
Journal of King Saud University – Computer and Information Sciences (2014) xxx, xxx–xxx
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Using concept similarity in cross ontology

for adaptive e-Learning systems
* Corresponding author.

E-mail address: saleenaameen@gmail.com (B. Saleena).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

1319-1578 ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.

http://dx.doi.org/10.1016/j.jksuci.2014.03.007

Please cite this article in press as: Saleena, B., Srivatsa, S.K. Using concept similarity in cross ontology for adaptive e-Learning systems. Jou
King Saud University – Computer and Information Sciences (2014), http://dx.doi.org/10.1016/j.jksuci.2014.03.007
B. Saleena a,*, S.K. Srivatsa b
a School of Computing Science and Engineering, VIT University, Chennai Campus, India
b Department of Electronics and Instrumentation Engineering, St. Joseph’s College of Engineering, Chennai, India
Received 28 February 2013; revised 26 August 2013; accepted 13 March 2014
KEYWORDS

e-Learning;

Fuzzy domain ontology;

Cross ontology;

Semantic similarity measure
Abstract e-Learning is one of the most preferred media of learning by the learners. The learners

search the web to gather knowledge about a particular topic from the information in the reposito-

ries. Retrieval of relevant materials from a domain can be easily implemented if the information is

organized and related in some way. Ontologies are a key concept that helps us to relate information

for providing the more relevant lessons to the learner. This paper proposes an adaptive e-Learning

system, which generates a user specific e-Learning content by comparing the concepts with more

than one system using similarity measures. A cross ontology measure is defined, which consists

of fuzzy domain ontology as the primary ontology and the domain expert’s ontology as the second-

ary ontology, for the comparison process. A personalized document is provided to the user with a

user profile, which includes the data obtained from the processing of the proposed method under a

User score, which is obtained through the user evaluation. The results of the proposed e-Learning

system under the designed cross ontology similarity measure show a significant increase in perfor-

mance and accuracy under different conditions. The assessment of the comparative analysis,

showed the difference in performance of our proposed method over other methods. Based on the

assessment results it is proved that the proposed approach is effective over other methods.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

The tutoring approach which nowadays is acquiring popular-
ity all over the world, with progresses in Information and
Communication Technology (ICT) is web-based education.
Various organizations, institutes, universities, schools and

corporations are spending considerable amounts of time and
money in expanding online substitutes like e-Learning to
conventional kinds of education and training systems in

urbanized nations like the United States of America, the Uni-
ted Kingdom, and some European countries (Thyagharajan
and Nayak, 2007; Ahmadpour and Mirdamadi, 2010). Such
schemes should be proficient enough in delivering the appro-

priate content to a learner at the exact time in the most suitable
way so as to offer customized instruction and must be capable
of autonomously changing (update) its performance to assure

the diverse requirements of learners (Jeon et al., 2007).
Technical and domain based information are organized based
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on keywords and at present, they serve as the contents of
e-Learning. Modern e-Learning should incorporate new-
fangled expertise in different learning activities, to accomplish

extremely interactive as well as social-oriented education.
However e-Learning cannot replace classroom guidance
(Todorova, 2010; Šimún et al., 2007; Huang et al., 2006;

Antonella and Carbonaro, 2008; Bhowmick et al., 2010).
In the e-Learning market the most proficient products are

customized according to the requirements of the client

(Alexakos et al., 2006). The capability to articulate World
Wide Web information in a simple language that can be under-
stood by machine and intelligent agents, thus allowing human
users to trace, distribute and incorporate information in a

mechanized manner was the aim of the Semantic Web (Chi,
2007). It provides a framework for dynamic, scattered and
extensible structured knowledge (ontology) created on a for-

mal logic. The semantics of the document is described in
domain model (Mangalwede and Rao, 2010). Ontology is a
formal representation of concepts and the relationship between

them by means of an approved terminology endows with an
affluent set of structures to put up a supplementary significant
level of information. Ontology can get the straightforward

appearance of a taxonomy of perceptions (i.e., lightweight
ontology), or the further wide-ranging illustration of encom-
passing a taxonomy in addition to the axioms and constraints
which distinguish several outstanding features of the real world

(i.e., heavy weight ontology) (Bianchi et al., 2009).The seman-
tic web technology has the potentiality to be employed in
diverse areas. One of the domains which perhaps will take

advantage from this web technology is e-Learning (Dutta,
2006). The ontology accounts for a common and instinctive
way of the organization of a course (Colace et al., 2004). Con-

cept maps are utilized to obtain and characterize the knowl-
edge composition such as concepts and propositions as
perceived by individuals (Horrocks et al., 2004). Concept maps

are analogous to ontology in the sense that both of these tools
are employed to correspond to concepts and the semantic rela-
tionships among concepts.

A number of methods have been developed to study and

improvise the efficiency of the ontology based techniques for
optimization of the process. Bianchi et al. (2009) introduced
the use of Semantic Web services within Aqua Ring and ontol-

ogy was used to support educational content explanation and
retrieval. Snae and Brueckner (2007) presented an e-Learning
management system with metadata that provided a general

template for the situation of Thai learners. Ghaleb et al.
(2006) put forward the research works in the field of e-Learn-
ing and also discussed the various applications of e-Learning,
like virtual classrooms, distance learning and remote class-

rooms. Rene et al. (2011) proposed that ontology can be used
in e-Learning to organize the teaching resources semantically
by identifying the relationship between the materials, thereby

improving the quality of teaching resources. Raymond et al.,
(2009) discussed that, with the extensive applications of elec-
tronic learning (e-Learning) technologies to education at all

levels, an increasing number of online educational resources
and messages were produced from the corresponding e-Learn-
ing environments.

The major differences between the proposed techniques
with the existing techniques are discussed here. The work
presented in Dutta (2006) provides the semantic web-based
architecture for e-Learning. But, in the proposed technique,
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the retrieval of e-Learning contents is improved with the help
of a semantic measure. In Snae and Brueckner (2007), the
semantic e-Learning is developed for Thai learning environ-

ment. Here, the user profile-based learning environment is
considered. The work presented in Ghaleb et al. (2006),
Rene et al. (2011), Raymond et al. (2009), uses single ontology

for providing the suitable contents or organizing the e-Learn-
ing contents. The proposed work aims in extracting resources
from multiple ontologies using a semantic similarity measure

thereby improving the retrieval of learning contents.
The paper is organized as follows: The second section

provides models and expectation. The third section describes
the methods utilized for the proposed e-Learning system.

The fourth section deals with results and performance
evaluation of the proposed approach under different criteria.
Finally, fifth section discusses about the practical implication

and sixth section concludes the paper with the scope for future
enhancements.

2. Model and expectations

On considering the above discussed methods and their fea-
tures, a new method is proposed to improvise the e-Learning

system. The proposed approach is a concept similarity method,
which is used to compare the similarities between the concepts
in the different ontologies. The two different ontologies con-

sidered here are the fuzzy domain ontology and the Domain
expert’s ontology. The proposed approach deals with extract-
ing details by comparing the concepts between the ontologies.
The concepts are extracted from the concept map of the ontol-

ogies. A concept map is automated from the fuzzy domain
ontology and a concept map is manually developed by experts
with the help of domain expert’s ontology. An XML file is gen-

erated based on a particular concept, which contains the repre-
sentative and property set of the specific concepts from the
ontologies. The representatives and properties are then

processed for the generation of the concept similarity measure.
The concept similarity measure is the main factor, which
defines the most relevant concepts for the user according to

the input query.
The main contributions of this paper are as follows,

� The use of more than one ontology, since most of the

e-Learning system works with only a single ontology.
� The concept similarity measure, which we designed in the
proposed method stands as the signature to the proposed

method. The concept similarity measure is used to find
related concepts from the different ontologies.
� The other feature in the proposed method is the user per-

sonalization for the e-Learning content. The model
describes the user best knowledge and the information
unknown to the user.

3. Methodology

3.1. Ontologies used in the proposed e-Learning system

In the current scenario, the ontology is considered as the

hierarchy of concepts, which is a part of the concept map.
The e-Learning systems (Zheng et al., 2013; Chikh, 2013;
similarity in cross ontology for adaptive e-Learning systems. Journal of
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Hamani et al., 2013) that we consider are based on particular
ontologies and each ontology is specialized in a particular con-
cept map. In accordance with the latest researches, similarity

between the concepts in the ontology can improve the perfor-
mance of the e-Learning system. Keeping it on mind, we have
planned to develop a method to illustrate the concept similar-

ity in cross ontology. The cross ontology, deals with more than
one ontology, so it also deals with similarities between the con-
cepts in the different ontologies. The approach, that we have

proposed considers two main ontologies,

(a) Fuzzy domain ontology.
(b) Domain expert ontology.

(a) Fuzzy domain ontology
This is an automated ontology, which is based on the tech-

nical domain that is used to develop the e-Learning content.
This ontology serves as a stub for the e-Learning system
(Raymond et al., 2009; Saleena and Srivatsa, 2014). The con-

cept map is a taxonomical structure, which consists of a num-
ber of concepts that are interrelated to each other and the
concepts are purely based on technical data. The concept

map triggers the main function in the ontology for the smooth
processing of the e-Learning content retrieval from the data-
base. A sample ontology is illustrated in Fig. 1.

(b) Domain expert ontology

The domain expert ontology is the ontology developed by
the experts for a particular domain. The expert ontology is
very vast and effective ontology. The other important feature

of the expert’s ontology is that, the accuracy and precision
are high. The expert’s ontology has some limitations like size
of the ontology and the execution time. The main disadvantage

of domain expert’s ontology with fuzzy domain ontology is the
availability of experts with thorough knowledge on the domain
which is required to construct the ontology.

The above illustrated ontologies are used for processing the
proposed e-Learning system. The fuzzy domain ontology is
basically constructed by collecting documents, which are spe-
cific to a domain or a topic. Thus, depending upon the infor-

mation available and required by the ontology, we select a
specific number of documents regarding the domain to con-
struct the ontology.

3.2. Cross ontology similarity measure

The detailed description about the semantic similarity measure

available in the literature for single and multiple ontologies
is given in this sub-section. The proposed semantic cross
Figure 1 A sample fuzzy domain ontology.
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ontology measure is also described using the proper mathemat-
ical equations.

3.2.1. Existing approaches on cross ontology similarity

Semantic Similarity (Hliaoutakis, 2005) computes the similar-
ity between concepts (terms) which need not be lexically simi-
lar. An important consideration in finding the semantic

similarity is whether it is carried out using a single ontology
or multiple ontologies. When analyzing the literature, most
of the works have concentrated only on incorporating single

ontology to perform their similarity score. Accordingly, the
detailed classification was given in Euripides et al. (2006), in
which they classified the single ontology-based method into

four main categories such as, edge counting methods, informa-
tion content methods, feature-based methods and hybrid
methods. All these methods are validated with two popular

ontologies like WordNet or MeSH.
On the other hand, some of the researchers have used two

ontologies to find the semantic similarity. Based on our knowl-
edge, two popular similarity measures (cross ontology mea-

sure) (Euripides et al., 2006; Rodriguez and Egenhofer, 2003)
were presented in the literature.

Rodriguez et al.’s measure: Rodriguez and Egenhofer (2003)

have proposed a framework for comparing terms stemming
from the same or from different ontologies. The similarity
between terms a and b is computed as a weighted sum of sim-

ilarities between synonym sets (synsets), features and terms
neighborhoods:

Simða; bÞ ¼ w:Ssynsetsða; bÞ þ u:Sfeaturesða; bÞ þ m:Sneighborhoodsða; bÞ

where w, u and v denote the relative importance of the three
similarity components. The similarities among the synsets,
features and terms neighborhoods are computed using the

following equation.

Sða; bÞ ¼ jA \ Bj
jA \ Bj þ cða; bÞjA n Bj þ ð1� cða; bÞÞjB n Aj

where A and B denote synsets of terms a and b respectively and
A n B denotes the set of terms in A but not in B (the reverse for

B/A). Parameter c(a, b) is computed as a function of the depth
of the terms a and b in their taxonomy:

cða; bÞ ¼
depthðaÞ

depthðaÞþdepthðbÞ ; depthðaÞ 6 depthðbÞ;
depthðaÞ

depthðaÞþdepthðbÞ ; depthðaÞ > depthðbÞ;

8<
:

X-similarity: Followed by them, Euripides et al. (2006) have
proposed X-similarity as cross ontology measure for comput-

ing the semantic similarity between terms stemming from dif-
ferent ontologies. In X-similarity, the similarity among the
synsets and term description sets are computed using the fol-
lowing equation,

Sða; bÞ ¼ jA \ Bj
jA [ Bj

where, A and B denote synsets or term description sets.
Because not all terms in the neighborhood of a term are con-

nected with the same relationship, they proposed another sim-
ilarity formula for neighborhood sets.

Sneighborhoodsða; bÞ ¼ max
jAi \ Bij
jAi [ Bij
imilarity in cross ontology for adaptive e-Learning systems. Journal of
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where, i denotes relationship type (e.g., Is-A and Part-of for

WordNet and only Is-A for MeSH). The above two ideas
are combined into a single formula as follows,

Simða;bÞ¼
1; ifSsynsetsða;bÞ> 0;

maxfSneighborhoodsða;bÞ;Sdescriptionsða;bÞg; ifSsynsetsða;bÞ> 0:

�

3.2.2. Designed cross ontology similarity measure for the

proposed e-Learning system

In the proposed cross ontology similarity measure, the similar-
ities of the concept in the two ontologies are measured on the
basis of its neighborhood set and the feature set. We define a

function for the similarity measure that incorporates the neigh-
borhood and the features of the selected query keyword.

ConSimðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asim2

rep þ bsim2
pro

2

s

a ¼ Ori

Ori þWri

b ¼ OPi

OPi
þWPi

where, ConSim(c) is considered as the similarity measure

between the concepts and a and b specify the relative impor-
tance of the two similarity constraints Simrep and Simpro

respectively. Here c represents the selected concept, which con-

tains the value according to the function of which it represents.
Or and OP represent the number of representatives and prop-
erties in the primary ontology and Wr and WP represent that

of the secondary ontology.
The function Simrep is used for measuring the similarity of

the representatives of the selected concept between the two

ontologies. The similarity is measured by selecting both the
representative sets, i.e. the one generated from the primary
ontology and the one generated from the secondary ontology.
The function listed below gives representative similarity values.

Simrep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðOiÞ þ R2ðWiÞ

2

s

RðOiÞ ¼
ðOi

r \Wi
rÞ þ [RðOÞ \ [RðWÞ

Oi
r

;

RðWiÞ ¼
ðOi

r \Wi
rÞ þ [RðOÞ \ [RðWÞ

Wi
r

where R(Oi) and R(Wi) are the representative sets obtained

from the primary and secondary ontologies respectively. The
above function finds the relation between the matching neigh-
bors and the non-matching neighbors of the concept, which is
selected for the concept similarity. The relative value is a local

maximum which is filtered under a specific threshold to get the
most relevant and matching neighbors. The similar procedure
is conducted again to get the features of the selected concept

from the feature set, which we already acquired.
The value of Simpro for the selected concept and the ele-

ments in the feature set are again calculated, for finding simi-

larity by comparing property sets of both the ontologies. The
Simpro is also a local, maximum value. The property similarity
function is given below,
Please cite this article in press as: Saleena, B., Srivatsa, S.K. Using concept
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Simpro ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðOpÞ þ P2ðWpÞ

2

s

PðOpÞ ¼
ðOi

p \Wi
pÞ þ [PðOÞ \ [PðWÞ

Oi
p

;

PðWpÞ ¼
ðOi

p \Wi
pÞ þ þ [ PðOÞ \ [PðWÞ

Wi
p

where, P(Op) is the feature selected from the feature set of the
primary ontology and P(Wp) is the feature of the secondary

ontology. These values are selected for the evaluation of the
similarity of the selected concept through the modified equa-
tion from the Simpro equation.

The following summarize the differences between ConSim
measure with the X-similarity (Euripides et al., 2006) and
Rodriguez et al.’s measure (Rodriguez and Egenhofer, 2003):

� Rodriguez et al.’s measure has considered the depth of the
terms in the two ontologies. However, cross ontology
matching should not depend on ontology structure infor-

mation (Euripides et al., 2006). The proposed measure
and X-similarity have not considered the depth for comput-
ing similarity measure.

� Giving the appropriate weights will surely improve the sim-
ilarity measurement. In Rodriguez and Egenhofer (2003),
there are no appropriate weights given. On the other hand,
X-similarity does not consider the weights in similarity

computation. But, in the ConSim measure, we have pro-
vided the automatic weights for improving the similarity
measurement.

� Both measures (Euripides et al., 2006) have not considered
the similar term in the universal sets (synonyms, features
and neighbors) of both the ontologies. Here, the similarity

of universal set is also included so that a similar term pre-
sented in synonym sets and features set of both the ontolo-
gies is considered.

3.3. Adaptive e-Learning system using cross ontology similarity
measure

e-Learning system is getting special attention in the field of
online education. The purpose of e-Learning system is to pro-
vide an interface between student, instructor and knowledge

database. There are a number of systems emerged to control
the e-Learning systems, some of the latest approaches are dis-
cussed in the above section. In accordance with the review of

the existing approaches, we have indented to propose a new
approach for the e-Learning system. The proposed approach
is an ontology based approach, which deals with concept

maps. The proposed approach consists of a study, which illus-
trates the effect of concept similarity. In accordance with the
latest researches, similarity between the concepts in the ontol-
ogy can improve the performance of the e-Learning system.

Keeping that in mind, we have intended to develop a method,
which illustrates the similarity between concepts in different
ontologies.

Block diagram:
The block diagram representation of the proposed

e-Learning system is given in Fig. 2.
similarity in cross ontology for adaptive e-Learning systems. Journal of
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3.3.1. Concept extraction from the ontologies

In this phase, we extract the concepts, which are relevant to the

user request, and process it accordingly. The concepts are
extracted in accordance with the matching of a concept in
the fuzzy domain ontology and the Domain Expert ontology.

In our proposed approach, we consider the fuzzy domain
ontology as the primary ontology and the domain expert’s
ontology as the secondary ontology.

(1) Neighborhood and feature sets
The proposed approach is a user interactive model, so the

initial phase consists of the section of query keyword. The query
keyword is the user input to our proposed approach. The key-

word represents a concept, which is in relation with the primary
ontology. The proposed method fetches the keywords as the
input and compares it with both the ontologies. The compari-

son is done by searching keyword in the concept map of the
fuzzy domain ontology and the domain expert ontology.

The processing of keywords, generates two set of keywords

from each of the ontologies. The two sets are the basic mea-
sures, which are used for the similarity measure. The set of
keywords are generated according to the neighborhood and
the features of the input keyword that are present in the

ontology.
Representatives: This is the set of keywords, which are pres-

ent in the neighborhood of the query keyword. The represen-

tative set is defined as the set of keywords, which consists of
the parent nodes that are associated with the keyword. In
our proposed approach we define the branches of the super

class according to a constant and specific iteration, in the sense
that, the number of iterations does not affect the time require-
ment badly. The two different representative sets of each

ontology are listed as separate entities.

SR ¼ fðOri ;WriÞ; 1 6 i 6 m

where SR represents the set of representatives extracted from
the ontology and Ori and Wri represent the representatives

from given ontologies. In the proceeding sections, these entities
are used for the similarity measure.
Figure 2 Block diagram of the proposed e-Learning system.
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Properties: This set is a measure of part of relationship
between the concepts in the ontology. The set consists of the
keywords, which are relevant to the concept k. i.e., for the exis-

tence of concept k the keywords in the feature set are impor-
tant. The feature set of k can be obtained with the help of
the below stated function.

SP ¼ fðOpi ;WpiÞ; 1 6 i 6 m

The set SP represents the properties selected from the given

ontologies. The value of the function SP is maximized to
obtain the result regarding our proposed approach.

The above segment of ontology in Fig. 3 shows the repre-
sentatives (super nodes) and properties (child nodes) for the

concept SQL. The selected keywords are then listed as the fea-
tures (properties) and neighbors (representatives) of the con-
cept SQL. The representatives and properties of the query

keyword are extracted from the XML description of the
ontologies.

3.3.2. Concept similarity measure

The similarities of the concept in two ontologies are measured
on the basis of its neighborhood set and the feature set. The
selected concept is matched in the two ontologies according

to the similarity of its neighbors and features in the primary
ontology and the secondary ontology. The neighborhood set
and feature set for the selected concept will be extracted for

both approaches as per our proposed approach. The next
phase deals with finding the similarity of the concept between
the primary and secondary ontologies using the similarity mea-
sure given below.

ConSimðcÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asim2

rep þ bsim2
pro

2

s

The detailed description of designing the above similarity
function is given in Section 3.2.2. The value of the function

is used as the global maximum value, which is processed under
a threshold to obtain the relevant concepts. The ConSim(c)
function is used as the main criteria for the similarity measure.

The value obtained from the ConSim(c) equations is utilized
for the document retrieval process.

3.3.3. e-Learning document retrieval according to the concept

similarity measure

The Sim(a) functions generate a set of values according to the
values generated from the functions Simrep and Simpro.

We provide a threshold for the values listed by the

ConSim(c) function and if the value is a higher value than
the threshold we select that value, the rest of the values are
neglected. Even though, the similarity measure gives enough
Node: SQL

Super Node Child 
Node

DBMS

Database

DDL,DML 

DDL,DML 

Figure 3 Representatives and properties of ontology.
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information for the retrieval of the document, to give more
user specific results, we incorporate another constraint in the
proposed approach. The constraint that we include deals with

the user knowledge about the query, which he/she has given as
the input. The constraint is formed by providing a set of ques-
tions to evaluate the user. The score obtained from the evalu-

ation process is set as a conditional parameter. The user score
and the value of ConSim(c) are compared and in accordance
with that, the document is retrieved to the user.

The above algorithm shown in Fig. 4 illustrates the process
of document retrieval in accordance with the values generated
from the concept similarity measure and based on the user
score obtained from the user knowledge Information.

3.3.4. e-Learning document personalization based on user
knowledge information

The user profile consists of the information about the user and
the awareness of the user to the specific concept or the area of
study. We provide a personalized system for the user by using
the retrieved documents. The personalization is done accord-

ing to a user profile, scalar and interest model which is illus-
trated in Fig. 5. The user profile model is designed in order
to help the user by considering the user as a learner. A learner

model must contain information about the learner’s domain
knowledge, his/her goals, interests, preferences and other
information about the learner. Keeping the above mentioned

information in mind, a user personalization model is designed,
which is detailed below. The personalization is done based on
the user score obtained from the user evaluation test. On the

basis of the user score, we segregate the data information into
two different models.

a. Domain dependant information model.

b. Domain independent information model.

(1) Domain dependent information model

Domain specific information represents a reflection of the
learner’s state and the level of knowledge and skills in a partic-
ular subject. In our proposed approach, the domain specific

information of the user is measured from the user evaluation
test. The user evaluation test is a sample test, which contains
a number of queries related to the domain selected by the user.
A user score is extracted from test and is used for the evalua-

tion of the user. According to the user score, we deliver the
learning contents to the user. The information we extract is
based on the user score, which is delivered as positive
Figure 4 Pseudo code for document retrieval.
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responses from the user. According to the positive responses,
we serve documents to the user based on three profiles.

(a) User scalar model.
(b) User interest model.
(c) User profile model.

We are using a scalar model for describing the information
that is possessed by the user. In the scalar model, level of the

learner’s knowledge on the entire domain is described by one
identifier such as a number in the range from 1 to 5. The scalar
model is the simplest form of a knowledge model and provides
no information about knowledge in a sub-domain (Fröschl,

2005). This section of the user model is modeled according
to the scalar model as we discussed above, the identifier that
we used in this context is the user score.

In the case of user interest model, we plot the data or doc-
ument according to the interest of the user. The user may have
specifications about the document such as, how the document

should be. The user is interested in learning the content out of
interest. Some users like to have diagrams and graphs in the
learning content, some users like plan statements for learning.
So according to the different scenarios we model the e-Learn-

ing Content.
The user profile model is a specification based on the desig-

nation of the user. The documents are provided to the user

according to the degree level of the user. The criteria are based
on the graduation level. If the user is a graduate, the document
is provided according to extent of the information he/she

needed and if a post graduate the information will change,
as the level of the learner changes.

(2) Domain independent information

In addition to the learner’s current knowledge level, for an
adaptive e-Learning system, the domain independent informa-
tion is also needed. This information contains different views
of the learner to the current domain such as,
similarity in cross ontology for adaptive e-Learning systems. Journal of
//dx.doi.org/10.1016/j.jksuci.2014.03.007
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� Goals: To establish the correct teaching strategy, it is impor-

tant to know the goals of learner like what he/she wants to
achieve during e-Learning. The goals can be divided into
two different types. First, the learning goal, which is rela-

tively stable for a course unit. Second, the problem-solving
goal, which may change from one problem to another even
within one teaching unit.
� Background and experience: Background information

includes skills that may affect the learning achievement.
Such information is for example, profession, work experi-
ence or perspectives.

� Preferences: The learners may have different preferences
related to some aspects of the learning environment. These
preferences are considered as not inducible by the system.

Thus, the learner has to inform the system directly or indi-
rectly about his or her preferences. It is important for an
adaptive e-Learning system to present and organize the
learning material based on the learner’s preferences. Learn-

ers can also be grouped based on their preferences.
� Factual and historic data: Demographic data such as name,
age, parents, and ID. are often stored in learner models.

This information, combined with other factual data such
as for example interests, is necessary to initialize an individ-
ual learner model.

The user profile provides the full fledged idea of the leaner
and the attitude of the leaner to the given problem. The

proposed approach includes some extra features to the above
proposed user profile model.

We use the user evaluation test for collecting the informa-
tion about domain independent information also. The main

difference between the domain dependant information and
domain independent information is obtained based on the
wrong responses from the user during the user evaluation test.

In this section we define the user interest views and personal
information, we also furnish the details that are needed for
the user by evaluating the wrong responses. The domain inde-

pendent information model is also based on the three profiles,
scalar model, user interest model and the user profile model.

4. Experimental results

This section gives account of the analysis of the proposed
approach under different test environments. The proposed

approach is subjected to a test with a specific dataset to find
the feasibility. The analysis is composed of two main analysis
sections, performance analysis of the proposed method under
different criteria and a comparison analysis with already

existing MeSH ontology (Nelson et al., 2001) and WordNet
Ontology (Ontolog). The section is detailed in the following
section.

4.1. Experimental set up

The proposed algorithm is implemented using JAVA (JDK

1.7). For the experimental study, we collected e-Learning
documents related with the domain ‘‘Database management
System’’ from the web and the collected documents are

arranged into 15 categories. For every category, one question
is framed so that the 15 questions of 15 categories are used
for user evaluation test. Furthermore, every category of
Please cite this article in press as: Saleena, B., Srivatsa, S.K. Using concept s
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documents is divided into two sub-categories that consist of
documents with and without diagrams.

4.2. Experimentation of the proposed approach

(1) Two ontologies generated for experimentation

The proposed adaptive e-Learning system retrieves the
e-Learning contents from the database and which is supplied
to the learner. The processing of the adaptive e-Learning

system is based on the ontologies we have discussed in the pro-
posed approach. The two ontologies act as the center point of
the cross ontology measurement. At first, the collected

e-Learning documents are given to the previous approach
(Saleena and Srivatsa, 2014) that generates the fuzzy domain
ontology as shown in Fig. 6. An expert in the particular

domain generates the domain expert ontology. The classes
and sub classes are represented with different classes of id
for their unique representation in the ontology. Analyzing
the XML code generated, we can see the inter relationship

between the class and sub classes. A more detailed representa-
tion of the ontology is shown in Fig. 7. It is the graphical rep-
resentation of the ontology obtained through the fuzzy domain

ontology. The XML code and the graphical representation of
the ontology are generated using the software protégé 3.0
(Protege). It is a program used for generating OWL (Web

Ontology Language). Similar to the fuzzy domain ontology,
the protégé (Protege) is also used for the generation of XML
code and graphical representation of the ontology for the
domain expert’s ontology. The XML code is represented in

Fig. 8 and the graphical representation is shown in Fig. 9.
(2) Cross ontology measure for the different query words
The core idea behind our adaptive e-Learning system is the

cross ontology measure of the concepts. This feature in our
proposed method stood as the distinction over other methods.
The cross ontology measure evaluates the relation between the

concepts in a specific domain through the comparison of both
the ontologies. The cross ontology specifies the class and sub-
classes according to the valued generated. In Table 1, we have

plotted an example of the how the code are generated accord-
ing to the cross ontology. From the XML codes, the elements
represented in the tag Hypernyms are considered as the super
classes and the tag Hyponyms are considered as the sub clas-

ses. The Hypernyms and Hyponyms of a concept from differ-
ent ontologies are presented in Table 1.

As we mentioned above, whether a concept is super class or

sub class of particular class is identified by the cross ontology
measure between the concepts. Table 2 represents cross ontol-
ogy measures calculated for different query keywords from the

different domains.
The analysis of the cross ontology measure is detailed in the

graph as shown in Fig. 10. The cross ontology measure stands
for the inter relationship between the concepts between the

ontologies. In the current scenario plotted in Table 2, we can
see that, the concepts database_languages and database_types
have a cross ontology measure of 2.056, i.e., they have a strong

relation. In the similar way find out the concepts with higher
inter relationship over the ontologies and hence considered
for the E- learning content.

(3) e-Learning system
In an e-Learning system, the learning contents are termed

as the most important of all features of the system. In our
imilarity in cross ontology for adaptive e-Learning systems. Journal of
//dx.doi.org/10.1016/j.jksuci.2014.03.007
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Figure 6 XML file: fuzzy domain ontology.

Figure 7 Graphic file: fuzzy domain ontology.
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proposed approach, the retrieval is based on the user query
and the user score from the user evaluation test. According
to the user score, the proposed method defined a user profile

model. The initial part of the model consists of the data, which
are known to the user. These data are prepared according to
the positive answers that are given by the user from the evalu-

ation test.
The smoothness of the processing is based on the prepara-

tion of the documents, which are retrieved to the user. The
documents are collected to a large database. The document
Please cite this article in press as: Saleena, B., Srivatsa, S.K. Using concept
King Saud University – Computer and Information Sciences (2014), http:
is related to only a single domain as per the specification of
user. The documents are retrieved to the user according to
the specification that we discussed in the above sections. Three

profiles are used for the process. We group the documents
according to the different user models. When we consider the
scalar model, there not much specification is needed, we simply

plot the documents one by one. The user can select it as per
his/her needs. In the case of user interest model, we processed
the documents into two sections. The first section includes the
documents with statements and diagrams and the second
similarity in cross ontology for adaptive e-Learning systems. Journal of
//dx.doi.org/10.1016/j.jksuci.2014.03.007
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Figure 8 XML code: domain expert’s ontology.

Figure 9 Graphic file-sample of domain expert’s ontology.
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Table 1 XML file generated for the two query keywords.

Fuzzy domain ontology Domain expert’s ontology

<Term> <Term>

database_languages database_type

<Hypernyms>sql,</Hypernym> <Hypernyms>database,</Hypernyms>

<Hyponyms>ddl,dml,dql,</Hyponyms> <Hyponyms>active_database,analytical_database,

</Term> cloud_database,data_warehouse,distributed_database,

embedded_database,federated_database,real_time_datab

ase,spatial_database,temporal_database,</Hyponyms>

</Term>

Table 2 The cross ontology measure for different queries.

Q1 (Fuzzy domain ontology) Q2 (Domain expert’s ontology) Cross ontology measure

Database DBMS 1.0988

Database_languages Database_types 2.056

Data_warehouse Data_storage 1.803

Relational_model Database_models 1.803

Figure 10 Cross ontology measure.
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section deals with the documents and statements alone. The
case is entirely different, when it comes with the user profile

model. In dealing with the user profile model we have to group
the document in different sections. The different sections are
plotted on the basis of the degree or knowledge level of the

user. According to these profiles, we retrieve the e-Learning
content to the user.

4.3. Comparative evaluation with existing cross ontology
measure and ontologies

The section, which we are going to furnish, deals with the com-
parative analysis of designed cross ontology measure over the

two popular ontologies and two popular semantic similarity
Table 3 Comparative analysis.

Query keyword X-similarity measure

(Euripides et al., 200

WordNet MeSH

Anemia Appendicitis 0

Dementia Atopic Dermatitis 0

Malaria Bacterial Pneumonia 0.133

Sarcoidosis Tuberculosis 0.4062

Carcinoma Neoplasm 0.17

Please cite this article in press as: Saleena, B., Srivatsa, S.K. Using concept
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techniques. The ontologies, which we have taken into the
account for comparison, are the WordNet (Ontolog) and

MeSH (Nelson et al., 2001). The two cross ontology measures
taken for comparison are the measures given in Euripides et al.
(2006), Rodriguez and Egenhofer (2003). WordNet is a lexical

database for the English language. It groups English words
into sets of synonyms called synsets, provides short, general
definitions, and records the various semantic relations between

these synonym sets. MeSH (Medical Subject Headings)
(Nelson et al., 2001) is a taxonomic hierarchy of medical and
biological terms suggested by the US National Library of
Medicine (NLM).

Here, the different query words are given to the previous
similarity measure and the proposed similarity measure to find
the semantic similarity. Table 3, describes the comparison of

terms extracted from the two ontologies. The comparison is
done based on the three algorithms, X-similarity measure
(Euripides et al., 2006), Rodriguez and Egenhofer (2003) and

the proposed similarity measure. From the analysis it is clear
that the proposed approach produces better results for the
same queries than the other methods. The cross ontology mea-
sure that we defined in our method differentiates the proposed

method from the other methods by finding even the minute
relationships between the concepts. The main difference
between the proposed method and the other methods is the

enhanced concept similarity measure.
Fig. 11 represents the responses of different similarity mea-

sures to the ontologies WordNet and MeSH. The terms
6)

Rodriguez (Rodriguez and

Egenhofer, 2003)

Proposed similarity

measure

0 0.2814

0 0.1346

0 0.1807

0 0.4816

0.04 0.8951

similarity in cross ontology for adaptive e-Learning systems. Journal of
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Figure 11 Comparative analysis.

Concept Similarity in Cross Ontology 11
WMc1and WMc2. represent the concepts from WordNet and
MeSH.

5. Discussion and practical implication

The proposed approach is a concept similarity method, which

uses two ontologies for the concept similarity. The approach
we proposed is evolved from the two base ontologies, namely
the fuzzy domain ontology and the wordnet ontology. The

fuzzy domain ontology consists of the concepts and concept
map, which are generated with the fuzzy concept and auto-
matic concept map extraction algorithm. The fuzzy domain

ontology contains the details about specific given data which
may be technical or non-technical. On the other hand, wordnet
is a commonly used ontology, which is a large lexical database
of English, developed under the direction of George A. Miller.

Nouns, verbs, adjectives and adverbs are grouped into sets of
cognitive synonyms (synsets), each expressing a distinct con-
cept (Ontolog). Synsets are interlinked by means of concep-

tual-semantic and lexical relations. The proposed approach is
based on extracting the concepts from these two ontologies
for the concept similarity measure.

The fuzzy domain ontology is selected for our proposed
approach because it possesses the details of a single
domain only and more over it is used as concept map for the
e-Learning system. The main advantages in selecting the fuzzy

domain ontology are the semantic property of the ontology.
The concepts in the fuzzy domain ontology have a strong
semantic bond. The semantic bond helps the ontology to pro-

vide the concept based taxonomy as required by the user. As
we discussed above, the wordnet ontology contains details
about most of the domain, either technical or non-technical.

The concepts maps are created according to data similarity
algorithms. The proposed approach compares the concepts
between the two ontologies to enhance the degree of relation-

ship between a concept and its sub-concept in the concept
map. The concepts with a higher degree of relationship are
selected and given to the user.

The proposed approach defined a concept similarity

measure over the concepts in both the ontologies. The concept
similarity is based on two sets namely, representative set and
property set. The representative set is extracted from the

neighborhood of each concept. The property set is extracted
by measuring the ‘‘IS-A’’ relation between the concepts. The
proposed approach calculates the relation between the

representatives from both the ontologies with the function
Simrep and the relationship between the properties with the
Please cite this article in press as: Saleena, B., Srivatsa, S.K. Using concept s
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help of the function Simpro. The similarity measure is com-
puted with the help of the above mentioned two functions.
The similarity values obtained are filtered and then according

to the similarity measure, we extracted documents from the
database and supplied to the user through a user profile model.
The user profile model is an interface given to the user, which

contains the user’s awareness about the current domain, the
views and goals of the user and finally the user’s relevant data
to be studied or understand. The user profile model reduces the

time and makes the e-Learning system more user interactive.
Future implications: The e-Learning systems are one of

the most modern techniques in the education sector. The
e-Learning provides a remedy for the difficulties faced in

implementing fast learning system. So for the purpose of fast
and effective learning, the E- Learning system should be an
accurate and effective one. The proposed adaptive e-Learning

system provides a different approach than the traditional
e-Learning system. The cross ontology measure, which is used
for the proposed approach is effective in finding relation

between the concepts. The effectiveness of the proposed algo-
rithm may help in providing better e-Learning solutions.
6. Conclusions and future enhancements

An adaptive e-Learning system with cross ontology similarity
measure has been developed with automatically generated

concept map as an application to the e-Learning system. The
concept is designed with the most innovative and recent tech-
niques. The cross ontology and the concept similarity measure
have been incorporated for the novelty of the proposed

method. The major feature in our proposed method is the user
personalization model, which assesses the student capability of
learning. The other attraction of our proposed method is that,

we use multiple ontologies for the evolution of the concept
from a particular domain. The use of more than one, ontology
increased the performance and accuracy of the proposed

method. The experimental result showed that our proposed
system provides feasible results and it outperforms the existing
methods. The futuristic enhancement to our system can be

implemented using other data mining techniques and other
data manipulation methods.
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