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Abstract 

This study aims to examine the  dispersion of a passive con-

taminant of solute released  in Casson liquid flow through a 
tube. The wall of the tube is taken to be chemically active where 
the flow is driven by the constant pressure gradient. To evalu-

ate the transport coefficients, Aris-Barton’s Moment technique 
is considered, a finite difference implicit scheme is adopted 
to handle the differential equation arises in moment method-

ology. Also to confirm the results obtained by Aris-Barton’s 
method,  the generalized dispersion model has been applied. 
Unlike the previous studies on dispersion in Casson liquid, the 
time-dependent behavior of the transport coefficients has been 
established. Some significant observations have been founded, 
e.g. exchange coefficient is independent of yield stress while the 
convection coefficient and dispersion coefficient are inversely 
proportional to yield stress. Results reveal that transport coef-

ficients are enormously affected by wall absorption. 

Keywords 

casson liquid, longitudinal dispersion, irreversible boundary 
absorption

1 Introduction

The process of dispersion is a classical mechanism to measure 

the rate of spreading of the species in a flowing stream. The stud-

ies on dispersion have been extensively applied to chemical engi-

neering [1, 2], environmental protection [3–7] and so many and 

so forth. The classical attempt of this type of investigation was 
initiated by Taylor [8] in 1953. He observed that fluid was dis-

persed about a point moving with mean velocity  U  of flow with 
an apparent diffusion coefficient     a   2   U   2 

 
____

 
48D

     where,  D  is the molecular 

diffusion coefficient and  a  is the radius of the tube, but this is 

valid only in specific ambiance ( 4 6 9L

A

Ua

D
  . , where,  L  and  A  

be the length and cross-sectional area of the tube respectively). 
In 1956, Aris [9] generalized Taylor’s idea of removing the 

restrictions imposed by Taylor to include longitudinal diffusion 

and introduced a new technique called, the “Method of Moment” 
for measuring the diffusion coefficient on the same geometry. 
Further, Barton in 1982 [10] identified some technical obstacles in 
the solution method provided by Aris and resolved them accord-

ingly. Gill and Sankarasubramanian (1971) [11] introduced a dif-
ferent approach known as “Generalized Dispersion Model” to 
find the effective dispersion coefficient. The authors studied the 
same where he considered solute reacting with the wall of the 
pipe. Both Aris-Barton approach and Sankarasubramanian and 
Gill approach are valid for small as well as large time. Chatwin 
[12]  studied the diffusion of the solute in oscillatory flow. Purtell 
[13] studied the impact of flow oscillations on the axial diffusion 
by a perturbation method. Ng [14], and Mazumder and Paul [15] 
examined dispersion process in presence of reversible and irre-

versible reactions in the boundary. Imposing the method of inte-

gral moments, the analysis of longitudinal dispersion of solute 

in a periodic flow between two coaxial cylinders was presented 
by Paul [16] to determine the longitudinal dispersion coefficient 
with the variation of each of radius ratio, absorption parameter, 
and frequency parameter. Using asymptotic analysis with respect 
to pipe thickness, the transport of a reactive solute by diffusion 
and convection in a thin (or long) curved and circular pipes was 
considered by Pažanin [17, 18].

The study of dispersion through non-Newtonian fluids has 
abundant applications in polymer processing, biochemical 
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processing, and cardiovascular system. In particular, the study 
of dispersion in Casson fluids has applications in physiological 
fluid dynamics, chemical engineering etc. Charm and Kurland 
[19] claimed that under certain specific environment blood 
behaves like Casson fluid. In 1964, Fan [20] extended the 
study of Taylor’s analysis of Newtonian fluid into a non-New-

tonian fluid (Ostwald-de Waele fluid) in a circular tube. He 
also analyzed the dispersion of  solute accompanying the flow 
of the Bingham Plastic and Ellis model fluid [20] as well and 
studied the corresponding effect of Taylor’s limiting condition 

on these two models. Sukla [21] investigated the first-order 
chemical reaction of solute in non-Newtonian fluids flowing 
through parallel plates and circular tubes by considering the 

following models: (i) Power law model, (ii) Bingham model, 
(iii) Casson model. Sharp [22] analyzed the dispersion in non-
Newtonian fluids (Casson, Bingham plastic and power law 
fluids) through conduits using Taylor-Aris dispersion theory 
which is valid after a large time. This study was extended by 
Dash et al. [23] for Casson fluids using the generalized disper-
sion model and they discussed the application of their study in 

blood flow analysis. Nagarani et al. [24] studied the effect of 
wall absorption on dispersion in Casson fluid flow in a conduit 
and extended the theory in an annular pipe in the subsequent 
paper [25]. In recent days, a large number of articles [26–29]  
are widely available in the literature to understanding the dis-

persion process in this respect.
Though a number of attempts on the dispersion of Casson 

liquid are available in the literature, but all the attempts 
restricted themselves to study the behavior of transport coef-

ficient under steady state. In the present analysis, we tried to 
overcome this difficulty and study the time-dependent behav-

ior of transport coefficient.

2 Mathematical Model

A unidirectional, axial, fully-developed flow of an 
incompressible liquid through a circular pipe of radius a  is 

considered. 
Fig. 1 shows the flow geometry with cylindrical coordinate 

system where the axial and radial coordinates are represented 
by z  and r  (bar denotes dimensional quantity). Axi-symmetry 
is assumed and hence all quantities are independent of   θ .

We assume that Casson liquid occupies the region

Rc r z r a z= ( ) ≤ ≤ −∞ ≤ ≤ ∞{ }, : , .0

Within the Casson liquid region, plug flow is assumed in the 
region:

R p pr z r r z= ( ) ≤ ≤ −∞ ≤ ≤ ∞{ }, :0

The governing equation of motion for the flow in the axial 
direction is given by

− =
∂ ( )
∂

dp

dz r

r

r

zr1 τ
.

Fig. 1 Flow Geometry
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where,  τ  is the yield stress and  µ∞  the Newtonian viscosity 
of the liquid. From the relation (4), it is obvious that whenever   

   ,  z rτ τ≤  plug flow can be seen.
The boundary conditions are

τ
zr

r

u r a

 is   finite at    

             at   

=

= =





0

0

,

,
.

In the uni-directional flow described above, a reactive 
solute with initial concentration ( )0, ,  C r z  is introduced. 
The convection-diffusion equation satisfied by the solute 
concentration ( ), ,  C t r z  is

∂
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⋅
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0for  

for  

Here pr  is the radius of the plug flow region. 1  D and 2  D are 

the constant molecular diffusivities in the plug flow and Casson 
liquid region respectively.  

The initial and boundary conditions for solving Eq. (6) are:

C r z C B r z r a0 00, , , ,( ) = ( ) ( ) < <δ  

∂
∂

= =
C

r
r0 0  at    (Symmetry),

∂
∂

+ = =
C

r
C r aβ 0  at  ,

where ( )B r  is a function of  r and ( )zδ  is the Dirac delta 

function. The absorbing boundary condition at the wall of the 
tube is represented by Eq. (10).

(1)

(2)
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(4)

(5)
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(8)
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The following dimensionless quantities are used
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Using the scaling as in Eq. (11), the initial-boundary value 
problem (IBVP) given in Eqs. (3) - (10) reduces to:

1
4

r

r

r

zr∂ ( )
∂

=
τ

.

τ τ τ τ

τ

zr zr

zr

u

r

u

r

1
2

1
2

1
2

0

= + −
∂

∂









 ≥

∂

∂
= ≤

,

                   ττ ,

.













τ yz r

u r

 is finite at  

           at  

=

= =







0

0 1
.

∂
∂

+ ( ) ∂
∂

=
∂
∂

∂
∂









 +

∂

∂

C

t
u r

C

z

D

r r
r
C

r

D

Pe

C

z

* *

,
2

2

2

D

D

D
r r

r r

p

p

*
,

.

=
≤ ≤

≤ ≤









1

2

0

11

    

         

C r z B r z

z
z

Pe

B r

r0

1

0 1, , ,

.

( ) = ( ) ( ) ( )

( ) = ( )

( ) =













< <ψ

ψ
δ

 

∂
∂

= =
C

r
r0 0 at   .

∂
∂

= − =
C

r
C rβ  at   1.

Here  aβ β=  is the absorption parameter or the first order 
reaction rate and Pe u

a

D
=( )0

2

 is the Peclet number that meas-

ures the ratio of the characteristic time of the diffusion process 

to that of the convection process.

3 Solution for the velocity profile
Solving the IBVP given in Eqs. (12) - (14), we get

τ yz r= 2 ,
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where   u  
p
   , is the velocity in the plug flow region, and  u (r)    is the 

velocity of the remaining portion of the tube. 

Fig. 2 Velocity Profile 

4 Aris-Barton Approach

Following the method of integral moment proposed by 
Aris [9] and then modified by Barton [10], we define the  p -th 

moment of the distribution of the solute in the filament through  
r  in time  t  as,

C t r z C t r z dzp
p, , , .( ) = ( )

−∞

+∞

∫

The average concentration moment over the cross-section of 

the tube is given by,
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Where overbar denotes the cross-sectional mean. 
Using Eq. (23), the diffusion Eq. (15) subject to initial and 

boundary conditions (17) - (19) can be written as:
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Taking average over the cross-section of the tube, Eqs. (25) and 
(26) become,

dC

dt
pu r C

D

Pe
p p C

D C t

p

p p

p

= ( ) + −( )

−

− −1 2 21
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and 

C
Pe

p C pp p0
1

0 0 0 0( ) = = ( ) = >  for      for  , .

The p -th order central moment of the concentration distri-

bution about the mean can be defined as

µ
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where

z
C

C
g =

1

0

is the centroid or first moment of the solute and 0C  represents 

the total mass of the reactive solute in the whole volume of 
the tube.

The expressions for central moments can be obtained from 

Eq. (29) as,
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The zeroth central moment is equal to unity and first cen-

tral moment vanishes. The most important for our study is the 
second central moment   μ  

2
   , which represents the variance of 

the distribution about the mean position whose rate of change 
gives the dispersion coefficient.

The exchange coefficient   K  
0
    can be figured from the way 

that the total mass decays exponentially with time as per the 
following relation:

C t C e
K dt

t

0 0 0
0

0( ) = ( )
−∫

As the center of mass moves at a speed equal to the advec-

tion speed, the advection coefficient   K  
1
    is given by, 

− =K
dz

dt

g

1

Aris [9] showed that the rate of change of variance is pro-

portional to the sum of molecular diffusion coefficient along 
the axial direction and apparent dispersion coefficient (Taylor 
dispersion coefficient). Since the axial diffusion is negligible 
compared to the lateral diffusion, the apparent dispersion coef-

ficient   K  
2
    can be written as

K
d

dt
2

21

2
=

µ
.

The coefficient of skewness   ν  
2
     (=  μ  

3
   /  μ  

2
    

3
 

__
 

2
   )   and kurtosis   

ν  
3
     (=  μ  

4
   /  μ  

2
  2  − 3)   are also important factors for measuring the 

degree of symmetry and peakedness of the concentration distri-
bution respectively. But in the present study, we have restricted 
ourselves to the second moment only i.e.   μ  

2
   .

As the analytical solution of moment equations (for  p > 1 ) 

subject to the initial and boundary conditions for  β ≠ 0  is fairly 
difficult, a finite difference method based on Crank-Nicholson 
implicit scheme has been adopted in this paper to solve the set 

of integral moment equations. 
With this motive, we divide the plug region into   ( M  

1
   − 1)   

equal ingredients, each of length  ∆r
1
  and remaining part of 

the tube into   ( M  
2
   − 1)   equal ingredients, each of length  ∆r

2
 

which is represented by the grid point  j , so that  j = 1  cor-

responds to the  r = 0 ,   j =   M  
2
      corresponds to the boundary of 

the wall  r = 1  and  j =  M  
1
     corresponds to the separation layer 

of the plug and Casson (r = rp ) of the tube, i.e.  r
j
 = (j−1) × ∆r

1
  

in plug region and  r
j
 = r

p 
+

 
( j−1) × ∆r

2
  for other part of the 

region. The grid factor  i  identifies time  t  according to the rela-

tionship t
j
 = ∆t × (i−1) so that  i = 1  corresponds to the time  

t = 0 . ∆t  and ∆r are the increments of  t  and  r , respectively.   C  
p
   

(i, j)   indicates the value of   C  
p
    on the  i -th grid factor along the  t 

-axis and  j -th grid point along  r -axis. The resulting finite dif-
ference equation turns into a process of linear algebraic equa-

tion with a tri-diagonal coefficient matrix, 
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1 1 1
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                         ,, ,j S j−( ) =1

Where   P  
j
   ,   Q  

j
   ,   R  

j
    and   S  

j
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The finite difference form of the initial condition is:
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A MATLAB code has been developed to solve the tri-diago-

nal coefficient matrix by the method of Thomas algorithm [30]  

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(34)

(33)

(35)

(36)

(37)
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with the help of prescribed initial and boundary conditions. The 
steps of computations are:

(i) First, the axial velocity  u  is computed from Eq. (22). 
(ii) The concentration   C  

p
    is calculated from Eq. (25) on 

knowing the values of  u (r)   at the grid point   (i + 1,  j)  .
(iii) Finally the value of  pC is calculated from Eq. (24) by 

applying Simpson’s one-third rule, with the known val-
ues of u(r) and   C  

p
    at the corresponding grid points.

Although the present scheme is linearly stable for any 

finite values of    Δt
 

_____
 

  (Δ  r  
1
  )    2 

    and    
Δt
 

_____
 

  (Δ  r  
2
  )    2 

    , in our analysis, we choose 

∆t = 0.00001,   Δ  r  
1
   =   

 r  
p
   − 0
 

_____
 

 M  
1
   − 1    ,   Δ  r  

2
   =   

 r  
p
  
 

_____
 

 M  
2
   − 1     and  Pe = 103.

The behaviour of the concentration distribution might also 

be acquired from the information of the second, third and four 
order central moments of the distribution. Utilizing these three 
moments, it is possible to approximate the mean axial concen-

tration distribution   C  
m
   (z, t)   of tracers within the flow region 

with the assistance of Hermite polynomial representation for 
non-Gaussian curves [12] which is given by,
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=
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   , the Hermite polynomials,
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Therefore, given the statistical parameters in Eq. (31), the 
concentration distribution can be estimated from Eq. (38) at 
any given location in the axial direction and time.

5 Sankarasubramanian-Gill Approach

We now follow the Sankarasubramanian and Gill [31]  
approach to deal with the concentration distribution and assume 
the following expansion as

C r z t f r t C z t f r t
C

z

f r t
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m

, , , , ,

, ...,

( ) = ( ) ( )+ ( ) ∂
∂

+ ( ) ∂
∂

+

0 1

2

2

2

where   f  k   's  are to be determined and the dimensionless cross-

sectional averaged concentration   C  
m
    is given by

C C z t C r drdm m= ( ) = ∫∫, .
2

2 0

2

0

1

π
θ

π

  

Eq. (41) indicates that the difference in actual and mean 
concentration can be accounted by the convective and diffu-

sive contributions. Integrating Eq. (15) appropriately (cross-
sectional average), we get

∂
∂

= ( )
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∂=

∞

∑
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t
K t
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K t D f t
0 0

2 1( ) = − ( )* , ,β   (Absorbtion Coefficient)
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2 1 2( ) = − ( )− ( ) ( )∫* , , ,β

(Convective Coefficieent)
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2 2 2 1
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2 1 2( ) = − ( )− ( ) ( )∫
*

* , , ,β

(Dispersion Coeffficient)

Clearly, the non-zero solute flux at the outer boundary of the 
wall brings a new term   K  

0
   (t)  . In our analysis we consider only   

K  
0
   ,   K  

1
    and   K  

2
   . The contribution of   K  

3
    and the subsequent coef-

ficients are very negligible, Fig. 3 describes the concern.

Fig. 3 Plots of   K  
3
    with time

For solving the above coefficients we need to find   f  k   's. Using 
the Eq. (41) in Eq. (15) along with Eq. (43) and comparing the

coefficients of     
 ∂   k   C  

m
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     on either side of the resulting equation, 
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where   f  −1   =  f  −2   = 0   and   k = 0, 1, 2 .
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From Eqs. (17) - (19) togather with Eq. (41), the initial con-

ditions for   C  
m
    can   f  k    may be written as:

C z z B r rdrm , ,0 2

0

1

( ) = ( ) ( )∫ψ

f r
k

k
k ,

,
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1 0

0 1 2
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∂
∂

= − ( ) = =
f

r
f t r kk
kβ 1 1 0 1 2, , , ,  at    for  

Also, concentration not reaching far distances downstream, 
we may write

C t
c

z
t

m

m, , .∞( ) = ∂
∂

∞( ) = 0

Further, using Eq. (42) in Eq. (41), we get the compatibility 
condition:

f t r rdr k
k k
, , , .( ) = =∫

0

1

0
0 1 2δ   for  

To solve the couple Eqs. (44) - (47), we follow the finite 
difference method based on Crank-Nicholson implicit scheme. 
The steps of the algorithm are similar to those of the steps dis-

cussed in the previous section.
From the Eq. (43) truncating the terms after   K  

2
   (t)  , along with 

initial and boundary conditions (47)-(52), the solution of   C  
m
    is.

C t z
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ζ t K t dt
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0

,
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t

1 1

0

, ,( ) = + ( )∫

ξ t K t dt

t

( ) = ( )∫ 2

0

,

6 Results and Discussion

The present problem is concerned with longitudinal dis-

persion of solute subject to molecular diffusion of the solute 
when introduced into a circular tube. The current model is a 
very simple version of Casson liquid, however, not beside the 
point. Fig. 2 shows the common image of liquid velocity profile 
whilst yield stress τ is 0.2. Relying upon the yield stress, plug 
region  pR  is determined, large values of yield stress help to 

increase the plug core region. In the case of τ = 0 , the Casson 
model will be transformed into Newtonian.

To see the effect of  β  and τ on the transport coefficients, 
we follow both Aris-Barton and Sankarasubramanian-Gill 
approaches. The results outlined in Fig. 4 satisfies a complete 
qualitative nature of dispersion coefficient obtained from Aris-
Barton approach and Sankarasubramanian-Gill approach. This 
kind of agreement will support the exactness of our computa-

tions. Hence, in the rest of our analysis, we confined ourselves 
to only Aris-Barton’s approach.

Fig. 4 Comparison between Sankarasubramanian Gill
and Aris-Barton approaches

Fig. 5a shows the variation of   K  
2
    with time for different 

values of β, similarly Fig. 5b represents the same for different 
yield stresses ( τ ). The increase in β leads to decrease in the 

dispersion coefficient, as the increase in β means more solute 

depleted in the wall and as a result dispersion falls down. 
An analogous behavior is observed in case of yield stress 

also. This is due to larger plug region (as yield stress is high) 
which corresponds lesser velocity gradient near the tube wall 
(( ) c p−R R ) and thus dispersion is less.

Variation of asymptotic dispersion coefficient    K  
2
    with respect 

to β, for different values of yield stress is also examined. As β 

increases, initially dispersion coefficient increases, but the change 
is very negligible. Suddenly, there is a decline in dispersion and 
ultimately reaches in its steady state value. Furthermore, increase 
in yield stress results in decrease of dispersion coefficient. The 
reason for such behaviour lies in the fact that the velocity gradient 

across the solute distribution cause larger axial dispersion, as  τ 
increase means a very less amount of velocity gradient observed 

near the wall as a result decrease in dispersion coefficient is 
experienced. Notable that this behavior was observed and 
explained by Nagarani [24] as well (Fig. 6). Here the steady state 
is achieved at dimensionless time 0.5.

Fig. 7a shows that there is the variation of negative exchange 
coefficient  –  K  

0
    with time for different β. The   K  

0
    gradually 

increases with the increase of  β. When β becomes sufficiently 
large, the reaction at the wall consumes material more rapidly 
than it can be supplied by molecular diffusion, as a result dif-

fusion process is stabilized. Fig. 7b shows that the exchange 
coefficient is independent of the yield stress.

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(57)

(56)

(55)
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Fig. 6 Variation of β with  τy = 0.04

Fig. 8a describes the functional relationship between the 
negative convection coefficient with time with a variety of 
β. The increase in β rises the negative exchange coefficient. 
The reason for the enhancement is due to the effect of the wall 
reaction which deplete solute in the slower moving wall region 
and, therefore, the solute distribution is weighted in favor of the 
faster moving central region.

Mean concentration falls with the increase in β (Fig. 9a) and 
rises with an increase in yield stress (Fig. 9b). The reason of 
increment or decrement is same as that of    K  

2
   .

Although in the above analysis, we have considered 
an identical diffusivity for the two region viz., in pR  and 

(a) Variation of β with yield stress ( τ ) = 0.04 (b) Variation of yield stress ( τ ) with β = 0.1

Fig. 5 Plots of K
2
 with time

(a) Variation of β with yield stress  τ = 0.04 (b) Variation of yield stress ( τ ) with β = 0.1

Fig. 7 Plots of −K
0
 with time

(a) Variation of β with yield stress  τ = 0.04 (b) Variation of yield stress ( τ ) with β = 0.1

Fig. 8 Plots of −K
1
 with time
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c p−R R , but our model has the relaxation to choose different 

diffusivity. In Fig. 10, we see that there’s no significant impact 
of a different diffusing layer on exchange coefficient and mean 
concentration. It has some impact on convection coefficient 
and very negligible impact on dispersion coefficient. When the 
ratio D

D
1

2

 is high, convection as well as dispersion is less.

7 Conclusion

In this article the longitudinal dispersion of solute is 

being thoroughly examined. From the evaluation, it is found 
that the convection coefficient and dispersion coefficient 
are the functions of wall absorbing parameter β and yield 

stress τ , however, exchange coefficient simply the function 
of wall absorbing parameter. Increase of wall absorption, 

convection and the exchange coefficient increases, but the 
dispersion coefficient decrease. Yield stress helps to enhance 
convection coefficient, but reduces dispersion coefficient. 
Mean concentration also significantly depends on absorption 
parameter (β) and yield stress  ( τ ). The reliance is as same as 
that of dispersion coefficient (K

2
).
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