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Abstract: The truncated exponential polynomials em(x) (1), their extensions, and certain

newly-introduced polynomials which combine the truncated exponential polynomials with

other known polynomials have been investigated and applied in various ways. In this paper,

by incorporating the Appell-type Changhee polynomials Ch∗n(x) (10) and the truncated exponential

polynomials in a natural way, we aim to introduce so-called truncated-exponential-based Appell-type

Changhee polynomials eC
∗
n (x) in Definition 1. Then, we investigate certain properties and identities

for these new polynomials such as explicit representation, addition formulas, recurrence relations,

differential and integral formulas, and some related inequalities. We also present some integral

inequalities involving these polynomials eC
∗
n (x). Further we discuss zero distributions of these

polynomials by observing their graphs drawn by Mathematica. Lastly some open questions

are suggested.

Keywords: Changhee polynomials and numbers; Appell-type Changhee polynomials and numbers;

truncated-exponential polynomials; truncated-exponential-based Appell-type Changhee polynomials

and numbers; zero distributions; Newton–Raphson’s theorem

1. Introduction and Preliminaries

A number of special polynomials have found many vital applications in a variety of fields

such as mathematics, applied mathematics, mathematical physics and engineering. According to

the necessity for solving certain specific problems in diverse fields or pure mathematical interests,

recently, a remarkably large number of new polynomials and numbers have been presented

(see, e,g., [1–18]). Among them are the truncated exponential polynomials em(x) defined by the

series (see [19–21])

em(x) =
m

∑
r=0

xr

r!
(m ∈ N0) , (1)

which are the first (m + 1) terms of the Maclaurin series for ex. Here and elsewhere, let N, Z, Q, R,

R+, and C denote the sets of positive integers, integers, rational numbers, real numbers, positive real

numbers, and complex numbers, respectively. Let N0 := N∪ {0} and R+
0 := R+ ∪ {0}. Dattoli et al. [2]

made a systematic investigation of these polynomials. They also [2] noted that these polynomials

appear in many problems of optics and quantum mechanics, and also play an important role in the

evaluation of certain integrals involving the product of special functions. It is interesting to note

that em(x) (m ∈ N) is irreducible in Q[x], which is a special case of Schur’s theorem (see [20,21];

see also [22,23]): Any polynomial
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1 + c1 x + c2
x2

2!
+ · · ·+ cm−1

xm−1

(m − 1)!
± xm

m!
(m ∈ N, ci ∈ Z)

is irreducible in Q[x]. For further properties and applications of these polynomials, see,

for example, [24–38].

Using the well-known gamma function Γ defined by (see, e.g., [19,39], Section 1.1)

Γ(z) =
∫ ∞

0
e−t tz−1

dt (ℜ(z) > 0), (2)

in particular,

Γ(m + 1) = m! =
∫ ∞

0
e−t tm

dt (m ∈ N0) , (3)

we find (see, e.g., [2], Equation (2))

em(x) =
1

m!

∫ ∞

0
e−t (x + t)m

dt (m ∈ N0) . (4)

The truncated exponential polynomials em(u) are defined by the generating function

(see [2], p. 596, Equation (4)):
ex t

1 − t
=

∞

∑
m=0

em(x) tm (|t| < 1). (5)

The generating relation (5) can be easily derived by taking the Cauchy product of two Maclaurin

series ex t and 1/(1 − t). Differentiating both sides of the identity (5) with regard to the variable t and

x, respectively, yields the following differential-recursive relations (see [2], Equation (5))

d

dx
em(x) = em−1(x) (m ∈ N) (6)

and

em+1(x) =
[

1 +
x

m + 1

(

1 − d

dx

)]

em(x) (m ∈ N0) . (7)

These two relations are incorporated to give the second-order differential equation (see [2],

Equation (8))
[

x
d2

dx2
− (m + x)

d

dx
+ m

]

em(x) = 0 (m ∈ N0) . (8)

Kim et al. [8] introduced the Changhee polynomials Chn(x) by means of the following

generating function
2

2 + t
(1 + t)x =

∞

∑
n=0

Chn(x)
tn

n!
. (9)

Here Chn := Chn(0) are the corresponding Changhee numbers. Then the Changhee polynomials

and numbers have been generalized to yield more complicated polynomials and numbers which

are found to have a number of identities including, especially, certain differential equations

and proved to be connected with various problems in the areas of engineering and physics

(see, e.g., [5,9,10,14,18,40]). Lee et al. [14] introduced so-called Appell-type Changhee polynomials

Ch∗n(x) by the generating function

2

2 + t
ext =

∞

∑
n=0

Ch∗n(x)
tn

n!
(10)

and Ch∗n := Ch∗n(0) are the corresponding Appell-type Changhee numbers. Obviously Ch∗n =

Chn. They [14] provided a number of identities involving the Appell-type Changhee polynomials

and numbers.
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Many authors have investigated certain interesting polynomials which combine the truncated

exponential polynomials em(x) (1) with, for example, Frobenius–Euler polynomials [37], Appell

polynomials [36], Hermite forms [30], Sheffer polynomials [35], and Apostol-type polynomials [38].

In this paper, by incorporating the Appell-type Changhee polynomials Ch∗n(x) (10) and the

truncated exponential polynomials em(x) (1) in a natural way, we aim to introduce so-called

truncated-exponential-based Appell-type Changhee polynomials eC
∗
n (x) in Definition 1. Then we

investigate certain properties and identities for these new polynomials such as explicit representation,

addition formulas, recurrence relations, differential and integral formulas, and some related

inequalities. We also present some integral inequalities involving these polynomials eC
∗
n (x). Further we

discuss zero distributions of these polynomials by observing their graphs drawn by Mathematica.

Lastly, some open questions are suggested.

2. Truncated-Exponential-Based Appell-Type Changhee Polynomials

By incorporating two generating functions (10) and (5), we introduce a family of new

polynomials, which are called truncated-exponential-based Appell-type Changhee polynomials, in the

following definition.

Definition 1. Truncated-exponential-based Appell-type Changhee polynomials eC
∗
n (x) are defined by the

generating function
2

(1 − t)(2 + t)
ex t =

∞

∑
n=0

eC
∗
n (x) tn (|t| < 1, x ∈ C). (11)

Then eC
∗
n := eC

∗
n (0) are called truncated-exponential-based Appell-type Changhee numbers.

We present a set of identities for eC
∗
n (x) which are expressed as finite series in terms of Appell-type

Changhee polynomials, Appell-type Changhee numbers, truncated exponential polynomials, including

explicit representations, in the following theorem.

Theorem 1. Let n ∈ N0 and x ∈ C. Then the following identities hold.

eC
∗
n (x) =

n

∑
r=0

eC
∗
r

xn−r

(n − r)!
; (12)

eC
∗
n (x) =

n

∑
r=0

Ch∗r (x)
r!

; (13)

eC
∗
n (x) =

n

∑
k=0

k

∑
r=0

(−1)k−r xr

2k−r r!

=
n

∑
k=0

k

∑
r=0

(−1)n−k xr

2n−k r!
;

(14)

eC
∗
n (x) =

n

∑
r=0

(−1)n−r er(x)
2n−r ; (15)

eC
∗
n (x) =

n

∑
r=0

Ch∗n−r(x)
(n − r)!

er(x); (16)

eC
∗
n =

2

3

{

1 +
(−1)n

2n+1

}

. (17)
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Proof of Theorem 1. These identities are easily derivable mainly from the generating functions (10),

(5) and (11), by manipulating double and triple series.

We prove only (17) by letting

f (t) =
2

(1 − t)(2 + t)
=

2

3

(

1

1 − t
+

1

2 + t

)

(t 6= 1, −2) .

Then

f (n)(t) =
2

3

{

n!

(1 − t)n+1
+

(−1)n n!

(2 + t)n+1

}

(n ∈ N0) .

We find
∞

∑
n=0

eC
∗
n tn =

∞

∑
n=0

f (n)(0)
n!

tn,

which, upon equating the coefficients of tn, yields (17).

From (14), the first few of eC
∗
n (x) are

eC
∗
0 (x) = 1, eC

∗
1 (x) = x +

1

2
, eC

∗
2 (x) =

x2

2
+

x
2
+

3

4
,

eC
∗
3 (x) =

x3

6
+

x2

4
+

3x
4

+
5

8
, eC

∗
4 (x) =

x4

24
+

x3

12
+

3x2

8
+

5x
8

+
11

16
.

We observe some inequalities for the truncated-exponential-based Appell-type Changhee

polynomials eC
∗
n (x) and numbers eC

∗
n as well as truncated-exponential polynomials em(x),

collected in Theorem 2.

Theorem 2. The following properties hold.

(i) 1
2 ≤ eC

∗
n ≤ 1 (n ∈ N0).

(ii) eC
∗
n (x) is neither an even nor odd function for n ∈ N \ {1}.

(iii) 1 ≤ em(x) ≤ ex
(

m ∈ N0, x ∈ R+
0

)

.
(iv) eC

∗
n (x) > 0

(

n ∈ N0, x ∈ R+
0

)

.
(v)

eC
∗
2n(x)− eC

∗
2n(−x) = R2n(x)

(

n ∈ N, x ∈ R+
)

,

where
0 < R2n(x) < 2 e2n−1(x).

(vi)

eC
∗
2n+1(x) + eC

∗
2n+1(−x) = R2n+1(x)

(

n ∈ N, x ∈ R+
)

,

where
0 < R2n+1(x) < 2 e2n(x).

Proof of Theorem 2. The inequalities in (i) follow easily from (17).

We can find those properties in (ii) from (12) and (17).

The truncated exponential polynomials em(x) in (1) give the inequalities in (iii).

The result in (iv) is found from (12) and (i).

From (12), we have

eC
∗
2n(x) =

n

∑
r=0

eC
∗
2r

x2n−2r

(2n − 2r)!
+

n−1

∑
r=0

eC
∗
2r+1

x2n−2r−1

(2n − 2r − 1)!
, (18)
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which, upon replacing x by −x, gives

eC
∗
2n(−x) =

n

∑
r=0

eC
∗
2r

x2n−2r

(2n − 2r)!
−

n−1

∑
r=0

eC
∗
2r+1

x2n−2r−1

(2n − 2r − 1)!
. (19)

Subtracting (19) from (18), side by side, gives

eC
∗
2n(x)− eC

∗
2n(−x) = R2n(x), (20)

where

R2n(x) = 2
n−1

∑
r=0

eC
∗
2r+1

x2n−2r−1

(2n − 2r − 1)!
.

Using (i), we obtain

n−1

∑
r=0

x2n−2r−1

(2n − 2r − 1)!
≤ R2n(x) ≤ 2

n−1

∑
r=0

x2n−2r−1

(2n − 2r − 1)!

≤ 2
2n−1

∑
r=0

xr

r!
= 2 e2n−1(x).

This completes the proof of (v). Similarly, (vi) can be proved.

We provide three recurrence relations for the truncated-exponential-based Appell-type Changhee

polynomials eC
∗
n (x), asserted in the following theorem.

Theorem 3. Let x ∈ C and n ∈ N. Then the following recurrence formulas hold.

eC
∗
n (x)− eC

∗
n−1(x) =

Ch∗n(x)
n!

(n ∈ N) ; (21)

2 eC
∗
n (x) + eC

∗
n−1(x) = 2en(x) (n ∈ N) ; (22)

2 eC
∗
n (x)− eC

∗
n−1(x)− eC

∗
n−2(x) =

2 xn

n!
(n ∈ N \ {1}) . (23)

Proof of Theorem 3. Multiplying both sides of (11) by 1 − t and using (10) to expand the left member

of the resulting identity, we have

∞

∑
n=0

Ch∗n(x)
tn

n!
=

∞

∑
n=0

eC
∗
n (x) tn −

∞

∑
n=1

eC
∗
n−1(x) tn. (24)

Then, identifying the coefficients of tn on both sides of (24), we obtain (21).

Similarly, multiplying both sides of (11) by 2 + t and using (5), we can get (22).

Similarly again, multiplying both sides of (11) by (1 − t)(2 + t) can yield (23).

We establish some addition formulas for the polynomials eC
∗
n (x), asserted in Theorem 4.

Theorem 4. Let x, y ∈ C and n ∈ N0. Then the following addition formulas hold.

eC
∗
n (x + y) =

n

∑
r=0

eC
∗
r (x)

yn−r

(n − r)!
; (25)

eC
∗
n (x + y) =

n

∑
r=0

1

r!
en−r(x) Ch∗r (y); (26)



Symmetry 2020, 12, 1588 6 of 18

eC∗
n(x + y) =

n

∑
r=0

(

−1

2

)r

en−r(x) er(−2y); (27)

eC∗
n(x + y) =

n

∑
r=0

(−2)n−r

r! (n − r)!
Ch∗r (y) Ch∗n−r

(

− x
2

)

; (28)

eC
∗
n (x + y) =

n

∑
m=0

m

∑
k=0

k

∑
r=0

(−1)m−k xk−r yr

2m−k(k − r)!r!
. (29)

Proof of Theorem 4. Replacing x by x + y in (11), we obtain

∞

∑
n=0

eC
∗
n (x + y) tn =

2

(1 − t)(2 + t)
ex t · ey t. (30)

Using (11) to expand the first member of the right side of (30), we get

∞

∑
n=0

eC
∗
n (x + y) tn =

∞

∑
n=0

yn tn

n!
·

∞

∑
r=0

eC
∗
r (x) tr. (31)

Manipulating the double series in the right side of (31) yields

∞

∑
n=0

eC
∗
n (x + y) tn =

∞

∑
n=0

{

n

∑
r=0

eC
∗
r (x)

yn−r

(n − r)!

}

tn,

which, upon equating the coefficients of tn, leads to (25).

Factor the right side of (30) as
ex t

1 − t
· 2

2 + t
ey t,

each factor of which is expanded, one after the other, by using (5) and (10). Then, manipulating the

resulting double series into a single series and identifying equal powers of tn on both sides of the left

side of (30) and the resulting single series gives (26).

Replacing x by −2x and t by − t
2 in Equation (5), and x by − x

2 and t by −2t and in Equation (10),

respectively, gives

Ch∗n(x) =
(−1)n n!

2n en(−2x) (32)

and

n! en(x) = (−2)n Ch∗n
(

− x
2

)

. (33)

Using relations (32) and (33) in Equation (26), we obtain (27) and (28).

Factoring the right side of (30) as

1

1 − t
· 2

2 + t
· ex t · ey t

and each factor is expanded in the Maclaurin series, similarly, we obtain (29).

3. Differential Formulas

Certain differential formulas and equations associated with diverse polynomials have been

investigated (see, e.g., [3,6,7,10]). Here we also give certain differential formulas and equations

involving polynomials eC
∗
n (x) and the generating function of the numbers eC

∗
n , asserted in the

following theorems.
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Theorem 5. Let n, r ∈ N0 and x ∈ C. Then the following differential formulas hold.

dr

dxr eC
∗
n (x) =

{

0 (0 ≤ n < r)

eC
∗
n−r(x) (n ≥ r).

(34)

In particular,
d

dx eC
∗
n (x) = eC

∗
n−1(x) (n ∈ N). (35)

Furthermore, polynomials eC
∗
n (x) are convex functions on any closed bounded interval [u, v] with 0 ≤

u < v < ∞.

Proof of Theorem 5. We find from (14) that eC
∗
n (x) is a polynomial in x of degree n.

Then, differentiating r times (r ∈ N0) the right member of (11) with respect to x, we get

∞

∑
n=r

dr

dxr eC
∗
n (x) tn =

∞

∑
n=0

dr

dxr eC
∗
n+r(x) tn+r. (36)

Differentiating r times (r ∈ N0) the left member of (11) with respect to x, we obtain

2

(1 − t)(2 + t)
dr

dxr ex t = tr 2

(1 − t)(2 + t)
ex t

=
∞

∑
n=0

eC
∗
n (x) tn+r

=
∞

∑
n=r

eC
∗
n−r(x) tn.

(37)

Finally, equating the coefficients of tn on both sides of the left member of (36) and the rightmost

member of (37) yields (34).

We find from (34) that
d2

dx2 eC
∗
n (x) ≥ 0

for all real x ∈ [0, ∞). This implies the convexity of the polynomials eC
∗
n (x) on the interval [0, ∞) (see,

e.g., [41] pp. 133–135).

We establish certain higher-order differential equations involving the generating function of the

truncated-exponential-based Appell-type Changhee numbers eC
∗
n , asserted in Corollary 1.

Theorem 6. Let G(t) and f (t) be functions defined on an open interval (a, b) such that G(n)(t) and f (n)(t)
exist on (a, b) for some n ∈ N and satisfy

G′(t) = f (t) G(t) (t ∈ (a, b)). (38)

Then G(t) satisfy the following higher-order differential equations

G(k)(t) = Ak(t) G(t) (t ∈ (a, b), k = 1, . . . , n), (39)

where Ak(t) are given by the differential recurrence relation

Ak(t) =
d

dt
Ak−1(t) + f (t) Ak−1(t) (k = 2, . . . , n) and A1(t) = f (t). (40)
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In particular,

A2(t) = f ′(t) + { f (t)}2 , A3(t) = f (2)(t) + 3 f ′(t) f (t) + { f (t)}3 .

Proof of Theorem 6. Equation (39), when k = 1, is obvious from (38). Assume that

G(j)(t) = Aj(t) G(t) holds for some j ∈ N with 1 ≤ j ≤ n − 1. Then

G(j+1)(t) =
{

d

dt
Aj(t)

}

G(t) + Aj(t) G′(t)

=

{

d

dt
Aj(t)

}

G(t) + Aj(t) f (t) G(t)

= Aj+1G(t),

where the second and third equalities follow, respectively, from (38) and (40). The proof is completed

by mathematical induction.

Corollary 1. Let H(t) be the generating function of truncated-exponential-based Appell-type Changhee
numbers in (11). Then

H′(t) = g(t) H(t),

where

g(t) =
1

1 − t
− 1

2 + t
and g(n)(t) =

n!

(1 − t)n+1
+

(−1)n+1 n!

(2 + t)n+1
(n ∈ N0) .

H(t) satisfies the following higher-order differential equations

H(n)(t) = Bn(t) H(t) (t 6= 1, −2; n ∈ N0), (41)

where Bn(t) are given by the differential recurrence relation

Bn(t) =
d

dt
Bn−1(t) + g(t) Bn−1(t) (n ∈ N0) and B1(t) = g(t). (42)

In particular,

B2(t) =
4 + 6t + 6t2

(1 − t)2(2 + t)2
.

Proof of Corollary 1. Taking a logarithmic derivative of H(t) gives H′(t) = g(t) H(t). Then the result

here easily follows from the assertion in Theorem 6.

Remark 1. The truncated-exponential-based Appell-type Changhee polynomials introduced here may belong
to the family of Appell polynomials. In this regard, the truncated-exponential-based Appell-type Changhee
polynomials can be called truncated-Appell-type Changhee polynomials. As is well known, due mainly to
their remarkable applications in a variety of research branches, the Appell polynomial sequences have been
extensively investigated and arisen in numerous problems of, for example, applied mathematics, theoretical
physics, approximation theory, numerical analysis, and number theory (see, e.g., [42–54]).

4. Integral Formulas

We present certain integral formulas involving the truncated-exponential-based

Appell-type Changhee polynomials, the Appell-type Changhee polynomials and the truncated

exponential polynomials.
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Theorem 7. Let u, v ∈ C. Then the following integral formulas hold.

∫ u

0
eC

∗
n−1(x + v)dx = eC

∗
n (u + v)− eC

∗
n (v) (n ∈ N). (43)

In particular,
∫ u

0
eC

∗
n−1(x)dx = eC

∗
n (u)−

2

3

{

1 +
(−1)n

2n+1

}

(n ∈ N). (44)

∫ u

0
eC

∗
n (x)dx =

2

3

n

∑
r=0

{

1 +
(−1)r

2r+1

}

un−r+1

(n − r + 1)!
(n ∈ N0) . (45)

∫ u

0
eC

∗
n (x)dx =

n

∑
k=0

k

∑
r=0

(−1)n−k ur+1

2n−k (r + 1)!
(n ∈ N0) . (46)

∫ u

0
en(x)dx = eC

∗
n+1(u) +

1

2
eC

∗
n (u)− 1 (n ∈ N) . (47)

∫ u

0
Ch∗n(x)dx =

Ch∗n+1(u)

n + 1
+

(−1)n n!

2n+1
(n ∈ N) . (48)

∫ u+1

u
eC

∗
n−1(x)dx = eC

∗
n (u + 1)− eC

∗
n (u) (n ∈ N) . (49)

∫ 1

0
eC

∗
p (x) eC

∗
q (x)dx =

p

∑
j=0

q

∑
k=0

eC
∗
p−j eC

∗
q−k

j! k! (j + k + 1)
(p, q ∈ N0) . (50)

Proof of Theorem 7. Replacing x by x + v in (11) and integrating both sides of the resulting identity

with respect to x from 0 to u, we obtain

∞

∑
n=1

∫ u

0
eC

∗
n−1(x + v)dx tn−1 =

2

(1 − t)(2 + t)
e(u+v)t − 2

(1 − t)(2 + t)
evt

=
∞

∑
n=0

eC
∗
n (u + v) tn −

∞

∑
n=0

eC
∗
n (v) tn,

from the leftmost and rightmost members of which, upon equating the coefficients of tn, leads to (43).

Setting v = 0 in (43) and using (17) gives (44).

Integrating both sides of (12) with respect to x from 0 to u and using (17) yields (45).

Integrating both sides of (14) with respect to x from 0 to u proves (46).

Integrating both sides of (22) with respect to x from 0 to u and using (44) yields (47).

Integrating both sides of (22) with respect to x from 0 to u and using (44), and employing (22)

again, we obtain (48).

Integrating both sides of (35) with respect to x from u to u + 1 yields (49).

From (11), we find

2

(1 − u)(2 + u)
ex u · 2

(1 − v)(2 + v)
ex v =

∞

∑
p=0

∞

∑
q=0

eC
∗
p (x) eC

∗
q (x) up vq,

both sides of which, upon integrating with respect to x from 0 to 1, gives

∞

∑
p=0

∞

∑
q=0

∫ 1

0
eC

∗
p (x) eC

∗
q (x)dx up vq =

2

(1 − u)(2 + u)
2

(1 − v)(2 + v)
eu+v − 1

u + v
. (51)
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Here
eu+v − 1

u + v
=

∞

∑
k=0

(u + v)k

(k + 1)!
=

∞

∑
k=0

1

(k + 1)!

k

∑
j=0

(

k
j

)

uj vk−j

=
∞

∑
k=0

∞

∑
j=0

1

(k + j + 1)!

(

k + j
j

)

uj vk

=
∞

∑
k=0

∞

∑
j=0

uj vk

j! k! (j + k + 1)
,

which, upon substituting in the rightmost factor of (51), yields

∞

∑
p=0

∞

∑
q=0

∫ 1

0
eC

∗
p (x) eC

∗
q (x)dx up vq =

∞

∑
n=0

∞

∑
m=0

∞

∑
k=0

∞

∑
j=0

eC
∗
n eC

∗
m

un+j vm+k

j! k! (j + k + 1)

=
∞

∑
n=0

∞

∑
m=0

m

∑
k=0

n

∑
j=0

eC
∗
n−j eC

∗
m−k

un vm

j! k! (j + k + 1)
.

(52)

Then, equating the coefficients of up vq gives (50).

5. Inequalities Involving Integrals

Some integral inequalities associated with the polynomials eC
∗
n (x) are given in the

following theorem.

Theorem 8. The following inequalities hold.

(i) [Inequality for the arithmetic and geometric mean]

1

v

∫ v

0
log eC

∗
n (x) dx ≤ log

{

1

v

∫ v

0
eC

∗
n (x) dx

}

, (53)

where n ∈ N0 and v ∈ R+;
(ii) [Hermite–Hadamard type inequality]

eC
∗
n

(

u + v
2

)

≤ 1

v − u

∫ v

u
eC

∗
n (x) dx ≤ eC

∗
n (u) + eC

∗
n (v)

2
, (54)

where n ∈ N0 and 0 ≤ u < v < ∞.
(iii)

(

∫ 1

0
(eC

∗
n (x))p

dx
)1/p

≤
(

∫ 1

0
(eC

∗
n (x))q

dx
)1/q

, (55)

where n ∈ N0 and 0 < p < q;
(iv)

∫ v

0
log eC

∗
n (x) dx ≤ log

(

1 + eC
∗
n (v)

2

)

, (56)

where n ∈ N0 and v ∈ R+.

Proof of Theorem 8. From part (iv), Theorem 2, we find that the functions eC
∗
n (x) satisfy the

conditions of the inequality (1.11.3) in ([55], p. 2) (see also [56], pp. 136–138). Then the inequality (53)

follows from the inequality (1.11.3) in ([55], p. 2).

From the last statement in Theorem 5, the polynomials eC
∗
n (x) are convex functions on any closed

bounded interval [u, v] with 0 ≤ u < v < ∞, which can also be proved by the first statement in (ii),

Section 6. Then the chain of inequalities (54) follows (see, e.g., [57], Equation (1.1)).
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For proof of the inequality (55), one may consult (for example) ([58], p. 182).

The inequality (56) may easily follow from the inequalities (53) and (54).

6. Zero Distributions of the Polynomials eC
∗
n (u) Via Graphical Approach

Asymptotic properties including asymptotic zero distributions of general orthogonal polynomials

have been investigated (see, e.g., [59–61], ([55], Chapter XII)).

Yet, with the aid of Mathematica, here we try to explore how complex roots of the polynomials

eC
∗
n (u) in (11) are located by observing the graphs of plotted zeros of the polynomials. To do this,

we choose the double series representation in (14):

eC
∗
n (u) =

n

∑
k=0

k

∑
r=0

(−1)n−k ur

2n−k r!
. (57)

We list zero distributions and some properties of the polynomials eC
∗
n (u) in (11) as follows:

(i) All possible zeros of eC
∗
n (u) (n ∈ N) are located in symmetric places with respect to the real axis.

Indeed, let u0 ∈ C be a zero of eC
∗
n (u). Then

0 = 0 = eC ∗
n (u0) =

n

∑
k=0

k

∑
r=0

(−1)n−k u0
r

2n−k r!
= eC

∗
n (u0) ,

where u denotes the conjugate of u ∈ C. This implies that u0 is also a zero of eC
∗
n (u).

(ii) The polynomial eC
∗
n (u) in (57) is a polynomial in the variable u of degree n, all of whose coefficients

are positive rational numbers. So, eC
∗
n (u) (n ∈ N) has n zeros, counting multiplicities, in the finite

complex plane. Explicitly,

eC
∗
n (u) =

n

∑
r=0

cr(n) ur, (58)

where

cr(n) =
2

3 · r!

(

1 +
(−1)n−r

2n−r+1

)

. (59)

In particular,

c0(n) =
2

3

(

1 +
(−1)n

2n+1

)

and cn(n) =
1

n!
.

Indeed, we can rewrite (57) as follows:

eC
∗
n (u) =

n

∑
r=0

cr(n) ur,

cr(n) =
n

∑
k=r

(−1)n−k

2n−k r!
,

where n, r ∈ N0 are such that 0 ≤ r ≤ n. The right-handed series of cr(n) is a geometric series with

common ratio −2, the first term (−1)n−r/(2n−r r!), and the number of terms n − r + 1. We thus

have the above explicit expression (58) with (59). The first statement follows immediately from

this explicit expression. The second one is implied by fundamental theorem of algebra (see, e.g.,

([61], p. 1), ([41], p. 77)).

(iii) We have observed the 78 graphs of zeros of the polynomials eC
∗
n (u) from n = 3 to n = 80.

We choose to demonstrate only 9 graphs as below Figures 1–9.
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Figure 5. Zeros of eC
∗
41(u).

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

-10 0 10 20 30

-20

-10

0

10

20

ReHuL

I
m
Hu
L

Figure 6. Zeros of eC
∗
50(u).

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ
æ

ææ

ææ

æ

æ

ææ

æ

æ

ææ

æ

æ

ææ

ææ

æ

æ

ææ

æ

æ

ææ

æ

æ

æ

æ

æ æ

æ æ

æ

æ

æ

æ

æ

æ

æ

-20 -10 0 10 20 30 40

-20

-10

0

10

20

ReHuL

I
m
Hu
L

Figure 7. Zeros of eC
∗
61(u).
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∗
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Figure 9. Zeros of eC
∗
80(u).

In view of those graphs, we find the followings:

(a) If eC
∗
n (u)=0, then |ℑ(u)| < n

2 + 1 (n ∈ N).

(b) If eC
∗
n (u)=0, then − n

2 < |ℜ(u)| < n (n ∈ N).

(c) The number of zeros of eC
∗
n (u) with ℜ(u) > 0 is less than the number of zeros of eC

∗
n (u)

with ℜ(u) < 0 when n ≥ 5.

(d) The longest straight distance from the origin of zeros of eC
∗
n (u) with ℜ(u) > 0 is greater

than that of zeros of eC
∗
n (u) with ℜ(u) < 0, when n ≥ 3. That is,

sup {|u| | eC
∗
n (u) = 0, ℜ(u) > 0} > sup {|u| | eC

∗
n (u),= 0, ℜ(u) < 0} .

where n ≥ 3.

(iv) [Approximation of the real zero of eC
∗
n (x) (n ≥ 3)

In view of (i) and (ii) in this section, the polynomials eC
∗
2n+1(x) (n ∈ N0) are found to have one

real zero. eC
∗
n (x) (n ∈ N, x ∈ R) are real-valued infinitely differentiable functions on the interval

(−∞, ∞). Indeed, here, only twice differentiability is sufficient. To approximate the real zeros of

eC
∗
2n+1(x), we can use Newton–Raphson’s theorem (see, e.g., [58], pp. 262–263). We try to apply

this theorem to find the real zero of the polynomial

eC
∗
3 (x) =

x3

6
+

x2

4
+

3x
4

+
5

8
.

First set x = −1 in eC
∗
3 (x) to get eC

∗
3 (−1) = − 1

24 = −0.0416.... We see that x = −1 is very near at

the real zero c, say. Let x0 = −1. Then consider the sequence xn (n ∈ N) given by

xn = xn−1 − eC
∗
3 (xn−1)

d
dx eC

∗
3 (xn−1)

= xn−1 −
4x3

n−1 + 6x2
n−1 + 18xn−1 + 15

12x2
n−1 + 12xn−1 + 18

.

From this recursive relation, we compute

x1 == −0.9444..., x2 = −0.943417831..., x3 = −0.943417508210..., x4 = −0.943417507926...

From this, we may guess that the sequence {xn} is increasing and converges to the real zero

c = −0.94341750... as n → ∞.

7. Conclusions, Remarks, and Open Questions

The so-called truncated-exponential-based Appell-type Changhee polynomials eC
∗
n (x) were

introduced. Then certain properties and identities for these new polynomials, such as explicit
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representation, addition formulas, recurrence relations, differential and integral formulas, and some

related inequalities, are presented, together with some integral inequalities involving these polynomials.

The Hermite–Hadamard type inequality (see (54)) captivated many researchers who have produced

a large number of interesting inequalities of this type including its diverse generalizations

(see, e.g., [57,62] and the references cited therein).

In Section 6, zero distributions of the polynomials eC
∗
n (u) (3 ≤ n ≤ 80) have been observed,

experimentally, by using graphs. From (58) and (59), we write the polynomials eC
∗
n (u) in polar form

eC
∗
n (u) =

n

∑
r=0

cr(n) |u|r erθ =
n

∑
r=0

cr(n) |u|r cos(rθ) + i
n

∑
r=0

cr(n) |u|r sin(rθ), (60)

where i =
√
−1.

Questions:

(i) All of the zeros of eC
∗
n (u) (1 ≤ n ≤ 80) are observed to be simple, that is, all the zeros are distinct.

Are the zeros of eC
∗
n (u), when n ∈ N is greater than 80, are distinct?

(ii) Can the observations (a), (b), (c), and (d) in Section 6 as well as some other ones (if any) be

generalized when n ∈ N is greater than 80?.

(iii) From (60), how can we determine (or approximate) |u| and θ such that

eC
∗
n (u) = 0 ⇔

n

∑
r=0

cr(n) |u|r cos(rθ) = 0 =
n

∑
r=0

cr(n) |u|r sin(rθ), (61)

for n ∈ N \ {1}?

For example, since 1±
√

5i
2 are zeros of eC

∗
2 (u), |u| =

√
3/2 and θ = arctan

√
5 satisfy

2

∑
r=0

cr(2) |u|r cos(rθ) = 0 =
2

∑
r=0

cr(2) |u|r sin(rθ).

We may apply Newton–Raphson’s method in (iv), Section 6, to real and imaginary parts of the

right-most side of (60) (or (61)), respectively, to approximate complex zeros of eC
∗
n (u).

Further properties, applications, and theoretical investigation of distributions of zeros of

the polynomials eC
∗
n (u) introduced here are left to the authors and the interested researchers,

for future study.

Author Contributions: The authors have equally contributed to accomplish this research work. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R111A1A01052440).

Acknowledgments: The authors are very grateful to the anonymous referees for their critical and constructive
comments which improved this paper.

Conflicts of Interest: The authors have no conflict of interest.

References

1. Bayad, A.; Hamahata, Y. Poly-Euler polynomials and Arakawa-Kaneko type zeta functions. Funct. Approx.
Comment. Math. 2014, 51, 7–22.

2. Dattoli, G.; Cesarano, C.; Sacchetti, D. A note on truncated polynomials. Appl. Math. Comput. 2003,

134, 595–605. [CrossRef]

3. Khan, S.; Nahid, T. Finding non-linear differential equations and certain identities for the Bernoulli-Euler

and Bernoulli-Genocchi numbers. SN Appl. Sci. 2019, 1, 217. [CrossRef]



Symmetry 2020, 12, 1588 16 of 18

4. Khan, N.; Usman, T.; Choi, J. A new class of generalized polynomials. Turk. J. Math. 2018, 42, 1366–1379.

5. Kim, T. p-adic q-integrals associated with the Changhee-Barnes’ q-Bernoulli polynomials. Integral Transform.
Spec. Funct. 2004, 15, 415–420. [CrossRef]

6. Kim, T.; Kim, D.S. Differential equations associated with Catalan-Daehee numbers and their applications.

RACSAM 2017, 111, 1071–1081. [CrossRef]

7. Kim, T.; Kim, D.S.; Kwon, H.I.; Seo, J.J. Revisit nonlinear differential equations associated with Bernoulli

numbers of the second kind. Glob. J. Pure Appl. Math. 2016, 12, 1893–1901.

8. Kim, D.S.; Kim, T.; Seo, J.J. A note on Changhee polynomials and numbers. Adv. Stud. Theor. Phys. 2013,

7, 1–10. [CrossRef]

9. Kim, D.S.; Kim, T.; Seo, J.J.; Lee, S.-H.; Schork, M. Higher-order Changhee numbers and polynomials.

Adv. Stud. Theor. Phys. 2014, 8, 365–373. [CrossRef]

10. Kim, T.; Kim, D.S. A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 2016, 23, 88–92.

[CrossRef]

11. Kurt, B. Notes on the poly-Korobov type polynomials and related polynomials. Filomat 2020, accepted.

12. Kurt, V. On the generalized q-poly-Euler polynomials of second kind. Filomat 2020, accepted.

13. Kurt, B.; Simsek, Y. Notes on generalization of the Bernoulli type polynomials. Appl. Math. Comput. 2011,

218, 906–911. [CrossRef]

14. Lee, J.G.; Jang, L.-C.; Seo, J.-J.; Choi, S.-K.; Kwon, H.I. On Appell-type Changhee polynomials and numbers.

Adv. Differ. Equ. 2016, 2016, 160. [CrossRef]

15. Luo, Q.M.; Guo, B.N.; Qi, F.; Debnath, L. Generalization of Bernoulli numbers and polynomials. Int. J. Math.
Math. Sci. 2003, 61, 3769–3776. [CrossRef]

16. Ozden, H.; Cangul, I.N.; Simsek, Y. Generalized q-Stirling numbers and their interpolation functions. Axioms
2013, 2, 10–19. [CrossRef]

17. Simsek, Y. New families of special numbers for computing negative order Euler numbers and related

numbers and polynomials. Appl. Anal. Discret. Math. 2018, 12, 1–35. [CrossRef]

18. Wang, N.L.; Li, H. Some identities on the higher-order Daehee and Changhee numbers. Pure Appl. Math. J.
2015, 5, 33–37.

19. Andrews, L.C. Special Functions for Engineers and Applied Mathematicians; Macmillan Publishing Company:

New York, NY, USA, 1985.

20. Schur, I. Einige Sätze über primzahlen mit anwendungen auf irreduzibilitätsfragen I. Sitzungsberichte Preuss.
Akad. Wiss. Phys.-Math. Klasse 1929, 125–136, Also in Gesammelte Abhandlungen, Band III, 140–151.

21. Schur, I. Einige Sätze über primzahlen mit anwendungen auf irreduzibilitätsfragen II. Sitzungsberichte Preuss.
Akad. Wiss. Phys.-Math. Klasse 1929, 370–391, Also in Gesammelte Abhandlungen, Band III, 152–173.

22. Coleman, R. On the Galois groups of the exponential Taylor polynomials. Enseign. Math. 1987, 33, 183–189.

23. Erdös, P. A theorem of Sylvester and Schur. J. Lond. Math. Soc. 1934, 9, 282–288. [CrossRef]

24. Ali, M.; Khan, S. Finding results for certain relatives of the Appell polynomials. Bull. Korean Math. Soc. 2019,

56, 151–167. [CrossRef]

25. Araci, S.; Riyasat, M.; Nahid, T.; Khan, S. Certain results for unified Apostol type-truncated

exponential-Gould-Hopper polynomials and their relatives. arXiv 2006, arXiv:2006.12970v1.

26. Barakat, R. Evaluation of the incomplete Gamma function of imaginary argument by Chebyshev polynomials.

Math. Comput. 1961, 15, 7–11. [CrossRef]

27. Belingeri, C.; Dattoli, G.; Khan, S.; Ricci, P.E. Monomiality and multi-index multi-variable special polynomials.

Integral Transforms Spec. Funct. 2007, 18, 449–458. [CrossRef]

28. Choi, J.; Jabee, S.; Shadab, M. Some identities associated with 2-variable truncated exponential based Sheffer

polynomial sequences. Commun. Korean Math. Soc. 2020, 35, 533–546. [CrossRef]

29. Chung, W.S.; Hassanabadi, H. Truncated exponential polynomials and truncated coherent states.

Eur. Phys. J. Plus 2020, 135, 556. [CrossRef]

30. Dattoli, G.; Migliorati, M. The truncated exponential polynomials, the associated Hermite forms and

applications. Int. J. Math. Math. Sci. 2006, 2006, 98175. [CrossRef]

31. Dattoli, G.; Ricci, P.E.; Marinelli, L. Generalized truncated exponential polynomials and applications.

Rend. Istit. Mat. Univ. Trieste 2002, 34, 9–18.

32. Dattoli, G.; Torre, A.; Carpanese, M. The Hermite-Bessel functions: A new point of view on the theory of

generalized Bessel functions. Radiat. Phys. Chem. 1998, 3, 221–228.



Symmetry 2020, 12, 1588 17 of 18

33. Gori, F. Flattened Gaussian beams. Opt. Commun. 1994, 107, 335–341. [CrossRef]

34. Joung, H. Asymptotic expansions of recursion coefficients of orthogonal polynomials with truncated

exponential weights. Nagoya Math. J. 2002, 165, 79–89. [CrossRef]

35. Khan, S.; Yasmin, G.; Ahmad, N. On a new family related to truncated exponential and Sheffer polynomials.

J. Math. Anal. Appl. 2014, 418, 921–937. [CrossRef]

36. Khan, S.; Yasmin, G.; Ahmad, N. A Note on truncated exponential-based Appell polynomials. Bull. Malays.
Math. Sci. Soc. 2017, 40, 373–388. [CrossRef]

37. Kumam, W.; Srivastava, H.M.; Wani, S.A.; Araci, S.; Kumam, P. Truncated-exponential-based Frobenius-Euler

polynomials. Adv. Differ. Equ. 2019, 2019, 530. [CrossRef]

38. Srivastava, H.M.; Araci, S.; Khan, W.A.; Acikgöz, M. A note on the truncated-exponential based Apostol-type

polynomials. Symmetry 2019, 11, 538. [CrossRef]

39. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science

Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012.

40. Lim, D.; Qi, F. On the Appell type λ-Changhee polynomials. J. Nonlinear Sci. Appl. 2016, 9, 1872–1876.

[CrossRef]

41. Conway, J.B. Functions of One Complex Variable, 2nd ed.; Springer: New York, NY, USA; Berlin/Heidelberg,

Germany, 1978.

42. Appell, P. Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 1880, 9, 119–144. [CrossRef]

43. Boas, R.P.; Buck, R.C. Polynomial Expansions of Analytic Functions; Springer: Berlin/Heidelberg, Germany, 1964.

44. Bretti, G.; Cesarano, C.; Ricci, P.E. Laguerre-type exponential and generalized Appell polynomials.

Comput. Math. Appl. 2004, 48, 833–839. [CrossRef]

45. Bretti, G.; He, M.X.; Ricci, P.E. On quadrature rules associated with Appell polynomials. Int. J. Appl. Math.
2002, 11, 1–14.

46. Bretti, G.; Natalini, P.; Ricci, P.E. Generalizations of the Bernoulli and Appell polynomials. Abstr. Appl. Anal.
2004, 7, 613–623. [CrossRef]

47. Bretti, G.; Ricci, P.E. Multidimensional extensions of the Bernoulli and Appell polynomials. Taiwanese J. Math.
2004, 8, 415–428. [CrossRef]

48. Dattoli, G.; Ricci, P.E.; Cesarano, C. Differential equations for Appell type polynomials. Fract. Calc. Appl. Anal.
2002, 5, 69–75.

49. Douak, K. The relation of the d-orthogonal polynomials to the Appell polynomials. J. Comput. Appl. Math.
1996, 70, 279–295. [CrossRef]

50. He, M.X.; Ricci, P.E. Differential equation of Appell polynomials via the factorization method.

J. Comput. Appl. Math. 2002, 139, 231–237. [CrossRef]

51. Ismail, M.E.H. Remarks on differential equation of Appell polynomials via the factorization method.

J. Comput. Appl. Math. 2003, 154, 243–245. [CrossRef]

52. Roman, S. The Umbral Calculus; Academic Press: New York, NY, USA, 1984.

53. Sheffer, I.M. A differential equation for Appell polynomials. Bull. Am. Math. Soc. 1935, 41, 914–923.

[CrossRef]

54. Shohat, J. The relation of the classical orthogonal polynomials to the polynomials of Appell. Am. J. Math.
1936, 58, 453–464. [CrossRef]

55. Szegö, G. Orthogonal Polynomials; American Mathematical Society: Providence, RI, USA, 1939.

56. Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge,

UK, 2001.

57. Set, E.; Choi, J.; Çelık, B. Certain Hermite–Hadamard type inequalities involving generalized fractional

integral operators. RACSAM 2018, 112, 1539–1547. [CrossRef]

58. Wade, W.R. An Introduction to Analysis, 4th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2010.

59. Kuijlaars, A.B.J.; Assche, W.V. The asymptotic zero distribution of orthogonal polynomials with varying

recurrence coefficients. J. Approx. Theor. 1999, 99, 167–197. [CrossRef]

60. Martínez-Finkelshteina, A.; Martínez-González, P.; Orive, R. On asymptotic zero distribution of Laguerre

and generalized Bessel polynomials with varying parameters. J. Comput. Appl. Math. 2001, 133, 477–487.

[CrossRef]



Symmetry 2020, 12, 1588 18 of 18

61. Sheil-Small, T. Complex Polynomials; Cambrige University Press: Cambridge, UK, 2002.

62. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; RGMIA

Monographs; Victoria University: Melbourne, Australia, 2000.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


	Introduction and Preliminaries
	Truncated-Exponential-Based Appell-Type Changhee Polynomials
	Differential Formulas
	Integral Formulas
	Inequalities Involving Integrals
	Zero Distributions of the Polynomials e Cn*(u) Via Graphical Approach
	Conclusions, Remarks, and Open Questions
	References

