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 Information about blood vessel structures influences a lot of diseases in  
the medical realm. Therefore, for proper localization of blood vessels,  
its contrast should be enhanced properly. Since the blood vessels from all  
the medical angio-images have almost similar properties, a unified approach 
for the contrast enhancement of blood vessel structures is very useful.  
This paper aims to enhance the contrast of the blood vessels as well as  
the overall contrast of all the medical angio-images. In the proposed method, 
initially, the vessel probability map is extracted using hessian eigenanalysis. 
From the map, vessel edges and textures are derived and summed at every 
pixel location to frame a unique fractional differential function. The resulting 
fractional value from the function gives out the most optimal fractional order 
that can be adjusted to improve the contrast of blood vessels by convolving 
the image using Grunwald-Letnikov (G-L) fractional differential kernel.  
The vessel enhanced image is Gaussian fitted and contrast stretched to get 
overall contrast enhancement. This method of enhancement, when applied to 
medical angio-images such as the retinal fundus, Computerised Tomography 
(CT), Coronary Angiography (CA) and Digital Subtraction Angiography 
(DSA), has shown improved performance validated by the performance 
metrics. 
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1. INTRODUCTION  

Nowadays, a lot of diseases are closely connected with the disorders in the blood vessels such as 
Diabetic Retinopathy (DR) [1], hypertension, cardiovascular [2] and cerebrovascular disorders, and so on. 
The manual marking of blood vessels after image acquisition in the presence of low contrast is a tedious 
procedure that calls for training and expertise [3]. Robust segmentation of vessel structures counts on 
proficient image pre-processing [4] methods that enhance the contrast of blood vessels, removes noise [5], 
eludes non-linear illumination, highlights narrow/small vessels, retains background texture etc.  

Various contrast enhancement methods are used over the years starting from histogram  
equalization [6]. Then, Adaptive Histogram Equalization (AHE) is introduced that uses input/output 
transformations to adaptively change the image contrast in accordance with the spatial attributes. Since it 
imposes problems such as noise amplification and over enhancement; contrast is limited by setting a clip 
limit within the local histogram in Contrast Limited Adaptive Histogram Equalization (CLAHE) [7]. 
Even though contrast is enhanced, brightness is not preserved, and the details in minor gray levels are lost. 
Mean brightness was preserved in Bi-Histogram Equalization (BBHE) but not the original brightness [8]. 
Bilateral filter [9] is rarely used to improve image contrast. But to clearly portray the small blood vessels and 
to achieve suppression of non-vascular structures, the bilateral filter was modified by introducing 
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the vesselness difference obtained from frangi filter [10] in place of the intensity difference in the second 
Gaussian kernel. It gave improved contrast when tested on the retinal fundus image and cerebral DSA 
image [11]. To improve the contrast of blood vessels and to remove noise in the medical angio-images, 
histogram equalization was combined with filters such as Gaussian filtering techniques [12, 13].  

Later, enhancement using differential functions [14] gained interest. G-L definition kernel with  
the fractional differential function adaptively improved the contrast of the edges in the medical image [15].  
It also showed to have good contrast and higher entropy values for five different medical images. It was able 
to preserve the texture as well as similar regions in the image but optimal threshold selection is not robust. 
High boost filtering also improves the contrast and sharpness of the retinal fundus image with kernel size 
21×21, but it poorly preserves the edges [16]. Top hat transform with multiple sized structuring elements [17] 
enhances the vessel contrast by adding the bright features from white top hat transform and neglecting  
the dim features from black top hat transform to the original grayscale image. Here the choice of variable 
sized structuring elements poses a problem in the proper enhancement of the angiogram images. A two-axis 
Principle Component Analysis (PCA) based coronary angiogram enhancement reduces noise as well as 
preserves the blood vessels. One axis is set for vessels extracted from the frangi filter and the other for  
the background that is separately enhanced in the PCA domain. Here, there is no clear mention of setting  
the threshold for both the vessels and background [18]. 

Generally, contrast enhancement should be simple and less complex as this is a preprocessing  
step [19]. Also, it should be adaptive to all images obtained from varied image sources with similar 
properties. All the above mentioned existing methods were capable to enhance the contrast only on specific 
image sources. Hence, it is tiresome and time-consuming to use varied preprocessing methods for blood 
vessels obtained from multiple sources such as the retinal fundus, lung, coronary and cerebrum. 
Therefore, designing a unified adaptive framework for contrast enhancement of blood vessels is significant. 
From the literature, it is found that the fractional differential based enhancement is proficient enough to 
enhance the contrast [20, 21] as well leave the similar pixel regions unaltered in the images obtained from 
multiple sources. Thus, in this paper, a novel unified adaptive fractional differential function for the contrast 
enhancement is framed with the aid of edge and texture smoothed information obtained from the vesselness 
measure. Edge and texture information associated with the vesselness measure is chosen since fractional 
differentials are proved to highlight the edges and preserve the textures [22]. This function when fed to  
the G-L kernel gives out the optimal fractional order to enhance the contrast of the blood vessels.  
The prominent advantage in framing the differential function is that it evades trial and error methods such as 
single/multilevel thresholding [23, 24] or certain area features. Further, the blood vessel contrast enhanced 
image is histogram stretched using Gaussian fitting to enhance the overall contrast.  

The proposed method uses the medical angio-images from the retinal fundus, CA, CT of lung and 
DSA of the brain as its input. The resulting images after applying the proposed method are found to improve 
the contrast of the blood vessels as well the contrast of the entire image. This method of contrast 
enhancement is proved promising by analyzing the enhanced images using the perceptive and quantitative 
analysis in the discussion section. 
 
 
2. PROPOSED METHOD 

In this paper, a universal adaptive framework is designed to enhance the contrast of blood vessels, 
preserve background textures and similar pixel regions. It is termed universal as it can ably enhance the blood 
vessel structures in medical images retrieved from multiple imaging modalities. Adaptive refers to the fact 
that the vessel and non-vessel pixels in an image are processed separately. Here, we exploit the merits of 
hessian eigenanalysis, adaptive fractional differential function, G-L kernel, and histogram fitting to achieve 
the contrast enhancement. The proposed algorithmic workflow is depicted as a block diagram in Figure 1. 
This section explains the Figure 1 in detail. 

From Figure 1, it is clear that the grayscale image is used as the input or just the green plane is 
extracted in case if the input F(x,y) is an RGB image. Blood vessel probability map is obtained using  
the vesselness measure framed from hessian eigenanalysis. Vesselness measure Vσ(x,y) uses the eigenvalues 
λ1 and λ2 computed from the Hessian matrix at every pixel location. Hessian matrix is obtained by convolving 
every pixel in the input image with the second order derivatives of the Gaussian filter. Vessel probability map 
V(x,y) calculation is given in (1), (2) and (3). 
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Where parameters β and c are the weighing factors, r denotes the deviation from a blob-like 

structure and s denotes the hessian norm that differentiates between vessel pixels and the background.  
The resulting grayscale image, V(x,y) will be in the range [0, 1]. To identify the vessel structures with varied 
diameters, the vesselness measure Vσ(x,y) is computed at scales ranging from 0.5 to 2 but its maximum value 
is retained.  
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The resulting grayscale image consists of both the small and large vessel pixels. The major 

disadvantage of this approach is that it is inherently local and it never considers its neighboring vessel 
evidence [25]. Therefore, the neighboring pixel intensities of vessels are also considered in this paper. 

 
 

 
 

Figure 1. Block diagram of the proposed method 
 
 

2.1. G-L adaptive fractional differential kernel 
Fractional differentials [26] are superior to integer differentials when it comes to image 

enhancement as it can improve the high-frequency image contrast while preserving low-frequency 
information in images [27]. Grunwald–Letnikov (G-L) definition based kernel is adopted in this paper to 
adjust the fractional order of the medical image adaptively. According to the G-L definition, the q-order 
fractional differentiation of a 1D signal f(t) with equal intervals is expressed in (4) 
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Similarly, for the vesselness image V(x,y) with equal neighboring distance, the backward difference 

of q-order fractional differential on the negative x and y-axes is given as follows: 
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It is obvious in (5) and (6) that the first coefficient of the image V(x,y) is 1 and it is a constant 

whereas the remaining coefficients depend on the fractional order q. Hence, the total sum of all  
the coefficients in (5) and (6) is nonzero as is opposed to integer differentials. Also in areas of gradual 
changes in the slope, fractional differentials have a specific value that is neither zero nor a constant whereas 
in integer differentials it is a constant. In similar pixel regions, fractional differentials gradually vary from  
a specific value to zero whereas in integer differential it is zero. Therefore, it is proven that fractional 
differentials enhance the edge related information, preserves the texture related information while leaving  
the smooth regions undisturbed. By leaving the smooth regions unaltered, the background non-vessel 
structures remain the same which is an advantage over classical enhancement approaches. Basic kernels x 
and y obtained from (5) and (6) are given in (7). G-L fractional differential kernel K of window size 5×5 is 
obtained by rotating the basic kernels x and y at each 45° orientation. Kernel K is given in (8). 
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2.2. Design of the adaptive fractional differential function 
Classical fractional differentials use a single fractional order such as higher or lower fractional order 

to process certain regions of interest in the image. In such a case, higher frequencies will be preserved when 
the higher fractional order is selected and lower frequencies are preserved when the fractional order is low.  
In this paper, a unique adaptive fractional differential function is designed to provide the most optimal 
fractional order for contrast improvement. Each pixel in the image is approximated with a fractional order 
obtained using the adaptive fractional differential function. This fractional order when substituted in K helps 
in adjusting the contrast of the blood vessels.  

Information about the edge [28] and texture [29] plays an important role in improving the contrast. 
Also, it is well proven that G-L kernel is capable to enhance the edges and preserve the textures. Hence, from 
the local vessel probability map, we extract the edge and texture maps to highlight its edge and preserve its 
texture related information. Laplacian of Gaussian (LOG) operator gives the edge points whereas  
the computation of standard deviation paints a picture of texture patterns inscribed in the image. 
Since the edge and texture patterns obtained from the vesselness map is inherently local, its neighborhood 
dependency is considered. Here, the 8 neighborhood dependency of the edge and texture map is obtained by 
a simple 3×3 averaging filter operation. The advantage of averaging is that it smoothens the edge and texture 
information of blood vessels and removes noise. It also takes the neighboring pixel intensity into 
consideration which makes it less locally inherent. The adaptive fractional differential function is framed by 
combining the edge and texture smoothed information at every pixel location. The computation of  
the proposed q-order adaptive fractional differential function is given in (9). 
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Where, a(s, t) is the averaging filter kernel and ELOG(x, y) is obtained by convolving the 5×5 LOG 
operator on the vessel probability map. TSD(x, y) is obtained by replacing every pixel in the vessel probability 
map with the standard deviation of its 8 neighborhood pixels. This q-order is the optimal adaptive fractional 
order that can be adjusted by substituting in K and convolving with the input image. Convolution operation 
of input F(x,y) with the kernel K to get the blood vessel contrast-enhanced image Fce(x,y) is given in (10).  
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The fractional order is adjusted adaptively for both blood vessel and non-vessel structures at every 

pixel location in the image. The contrast is improved as it enhances the edges and preserves the texture 
information of blood vessels. Also, it preserves the background and leaves the smooth regions unaltered. It is 
simple, less complex and adaptive to each and every pixel in the image. 

It is found that the histogram of the blood vessel enhanced image follows a Gaussian distribution. 
Therefore, Gaussian fitting is used to find the lower and upper limits for contrast stretching. The Gaussian 
function u(x) is used to fit the histogram of Fce(x,y) using least squares algorithm and is expressed in (10). 
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Where, the parameters p, a, b represents the peak, mean and width of the Gaussian distribution. 
Hence, the lower and upper limits [umax, umin] are found as [a-2b, a+2b] so as to cover 95% of pixels in  
the blood vessel enhanced image. The entire image is contrast-enhanced after contrast stretching. 

In the vessel enhanced image from Figure 2, the blood vessels are clearly enhanced, the background 
preserved and the smooth regions left unaltered. This shows the effectiveness of adaptive fractional 
differentials over integer differentials. The edge strength is highly enhanced whereas the texture strength is 
preserved. Also, it doesn’t weaken the non-vessel regions like other classical vessel enhancement algorithms. 
Overall image contrast is improved using Gaussian fitting and contrast stretching.  

 
 

 
 

Figure 2. Pictorial representation of the proposed approach 
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3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

3.1. Dataset 
The datasets used for validating the results of the proposed algorithm are taken from four different 

medical image sources. They include the 2D retinal image, DSA of the brain and Coronary Angiogram of  
the heart and CT of the lung. Retinal fundus images are taken from three popular databases namely Digital 
Retinal Images for Vessel Extraction (DRIVE) [30], STructured Analysis of the Retina (STARE) [31] and 
High Resolution Fundus (HRF) [32]. Twenty test images from DRIVE and STARE (set for vessel 
segmentation) and 15 images from HRF (DR patients) are clubbed together as the retinal dataset in this 
paper. CT, CA and DSA images are obtained from freely available web sources. CT of lung image dataset 
consists of 13 images with and without pathological conditions. Coronary Angiogram (CA) data comprises of 
16 images taken from arbitrary patients depicting both the right and left artery of heart with normal and 
various cardiovascular ailments. DSA of brain dataset comprises of 16 images taken from patients with 
normal and abnormal brain symptoms.  

 
3.2. Analysis 

The implementation of the proposed algorithm is done in MATLAB academic version 2016.  
The angio-images obtained from the datasets follow the steps given in section 2. The resulting contrast 
enhancement is discussed both perspectively and quantitatively. 

 
3.2.1. Perspective analysis 

The contrast-enhanced images obtained from the proposed enhancement are compared against 
various existing methods for the four datasets. It is depicted in Figures 3-6. Modified bilateral filter, which is 
used to enhance the retinal fundus image as seen in Figures 3(b) and 6(d) gives a moderate overall contrast-
enhanced image. It also well delineates small vessel structures. Combination of HE and Gaussian method 
blurs the image greatly as seen in Figure 3(c). High boost filtering technique in Figure 3(d) is unable to 
preserve the edges. 

Constant q-orders are obtained by substituting constant values to the kernel K and convolving with 
the input image. For reference, three q-orders namely 0.5, 0.7 and 0.9 are considered in this paper for 
comparison. Constant q-order of 0.5 shown in Figures 3(e), 4(e), 5(e) and 6(e) improves the low-frequency 
components in the image leaving any higher intensity in the image. Also, q-order of 0.7 intensifies higher 
intensity edge components in the image. It slightly includes noise and blurring as shown in Figure 3(f), 4(f), 
5(f) and 6(f). Higher q-order of 0.9 completely increases the edge information and other noise in the image.  
It is shown in Figure 3(g), 4(g), 5(g) and 6(g). It makes the image unuseful. On the other hand, adaptive  
q-order framed using the proposed method improves the contrast of edges and preserves the texture, leaving 
similar pixel regions unchanged. Also, contrast enhancement using Gaussian fitting well enhances the overall 
contrast of the image as shown in Figure 3(h), 4(h), 5(h) and 6(h). 

From the Figures 4(b), 5(b) and 6(b), it is evident from the perspective analysis [33] that CLAHE 
locally enhances the contrast of the image unlike HE, but still its contrast is poor and has ring artifacts in 
regions of strong edges. From Figure 4(c), the multi-scale top hat filtering technique tends to achieve better 
contrast but it is indiscriminate to noise and interference. 2-axis PCA method effectively enhances the image 
as seen in Figure 4(d) but principal component and threshold selection for the vessel and non-vessel regions 
is not clear. 

Histogram Equalization combined with Gaussian filtering method tends to smooth the image and 
enhance the unwanted information as seen in Figure 5(c). G-L based adaptive contrast enhancement which 
takes the area features to frame the q-order is shown in Figure 5(d). But threshold setting is not optimal for 
all CT images and contrast enhancement is still moderate. From Figure 6(c), it is clear that though BBHE 
improves the contrast and brightness, it does not preserve the original brightness of the angio-image.  

Perceptional analysis vividly proves that the proposed contrast enhancement method has given 
favorable results by improving both the contrast of the blood vessels and the contrast of the entire image.  
In the enhanced image, it is noted that compared to the existing methods, the fractional differential function 
is adaptive to each and every pixel in the image. The convolution of the designed G-L fractional function 
with the input image adaptively enhances the contrast by not disturbing the similar pixel properties. It is seen 
that this single method is capable to improve the contrast of the blood vessels in the medical angio-images 
obtained from four different imaging sources namely the retinal fundus, coronary angiogram, CT of the lung, 
and DSA of the brain. 
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Figure 3. (a) Original retinal image from DRIVE, (b-d) resulting image from methods in [11, 13, 16],  
(e-g) resulting image for q orders 0.5, 0.7, 0.9, (h) enhanced image after applying the proposed method 

 
 

 
 

Figure 4. (a) Original CA image, (b-d) resulting image after applying CLAHE, methods in [17, 18],  
(e-g) resulting image for q orders 0.5, 0.7, 0.9, (h) enhanced image after applying the proposed method 

 
 

 
 

Figure 5. (a) Original CT image, (b-d) resulting image after applying CLAHE, methods in [12, 15],  
(e-g) resulting image for q orders 0.5, 0.7, 0.9, (h) enhanced image after applying the proposed method 
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Figure 6. (a) Original DSA image, (b-d) resulting image after applying  CLAHE, BBHE and method in [11], 
(e-g) resulting image for q orders 0.5, 0.7, 0.9, (h) enhanced image after applying the proposed method 

 
 
3.2.2. Quantitative analysis 

The quantitative evaluation measures that are used to validate the contrast of the proposed method 
includes the Contrast (C), Contrast Improvement Index (CII), Absolute Mean Brightness Error (AMBE), 
Entropy (E) and Enhancement Measure by Entropy (EME). The evaluation measures with the formula and 
parameters are tabulated in Table 1. Local contrast C is obtained by sliding the 3×3 window over the entire 
image and at each window, the newly computed Amax and Amin are summed up to the previous Amax and Amin 
values. Then these values are substituted in the calculation of C. Higher values for both the C and CII 
measure shows improvement in the contrast of the image. Lower values of AMBE confirm that the original 
brightness is preserved. Both E and EME values should be reasonably high for the image to have better 
contrast. Extreme high and low values of E, EME, C, and CII make the image look unnatural, hence it is not 
acceptable. Using the quantitative performance metrics, the input images from all the four datasets are 
compared against various contrast enhancement methods. They are listed in Tables 2-5. 
 
 

Table 1. List of contrast enhancement evaluation measures 
Measure Formula Parameters 

Contrast (C) 
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the enhanced angio-image Â 
Amax: maximum intensity of Â 
Amin: minimum intensity of Â 

Contrast Improvement Index (CII) 
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en

C

C
CII   

Co: Contrast of the input angio-image  
Cen: Contrast of the enhanced image 

Absolute Mean Brightness Error (AMBE) |ˆ| AAAMBE   A: mean value of input angio-image 
Â: mean value of enhanced angio- image 

Entropy (E) 𝐸 = −∑ 𝑃𝑎𝑎 × 𝑙𝑜𝑔2𝑃𝑎   Pa: Normalized histogram count of the input  
a: no. of. gray levels in the histogram 

Enhancement Measure by Entropy (EME) 𝐸𝑀𝐸 = 1𝐿∑ 20 × 𝑙𝑜𝑔(𝐴𝑚𝑎𝑥(𝑖)𝐴𝑚𝑖𝑛(𝑖))𝐿𝑖=1   L: no. of. blocks (L=16) 

 
 

Table 2. Evaluation of performance measures for images in the retinal fundus dataset 
Measure Method AMBE E C CII EME 

Input image - 6.12307 0.026723 - 13.42804 
CLAHE 5.261177 6.98194 0.03414 1.308413 25.77123 

Method in [11] 24.94107 6.4676 0.036083 1.383317 10.66022 
Method in [13] 39.55723 7.28862 0.044903 1.72065 14.3942 
Method in [16] 12.88636 6.453943 0.048497 1.88547 12.42763 

0.5 order 14.07818 6.113863 0.133397 5.130157 12.9962 
0.7 order 13.63913 6.17138 0.184377 7.107467 13.6395 
0.9 order 12.00983 6.157237 0.410507 15.79373 9.557937 

Proposed method 13.589 7.347707 0.128413 4.907567 15.1836 
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Table 3. Evaluation of performance measures for images in CA dataset 
Measure Method AMBE E C CII EME 

Input image - 6.96719 0.02824 - 12.1439 
CLAHE 27.4926 7.50488 0.04716 1.6352 28.0978 
Method in [17] 32.1932 7.34596 0.09229 3.5901 17.7819 
Method in [18] 32.3372 6.62472 0.0758 2.98916 11.1121 
0.5 order 20.8321 7.33102 0.16567 6.97502 15.8301 
0.7 order 18.3378 7.09987 0.60335 28.1236 6.46145 
0.9 order 18.5237 6.89321 0.86644 40.8345 1.12696 
Proposed method 24.4346 7.59999 0.1181 4.87974 17.4148 

 
 

Table 4. Evaluation of performance measures for images in CT dataset 
Measure Method AMBE E C CII EME 

Input image - 6.67682 0.09607 - 19.6567 
CLAHE 23.3205 7.49591 0.08446 0.92943 19.6955 
Method in [12] 24.1028 6.76261 0.15762 1.67279 23.0912 
Method in [15] 24.7175 6.68556 0.13621 1.79379 16.6225 
0.5 order 18.8462 5.37821 0.45434 5.81231 5.08266 
0.7 order 21.2028 5.49864 0.51387 6.471 2.68639 
0.9 order 23.6942 5.6649 0.65372 8.47113 4.48314 
Proposed method 27.2101 7.50798 0.25467 3.15121 19.6642 

 
 

Table 5. Evaluation of performance measures for images in DSA dataset 

 
 
After careful analysis of the results in Tables 2, 3 4 and 5, the following conclusions are drawn. 

AMBE values for the proposed enhancement are not much improved when compared to CLAHE and some 
other methods. But highest entropy E shows that the contrast is well preserved by the proposed method.  
C and CII values for the proposed method are higher, significant and acceptable whereas, for the 0.5, 0.7 and 
0.9 q-orders, the values show a very sharp increase which is unacceptable. EME is an important measure that 
well denotes the contrast enhancement. Very low values for EME affect the contrast, as well as very high 
values for CLAHE, leads to excessive contrast enhancement making the image look unnatural. EME for  
the proposed enhancement is well balanced as given in Tables 2, 3, 4 and 5 which clearly justifies  
the improved contrast of the blood vessel structures.  

Analysis of the contrast enhancement of the proposed approach both perspectively and 
quantitatively proves that the contrast is well enhanced on all the four medical angio-images. Moreover,  
it preserves the texture details, enhances the contrast of the blood vessels and also it does not change  
the similar pixel regions in the images. Unchanged similar pixel region is an added advantage when 
compared to other enhancement approaches. This method is universal, novel, less complex and superior to 
other existing contrast enhancement methods for blood vessels. 

 
 

4. CONCLUSION  
Contrast enhancement of the medical angio-images is a prerequisite which has an edge over other 

methods for effective screening and diagnosing of blood vessel related disorders. In this paper, a unified 
adaptive contrast enhancement framework is proposed. Here, the design of adaptive optimal q-order for  
the G-L kernel includes both the edge and texture smoothed information taken from the vessel probability 
map. Clearly, the proposed method enhances the contrast of the blood vessels, preserves textures and leaves 
the smooth information unaltered. Therefore, the blood vessels are enhanced in the image. This vessel 
enhanced image is then contrast stretched using a Gaussian curve fitting to enhance the overall contrast of  
the image. The proposed contrast enhancement is tested on the retinal fundus image, CA of the heart, CT of 
the lung and DSA of the brain. All the evaluation measures for contrast improvement are tabulated and 
analyzed in comparison to other existing approaches to show that this method can be effectively used for 

Measure Method AMBE E C CII EME 
Input image  5.51423 0.04033 - 9.38165 
CLAHE 5.4081 6.84235 0.05466 1.45951 19.2205 
BBHE 19.1256 5.37615 0.07252 1.93997 25.369 
Method in [11] 42.243 5.72747 0.07738 1.98427 8.24737 
0.5 order 41.6645 6.70563 0.2569 8.01018 9.98095 
0.7 order 39.7104 6.85663 0.31831 9.66469 10.2542 
0.9 order 45.4487 6.8566 0.78939 24.357 2.88069 
Proposed method 35.8682 6.87196 0.19748 5.69191 10.41405 
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universal medical angio-image enhancement. The proposed method is simple, adaptive, universal, contains 
minimal complexity, and far more effective in enhancing the contrast of blood vessels as well as the image 
contrast as an overall feature. 
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