rooted tree represents a data structure 
with a hierarchical relationship among its various elements14 . 

 For any non-negative integer r , the complete binary tree of height 1r , denoted by rT , is the 
binary tree where each internal vertex has exactly two children and all the leaves are at the same level. Clearly, 
a complete binary tree rT  has r  levels and level 10 , rii , contains i2  vertices. Thus, rT  has exactly 

12r  vertices. 
 A hypertree is an interconnection topology for incrementally expansible multicomputer systems, 

which combines the easy expansibility of tree structures with the compactness of the hypercube; that is, it 
combines the best features of the binary tree and the hypercube. These two properties make this topology 
particulary attractive for implementation of multiprocessor networks of the future, where a complete computer 
with a substantial amount of memory can fit on a single VLSI chip15 . 

 The basic skeleton of a hypertree is a complete binary tree nT . Here the nodes of the tree are labeled 

as follows: The root node receives label 1. The root is said to be at level 0 . Labels of left and right children 
are formed by appending a 0  and 1, respectively to the labels of the parent node. Here the children of the 
nodes x  are labeled as x2  and 12x . Additional links in a hypertree are horizontal and two nodes are 
joined in the same level i  of the tree if their label difference is 12i  . We denote an n -level hypertree as 

)(nHT . It has 12 1n  vertices and 1)3(2n  edges.  
 Rajasingh et al.16  have proved that Figure 1(a) and Figure 1(b) are isomorphic.  
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  Figure 1: (a) Original drawing of HT(3) (b) Drawing proposed by Rajasingh et al. 

  
Definition 2.2 A theta graph ),,( cba  consists of a pair of vertices u , v  with three internally disjoint paths 
of lengths a , b  and c  joining u  to v , where a , b , c  are positive integers. The vertices u  and v  are called 
the poles of ),,( cba .  

  The theta graph (1,3,3)  is a subgraph of the hypertree )(nHT  and refer to it simply as -graph. 
It has 6 vertices and 7 edges.  
 
Remark 2.3 The hypertree )(nHT , 3n , contains 22n  number of vertex disjoint -graphs.  

  
Lemma 2.4 Let G  be a -graph. Then 1=)(Gc .  
Proof.  Any cycle in G  has to pass through the poles of G . Hence 1=)(Gc .   

 

Lemma 2.5 Let G  be the Hypertree )(nHT , 1n . Then  .
2) 1( 1)(2

3
1

2) 0( 1)(2
3
1
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n

n

 

Proof.  We prove the result by induction on n . 
 Case (i): 2) 0(modn   
 All the three cycles in (2)HT  share a common vertex. Hence 1=)(Gc  proving the result when 2=n . 

Assume the result to be true for kn 2= , 1k . Consider 2)(2kHT . By Remark 2.3, there are k22  
vertex disjoint -graphs in 2)(2kHT . Deletion of the vertices of these -graphs results in )(2kHT  

Therefore by Lemma 2.4,  1)(2
3
1=2)(2

3
1=2))(2(2))(2( 222122 kkkkkHTckHTc . 

Case (ii): 2) 1(modn   
         When 1=n , the result is trivial. Assume the result to be true for 12= kn , 1k . Consider 

1)(2kHT . By Remark 2.3, there are 122 k  vertex disjoint copies of -graphs in 1)(2kHT . Deletion 
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of the vertices of these -graphs results in 1)(2kHT .Therefore by Lemma 2.4, 

1)(2
3
1=21)(2

3
1=21))(2(1))(2( 12121212 kkkkkHTckHTc .  

In both cases, the result follows from Lemma 2.1.   

2.1.1 Algorithm Decycling Number of Hypertree )(nHT  

Input: Hypertree )(nHT , 3n  
Algorithm: 

(i) For n  even, choose all the vertices in level ,3,13,1, nn . 

(ii) For n  odd, choose all the vertices in level 12)(,3,1, nnnn  . 

Output: 
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   Figure 2: (a) darken cycles and circled vertices constitute cycle packing and minimum decycling set of HT(4)  
               (b) darken cycles and circled vertices constitute cycle packing and minimum decycling set of l-T3 

 

Proof of Correctness: 
 Let C  be any cycle in )(nHT , 2n . Then C  contains at least one vertex in each level i  of 

)(nHT , where 12)(,3,1, nnnni  for n  odd and ,3,1}3,1,{ nni  for n  
even. Let S  be the set of all vertices in levels ,3,13,1, nn , when n  is even and the set of all vertices 
in level ,23,1, nn  together with vertex in level 1, when n  is odd. Removal of vertices in S  ensures 
that it destroys all the cycles in )(nHT . 

Theorem 2.6  Let G  be the Hypertree )(nHT , 1n . Then  
2) 1( 1)(2

3
1

2) 0( 1)(2
3
1

=)(
modnif

modnif
G

n

n

 

2.2  Slim tree 
  The thn  slim tree )(nST , 2n  is recursively defined as follows and is denoted by 
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),,,,(=)( rluEVnST , where V  is the node set, E  is the edge set and rlu ,,  are vertices addressed as 
root node, left node and right node respectively. 

 1. (2)ST  is the complete graph 3K  with its nodes labeled as lu,  and r  . 

 2. The ths  slim tree )(sST , with 3s  is composed of a root node u  and two disjoint copies of 

ths 1)(  slim trees as the left subtree and right subtree, denoted by ),,,,(=1)( 11111 rluEVnSTl  and 

),,,,(=1)( 22222 rlUEVnSTr , respectively. To be specific, ),,,,(=)( rluEVnST  is given by 

}{= 21 uVVV , )},(),,(),,{(= 212121 lruuuuEEE , 1= ll , 2= rr . See Figure 3(a). 

Remark 2.7 The Slim tree )(nST , 3n , contains 22n  number of vertex disjoint copies of 3K , where 3K  
is the complete graph on three vertices. 

Remark 2.8 Let G  be the complete graph 3K  on three vertices. Then 1=)(Gc .  

Lemma 2.9 Let G  be a Slim tree )(nST , 1n . Then 22)( nG   

Proof. Every subgraph 3K  in )(nST  is incident at a vertex common to all cycles in )(nST  of length at least 

4. Hence the maximum number of vertex disjoint cycles in G  is the total number of 3K ’s in )(nST . 

Therefore 22)( nGc . By Lemma 2.1, 22)( nG .   

2.2.1 Algorithm Decycling Number of Slim tree )(nST  

 Input: Slim tree )(nST , 3n  
Algorithm: Choose all the vertices in level 1n . 
Output: 22=))(( nnST . 

 
(a) (b)

 
                Figure 3: (a) darken cycles and circled vertices constitute cycle packing and minimum decycling set of ST(4) 
                                (b) darken cycles and circled vertices constitute cycle packing and minimum decycling set of XT(4) 

Proof of Correctness: 
  Let C  be any cycle in )(nST , 2n . Then C  contains at least one vertex in the thn 1)(  level 

of )(nST . Let S  be the set of all vertices in level 1n . Removal of vertices in S  ensures that it destroys all 
the cycles in )(nST . 
 
Theorem 2.10 Let G  be a Slim tree )(nST , 1n . Then 22=)( nG   
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2.3  Christmas tree 

  The Christmas tree )(nCT  is composed of an nth  slim tree ),,,,(=)( 11111 rluEVnSTl  and an 

thn 1)(  slim tree ),,,,(=)( 22222 rluEVnSTr . The node set of )(nCT  is 21 VV  and the edge set of 

)(nCT  is )},(),,();,{(= 12212121 rlrluuEEE . 

Corollary 2.11  Let G  be a Christmas tree )(nCT , 1n . Then 23.2=)( nG   
Proof.  Christmas tree )(nCT  contains vertex disjoint copies of slim tree )(nST  and 1)(nST . Therefore 
result follows from Theorem 2.10.   

 
2.4   X -tree 

 An X -tree )(nXT  is obtained from complete binary tree on 12 1n  vertices and adding paths iP  

of length 12i , through all the vertices at level i , for left to right, ni1 . See Figure 3(b). 

Remark 2.12 The X -tree )(nXT , 3n  contains 22n  number of vertex disjoint copies of 3K  induced by 

vertices in pairs of levels i  and 1i , 3,,= nni  2 or 1 as the case may be.  

Lemma 2.13 Let G  be a X -tree )(nXT , 1n . Then  .
2) 1( 1)(2

3
1

2) 0( 2)(2
3
1

)(
1

1

modnif

modnif
G

n

n

 

Proof.  We prove the result by induction on n . 
 Case (i): 2) 0(modn   

There are three cycles in (2)XT  and two of them share a common vertex. Hence 2=)(Gc  proving 
the result when 2=n . Assume the result to be true for kn 2= , 1k . Consider 2)(2kXT . By Remark 

2.11, there are 122 k  vertex disjoint copies of 3K  in 2)(2kXT  whose deletion disconnects the graph into 

)(2kXT  and a path on 12n  vertices.  

Therefore by Remark 2.7, 2)(2
3
1=22)(2

3
1=2))(2(2))(2( 32121212 kkkkkXTckXTc . 

Case (ii): 2) 1(modn   
When 1=n , the result is trivial. Assume the result to be true for 12= kn , 1k .Consider 

1)(2kXT . By Remark 2.11, there are k22  vertex disjoint copies of 3K  in 1)(2kXT  whose deletion 

disconnects the graph into 1)(2kXT  and a path on 12n  vertices. Therefore by Remark 2.7, 

1)(2
3
1=21)(2

3
1=21))(2(1))(2( 22222 kkkkkXTckXTc .  

In both cases, the result follows from Lemma 2.1.    
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2.4.1 Algorithm Decycling Number of X -tree )(nXT  

Input: )(nXT , 3n  
Algorithm: 

(i) For n  even, choose all the vertices in level ,4,23,1, nn . 
(ii) For n  odd, choose all the vertices in level ,3,13,1, nn . 

Output: 

oddn

evenn
nXT

n

n

  1),(2
3
1

  2),(2
3
1

=))((
1

1

 

Proof of Correctness: 
 Let C  be any cycle in )(nXT , 2n . Then C  contains atleast one vertex in level i  of )(nXT , 

where ,2}3,1,{ nni  for n  even and ,1}3,1,{ nni  for n  odd. Let S  be the set of all 
vertices in levels ,4,23,1, nn , when n  is even and S  be the set of all vertices in levels 

,3,13,1, nn , when n  odd. Removal of vertices in S  ensures that it destroys all the cycle in )(nXT .  

Theorem 2.14 Let G  be a X -tree )(nXT , 1n . Then  .
2) 1( 1)(2

3
1

2) 0( 2)(2
3
1

=)(
1

1

modnif

modnif
G

n

n

 

2.5   1-rooted sibiling tree 
 
1-rooted sibiling tree 1

nST  is obtained from the 1-rooted complete binary tree 1
nT  by adding edges  

(sibiling edges) between left and right children of the same parent node. The k -rooted sibiling tree k
nST  is 

obtained by k  vertex disjoint 1 -rooted sibiling tree 1
nST  on n2  vertices with roots say krrr ,,, 21 and 

adding edges ),( 1ii rr , 1)(1 kk . The diameter of k
nST  is 12 kn . See Figure 4. 

 
                    Figure 4: darken cycles and circled vertices constitute cycle packing and minimum decycling set of 2

4ST . 
 
Proceeding along the same lines as for X -Tree, we have the following results. 

Theorem 2.15 Let G  be a k -rooted sibiling tree k
nST , 1n . 

2) 1( 1)(2
3

2) 0( 2)(2
3=)(

1

1

modnifk

modnifk

G
n

n
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2.6   l -siblings tree 
 
The k

nST  be a rooted sibling tree, 1n . A graph which is obtained from two copies of rooted sibling 

tree k
nST , say kST1  , kST2  by joining each vertex in the last level (i.e., thn 1)(  level) of kST1  with the 

corresponding vertex of kST2  by an edge is called the l -sibling tree and its denoted by l - k
nST . See Figure 5. 

 

 
                             Figure 5: darken cycles and circled vertices constitute cycle packing and minimum decycling set of 2- 2

4ST . 
 

Theorem 2.16 Let G  be a l -sibiling tree l - k
nST , 1n . Then 2.2=)( nkG .  

 
2.7   l -complete binary tree 
 

  Let nT  be a complete binary tree, 1n . A graph which is obtained from two copies of complete 

binary tree nT , say 1T , 2T  by joining each vertex in the last level (i.e., thn 1)(  level) of 1T  and the 

corresponding vertex of 2T  is called the l -complete binary tree and its denoted by l - nT . See Figure 2(b). 

Remark 2.17 Number of vertices in l - nT  is 3. 22 1n , 1n .  

Proof.  Since the graph l - nT  is obtained from two copies of nT , the total number of vertices in l - nT  is equal 

to nn 222.2 1 =3. 22 1n .   
 
Remark 2.18 Number of edges in l – nT  is 42 1n , 1n .  
 
Theorem 2.19 Let G  be a l -complete binary tree l - nT , 1n . Then 12=)( nG .  
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2.8  k -dimensional generalized binary fat tree 

 
The k -dimensional generalized binary fat tree )(kBFT  has 1)(2= kn k  nodes arranged in 

1k  levels of k2  nodes each. Each node has a distinct label jz, , where j  is the level of the node 

)(0 kj  and )(= 12aaaaz jk  is a k  bit binary number. Two nodes jz,  and jz ,  are 

adjacent if 1= jj  and either w  and w  are identical or )(= 12aaaaz jk . The edges in the 
network are undirected. The nodes on level 0 are called the input nodes or just inputs of the network, and the 
nodes on level k  are called the output nodes or just outputs. See Figure 6(a). 

 
(a) (b)

 
Figure 6: (a) 3-dimensional Generalized Binary Fat tree BFT(3);  (b) 3-dimensional Butterfly Network BF(3) 

 
Definition 2.20 The k -dimensional butterfly )(kBF  has 1)(2= kn k  nodes arranged in 1k  levels of 

k2  nodes each. Each node has a distinct label iw,  where i  is the level of the node )(0 mi  and w  is 

a k -bit binary number that denotes the column of the node. All nodes of the form iw, , )(0 ki , are 

said to belong to column w . Similarly, the thi  level iL  consists of all of the nodes iw, , where w  ranges 

over all k -bit binary numbers. Two nodes iw,  and iw ,  are linked by an edge if 1= ii  and either 

w  and w  are identical or w  and w  differ only in the bit in position i . (The bit positions are numbered 1 
through k , the most significant bit being numbered 1). The edges in the network are undirected. The nodes on 
level 0 are called the input nodes or just inputs of the network, and the nodes on level k  are called the output 
nodes or just outputs. See Figure 6(b).  
 
Rajasingh et al.17  have proved that Figure 6(a) and Figure 6(b) are isomorphic. 
 
Lemma 2.21 Let G  be an odd dimensional butterfly network )(nBF , n  odd. Then 11).2()( nnG , 

3n .  
Proof. The maximum number of vertex disjoint cycles between any pair of consecutive levels is 12n . Since 
there are 1n  levels, there are maximum 2/)1(n  vertex disjoint levels. Hence 21).2()( nnGc . By 

Lemma 2.1, 11).2()( nnG .   
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2.8.1 Algorithm Decycling Number of Odd dimensional Butterfly network  
 
Input: Butterfly network )(nBF , n odd and 3n  
Algorithm: 

There are k2  vertices in level i , i  odd and ki < , split the vertices at level i  into 12 ik  sets say 
j

iS , 121 ikj  consisting of 12i  from left to right. From each set, select the first 12i  vertices and last 
12i  vertices in iS  and the singleton set, omitting i2  vertices in the middle. See figure 8(b). 

Output: 11).2(=))(( nnnBF  
 

(a) (b)
level 0

level 1

level 2

level 3

.

  Figure 7: (a) darken cycles and circled vertices constitute cycle packing and minimum decycling set of BF(3)  
                                                        (b) removed vertices constitute minimum decycling set of BF(3). 

Proof of Correctness: 

 Since there are 21).2( nn  vertex disjoint cycles in )(nBF . We need at least 21).2( nn  many 
vertices to be removed, inorder to make the graph acyclic. Removal of these vertices ensures that it destroys all 
the cycle and induces a forest. 

 
Theorem 2.22 Let G  be an odd dimensional butterfly network )(nBF , n  odd. Then 11).2(=)( nnG , 

3n .  
  

3  Conclusion 
 In this paper we have proved that )(=)( GGc  for hypertree, Christmas tree, slim tree, X -tree, 

k -rooted siblings tree, l -siblings tree, l -complete binary tree and k -dimensional generalized binary fat tree. 
The problem of decycling number of cube connected cycles, benes are under investigation. 
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