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Abstract: The present paper deals with exact solutions for the free vibration characteristics of thin 
circular plates resting on Winkler-type elastic foundation based on the classical plate theory 
elastically restrained against translation. Parametric investigations are carried out for estimating the 
influence of edge restraint against translation and stiffness of the elastic foundation on the natural 
frequencies of circular plates. The elastic edge restraint against translation and the presence of elastic 
foundation has been found to have a profound influence on vibration characteristics of the circular 
plate undergoing free transverse vibrations. Computations are carried out for natural frequencies of 
vibrations for varying values of translational stiffness ratio and stiffness parameter of Winkler-type 
foundation. Results are presented for twelve modes of vibration both in tabular and graphical form 
for use in the design. Extensive data is tabulated so that pertinent conclusions can be arrived at on the 
influence of translational edge restraint and the foundation stiffness ratio of the Winkler foundation 
on the natural frequencies of uniform isotropic circular plates.   
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 اثناء الحركةالمرونة  اهتزازات  الالواح الدائرية  المثبتة على  قاعدة مرنة مع حافة مقيدة 
  ب، تشيلابيلا كامسوارا راو*،أ لوكافارابو بهاسكارا راو

 

المثبتة على قاعدة  قيقةللالواح الدائرية الر ةالحر اتلخصائ  الاهنزاز صحيحةالبحثية الحلول ال : تتناول الدراسة لص الم
معاملية بحاث ا. تم إجراء لتقليديةا لواحبموجب نظرية الاالحركة  اثناءرونة الم مقيدة ذات حافة مرنة من نوع وينكلر 

و الدائرية.  للألواحصلابة القاعدة المرنة على الترددات الطبيعية و الحركة اثناءيد الحافة يتأثير تق مدىلتقدير (بارامترية)
مع وجود القاعدة المرنة  لها تأثير كبير على خصائ  اهتزاز  ركةالحعملية  أثناءالى أن الحافة  مقيدة المرونة  توصل البحث

يعية للاهتزازات لقيم متفاوتة من تعرض لاهتزازات عرضية حرة. وتم إجراء الحسابات للترددات الطبيوح الدائري التي لال
 اتالاهتزاز أنماطالنتائج لاثني عشر نمطا من  و قدم البحثمعدل الصلابة المتعدية ومعامل صلابة  القاعدة من نوع وينكلر. 

إلى منها بحيث يمكن التوصل  شاملةفي شكل جداول و رسومات بيانية لاستصدامها في التصميم. كما  تم جدولة بيانات 
نوع وينكلر على الترددات الطبيعية للوحات من  استنتاجات ذات صلة بتأثير تقييد الحافة المتنقلة ونسبة صلابة القاعدة 

 الدائرية المتماثلة الموحدة.
 قاعدة مرنة ،نقلةصلابة مت ،حافة مرنة،التردد ،: لوح فتاحيةلما كلماتال
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Nomenclature 

 
h   Thickness of a plate, mm 

a  Radius of a plate, mm 

   Poisson’s ratio 

E   Young’s modulus, N/mm2 

   Density of a material, kg/mm3 

),( rW  Transverse deflection of the plate, mm 

D   Flexural rigidity of a plate, N.mm2 

TK   Translational spring stiffness, N/mm 

wK   Stiffness of Winkler foundation, N/mm2/mm  

T   Translational spring stiffness ratio 

   Foundation stiffness ratio 

mn   Natural frequency, rad/sec 

mn   Eigenvalue without foundation, cycles/sec 

*

mn  Eigenvalue with Winkler foundation, cycles/sec nm, positive  integers correspond-

ing to the number of concentric circles and nodal diameters in each flexural mode. 
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1. Introduction 
 
Circular plates resting on elastic foundation 
have a wide range of applications in the static 
and dynamic design of linear/nonlinear 
vibration absorbers, dynamic exciters, telephone 
receiver diaphragms, computer discs, printed 
circuit boards etc. (Leissa 1969). Due to the 
essential use of vibration data in the 
computation of stresses in such structures, 
reliable prediction of vibration data is of great 
importance. In view of its importance in 
engineering design, the problem of vibration of 
circular plates on elastic foundation has 
attracted the focus and attention of many 
researchers. 
     Some of the recent studies have reinstated 
the classical approach efficiency in analyzing 
the vibrations of variety of structures. Circular 
plate problems allow for significant 
simplification in view of their symmetry, but 
still many difficulties arise when the plate 
boundary conditions become complex involving 
linear and rotational restraints. A recent review 
of literature shows that very few studies exist on 
the study of circular plates resting on elastic 
foundations. Wang and Wang (2003), who 
observed the switching between axisymmetric 
and asymmetric vibration modes, have recently 
investigated the effect of internal elastic 
translational supports.  
     The vibration characteristics of plates resting 
on an elastic medium are different from those of 
the plates supported only on the boundary. 
Leissa (1993) discussed the vibration of a plate 
supported laterally by an elastic foundation. 
Leissa deduced that the effect of Winkler 
foundation merely increases the square of the 
plate natural frequency by a constant. Salari et 
al. (1987) speculated the same conclusion.  

Ascione and Grimaldi (1984) studied unilateral 
frictionless contact between a circular plate and 
a Winkler foundation using a variational 
formulation. Leissa (1969), who tabulated a 
frequency parameter for four vibration modes 
of a simply supported circular plate with 
varying rotational stiffness, presented one of the 
earliest formulations of this problem. Kang and 
Kim (1996) presented an extensive review of the 
modal properties of the elastically restrained 
beams and plates.  
     Zheng and Zhou (1988) studied the large 
deflection of a circular plate resting on Winkler 
foundation. Ghosh (1997) studied the free and 
forced vibration of circular plates on Winkler 

foundation by an exact analytical method. 
(Chang and Wickert (2001); Kim et al. (2001) and 
Tseng and Wickert (1994) studied the dynamic 
characteristics of bolted flange connections 
involving circular plates displaying beating type 
of repeat frequencies and typical mode shapes 
of vibration. Bolted flange connections are 
practically the best examples for the elastically 
restrained boundary conditions of circular 
plates on partial or continuous Winkler type 
elastic foundation.  
     The most general soil model used in practical 
applications is the Winkler (1867) model in 
which the elastic medium below a structure is 
represented by a system of identical but 
mutually independent elastic linear springs. 
Recent investigations have reiterated the 
efficiency of the classical approach (Soedel 1993) 

in analyzing the behavior of structures under 
vibrations. There are other works (Weisman 
1970; Dempsey et al. 1984;  Celep et al. 1988) 
dealing with the study of plates on a Winkler 
foundation. In general, those dealing with 
vibrating plates, shells and beams are concerned 
with the determination of eigenvalues and 
mode shapes (Leissa 1969).  
     A good number of studies was conduced 
(Wang and Lin 1996; Kim and Kim 2001; Yayli  
et al. 2014) using the method of Fourier series for 
estimating the frequencies of beams with 
generally restrained end conditions including 
the effect of elastic soil foundation. The method 
includes the use of Stoke’s transformation in 
suitably modifying the complex boundary 
conditions. Very much similar to the dynamic 
stiffness matrix approach, the elements of the 
matrix involving infinite Fourier series are 
explicitly obtained in these studies. The 
determinant of this matrix for each case 
considered leads to the frequency equation and 
the same can be solved using well known 
numerical methods. The results obtained for 
various elastically restrained beam cases in 
these studies tallied well with those available in 
the literature establishing the efficiency of this 
method. 
     In view of the necessity of using complex 
combinations of rotational and translational 
springs at the circular plate boundary to 
suitably simulate the practical non-classical 
boundary connections being adopted in a wide 
range of industrial applications (Bhaskara Rao et 
al. 2009; Bhaskara Rao et al. 2010; Lokavarapu 
and Chellapilla 2013; Bhaskara Rao et al. 2015; 
Lokavarapu  et al. 2015; Rao et al. 2016), the use 
of exact method of solution becomes imperative 
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and hence the same is adopted in this paper. 
Even though the method adopted here is 
classical, the particular case of vibration of 
elastically restrained circular plate resting on 
elastic foundation considered here is not 
addressed within the available literature.  
     Utilizing the classical plate theory, this paper 
deals with an exact method of solution for the 
analysis of thin circular plate free transverse 
vibrations that is elastically restrained against 
translation and resting on Winkler-type elastic 
foundation. For estimating the influence of edge 
restraint against the elastic foundation 
translation and stiffness on circular plates 
natural frequencies, parametric investigations 
are carried out by varying the values of elastic 
edge restraint stiffness against the elastic 
foundation translation and stiffness. The results 
obtained on natural frequencies of vibration 
clearly show that the vibration characteristics of 
the circular plate undergoing free transverse 
vibrations are found to be profoundly 
influenced by these variations. Computations 
are carried out for natural frequencies of 
vibrations for varying values of translational 
stiffness ratio and stiffness parameter of 
Winkler-type foundation. The results that are 
presented for twelve modes of vibration both in 
tabular and graphical forms are believed to be 
quite useful for designers in this area. 
 

2.   Mathematical Formulation of the 
System 

 
The considered elastic thin circular plate is 
supported on a Winkler foundation as shown in 
Fig. 1.  In the classical plate theory (Leissa 1969), 

the following fourth order differential equation 
describes free flexural vibrations of a thin 
circular uniform plate: 
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EhD   is the flexural 

rigidity of a plate and  ,E,,h,a  are the plate’s 
radius, thickness, density, Young’s modulus 
and Poisson’s ratio, respectively. 
     The homogeneous equation for Kirchhoff’s 
plate on one parameter elastic foundation is 
given by the following equation:  
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     Displacement in (2) can be presented as a 
combination of spatial and time dependent 
components as follows:  
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     The solution of the equation takes the 
following form 
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where mnA  and mnC  are constants, nJ is Bessel 

function of the first kind of first order and nI  is 

modified Bessel function of the first kind of first 
order, indexes m  and n are positive integers 
and correspond to the number of concentric 
circles and nodal diameters in each flexural 
mode. Considering an elastically supported 
plate as shown in Fig. 1, boundary conditions 
can be formulated at ar  , in terms of 
translational stiffness ( TK ) as follows: 
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where the Kelvin-Kirchhoff and bending 
moment are defined as follows: 

Figure 1.  A thin circular plate with translational 
elastic edge restraint and supported 
on elastic foundation. 
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     By applying Eqs. (6) and (8), we obtain the 
following equation 
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  From Eqs. (5) and (10), we derive the following 
equation 
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where mnP = )mn(1nJ)mn(1nJ   ;

)mn(2nJ)mn(2nJmnQ   ; 

)mn(1nI)mn(1nImnS   ; 

)mn(2nI)mn(2nImnT   ; 

From Eqs. (7) and (9), we get the following 
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     From Eqs. (5) and (12), we derived the 

following equation 

)mn(nIT
3

mn

8

mn

4

3
mn

2
n)3(8

mnS
2

mn

2
n)2(44

3
mn

mnT2
mnU

)mn(nJT
3

mn

8

mn

4

3

2
n)3(8

mnP
2

mn

2
n)2(44

3
mn

mnQ2
mnR

mnC


















































































 


                 (13)   

where, 
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     If TK  then this case becomes a simply 

supported boundary condition as shown in Fig. 
2. The frequency equation can be calculated 
From Eqs. (11) and (13), which allows 

determining eigenvalues
mn . The mode shape 

parameters mnC  can be determined corres-

ponding to these eigenvalues by using either Eq. 
(11) or Eq. (13). The amplitude of each vibration 
mode in Eq. (5) is set by the normalization 
constant mnA determined from the following 

condition. 
 

nqmpmnpq
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where, 
mnM is a mass of the plate,  

 

1 nqmp   if qnpm  ,  and 
nqmp =  

      0 if m ≠ p or n ≠ .q  

 

Figure 2.  A simply supported thin circular plate 
resting on elastic foundation. 
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     The normalization constant 
mnA can be 

derived using Eqs. (5) and (14) as given below: 
 

1

2

0

a

0

rdrd

2

ncos.

a

rmn
nI.mnC

a

rmn
nJ

.
2

a

1
mnA

























 





































































                                                                  (15)                   

In Eq (4), the natural frequency is defined as  
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     It is clear from Eq. (16) that the natural 

frequency parameter 
mn is dependent on the 

plate radius ‘a’. 
 
     From Eq. (16) we can express 
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3. Solution 
 
       Using Matlab programming, computer 
software with symbolic capabilities, solves the 
above set of equations. The program determines 

eigenvalues ( *
mn ), for a given range of 

boundary conditions. The boundary’s linear 
translational non-dimensional restraint 
parameter can be defined as follows: 
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     The following represent the input parameters 
to the program; (i) Translational stiffness ratio    

(T ); (ii) Foundation ratio ( ); (iii) Poisson’s 
ratio ( ); (iv)  Upper bound for eigenvalues       
( N ); (v) Suggested   accuracy   for eigenvalues  
( d ); (vi) Number  of  mode  shape  parameters  

( n );. The   program finds eigenvalues *
mn  by 

using Matlab root finding function. 
  

4.     Results and Discussion 
 
       The code developed is used to determine 
eigenvalues of any set or range of translational 
and foundation constraints. This code is also 
implemented for various plate materials by 
adjusting Poisson’s ratio. Such a wide range of 
results is not available in the literature. The 
eigenvalues for the plate edge, which is 
elastically restrained against translation and 
fully resting on the elastic foundation, at various 
values of the translational stiffness ratios, are 
computed and the results are given in Table 1. 
The effects of the translational stiffness ratios 
are plotted in Fig. 3. As seen from Fig. 3, 
eigenvalues increase with an increment in the 
translational stiffness ratio, and the plates 
become unstable in the region when the 
translational stiffness ratio exceeds a certain 
value. Twelve vibration modes are presented in 
Fig. 3. The smoothened stepped variation is 
observed in Fig. 3. The stepped region increases 
with increase in translational stiffness ratio and 
vibration modes. The location of the stepped 
region with respect to T  changed gradually 
from the range of 0.01526 † [9.9997] ‡ – 5587.5316 
[10] to 16.62296 [14.6739] – 611824.96917 
[16.75055]. Here †.represents translational 
stiffness ratio and ‡  represents Eigen values 
throughout the text. Here the value in the 
bracket represents eigenvalue. The simply 
supported boundary conditions (Fig. 2) could be 

accounted for by setting ( TK ) shown in 

Fig. 1. The frequency in this case is 2.23175 and 
this is in good agreement with the results 
published by Wang (2005). Another result, 
considered for comparison, is from Rao and Rao 
(2009) on a study of the case of vibrations of 
elastically restrained circular plates supported 
on partial Winkler foundation. When  the



 
 

 
 

 

Table 1.  Eigenvalues for different Translational stiffness ratio for  =100 & =0.33. 

 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

log10 𝑇 
𝜆00 

 
𝜆10 𝜆20 𝜆01 𝜆11 𝜆21 𝜆02 𝜆12 𝜆22 𝜆03 𝜆13 𝜆23 

-3 10 10.0205 10.3517 10.10358 10.79568 12.46774 10.29701 11.43857 13.52984 10.63672 12.2505 14.67332 

-2 10 10.02051 10.35171 10.10359 10.79568 12.46775 10.29702 11.43857 13.52985 10.63673 12.25051 14.67332 

-1 10.00005 10.02061 10.3518 10.10368 10.79576 12.46779 10.29711 11.43864 13.52989 10.63682 12.25056 14.67335 

0 10.00047 10.02162 10.35263 10.10462 10.79649 12.46827 10.29803 11.43927 13.53026 10.63769 12.25109 14.67365 

1 10.003 10.03287 10.36125 10.11468 10.804 12.47302 10.30745 11.44568 13.53403 10.64649 12.25645 14.67667 

2 10.00568 10.1199 10.46887 10.2319 10.89095 12.52351 10.42003 11.5759 13.57333 10.74585 12.31326 14.70772 

3 10.00614 10.203 11.00421 10.49407 11.61576 13.1793 10.91134 12.27823 14.08459 11.41839 12.99719 15.0966 

4 10.00619 10.21322 11.14468 10.53794 11.94459 14.15323 11.03916 12.88272 15.33948 11.70347 13.90786 16.53545 

5 10.00619 10.21423 11.15725 10.54212 11.97273 14.2438 11.05093 12.93527 15.47979 11.72934 13.99516 16.74092 

6 10.00619 10.21433 11.15849 10.54254 11.97546 14.25215 11.05209 12.94027 15.49231 11.73186 14.00329 16.75866 

12 10.00619 10.21434 11.15862 10.54258 11.97576 14.25307 11.05222 12.94082 15.49369 11.73214 14.00418 16.7606 
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Table 2.  Eigenvalues for different Foundation stiffness ratio for T =100 &  =0.33. 

       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Eigenvalues for different Translation and Foundation stiffness ratios for  =0.33. log10 𝜉 
     & log10 𝑇 

𝜆00 
 

𝜆10 𝜆20 𝜆01 𝜆11 𝜆21 𝜆02 𝜆12 𝜆22 𝜆03 𝜆13 𝜆23 

-3 0.2115 3.0115 6.2054 4.52915 7.73687 10.9091 5.93655 9.18564 12.3826 7.27469 10.57846 13.80849 

-2 0.37648 3.01187 6.20544 4.52925 7.73689 10.90911 5.93659 9.18566 12.38261 7.27471 10.57846 13.8085 

-1 0.67602 3.0156 6.20584 4.53032 7.73709 10.90918 5.93708 9.18578 12.38266 7.27499 10.57855 13.80854 

0 1.30374 3.067 6.21074 4.54336 7.73963 10.91008 5.94302 9.18733 12.38328 7.27834 10.57959 13.80899 

1 3.25317 3.90325 6.34932 4.87899 7.81237 10.93614 6.10341 9.23131 12.40119 7.36838 10.60869 13.82199 

2 10.00568 10.1199 10.46887 10.2319 10.89095 12.52351 10.42003 11.5152 13.57333 10.74585 12.31326 14.70772 

3 31.62297 31.62939 31.65958 31.63958 31.68744 31.78104 31.65573 31.72292 31.85232 31.67796 31.76831 31.94926 
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𝜆10 𝜆20 𝜆01 𝜆11 𝜆21 𝜆02 𝜆12 𝜆22 𝜆03 𝜆13 𝜆23 

-3 2.18341 4.70075 6.69703 5.56683 7.98678 10.99197 6.50356 9.33292 12.43922 7.59879 10.67534 13.84974 

-2 2.18341 4.70075 6.69703 5.56683 7.98678 10.99197 6.50356 9.33292 12.43922 7.59879 10.67534 13.84973 

-1 2.18365 4.70077 6.69704 5.56684 7.98679 10.99197 6.50357 9.33292 12.43922 7.59879 10.67535 13.84974 

0 2.20704 4.70315 6.69786 5.56827 7.98727 10.99216 6.50447 9.33323 12.43935 7.59936 10.67555 13.84983 

1 3.3284 4.92488 6.77875 5.7064 8.03541 11.01074 6.5926 9.36352 12.45218 7.65514 10.69583 13.84914 

2 10.00568 10.1199 10.46887 10.2319 10.89095 12.52351 10.42003 11.5159 13.57333 10.74585 12.31326 14.70772 

3 31.62296 31.62664 31.63867 31.63037 31.6549 31.73756 31.63691 31.68259 31.81038 31.6491 31.72496 31.90972 
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support position is in full span, which means 
that when 1b , the case becomes a circular 
plate having full foundation support with 
elastically restrained edge against translation. 
For this case, the frequency is 2.1834 and that is 
in good agreement with the frequency of 
2.18341 obtained from the present study. 
     The eigenvalues at various values of the 
foundation stiffness ratios for  

33.0&100  T  are computed and the 
results are given in Table 2. The effects of the 
foundation stiffness ratio on eigenvalues are 
plotted in Fig. 4. As seen from Fig. 4, the 
eigenvalue   increases   with    increase  in   the  
foundation stiffness ratio, and the plate becomes 
stiffer and stronger as the value of foundation 
stiffness becomes greater than 102.  As seen from 
the Tables 1 and 2, the influence of foundation 
stiffness ratio on eigenvalue is relatively greater 
than that of the translation stiffness ratio in 
increasing the overall natural frequencies of the 
plate support system. As seen from Fig. 4, for all 
the modes considered here, up to a value of 10 
the eigenvalues stay constant and beyond this 
value all the curves tend to converge to a 
constant eigenvalue  as  the  foundation stiffness  
 
 

ratio increases up to 103. The convergence starts 
from 1.07897 [2.0325779] and continues up to a 
constant value of 9.63274 [13.84796].  
     The eigenvalues at various values of the 
translational stiffness ratios and foundation 
stiffness ratios are computed and the results are 
given in Table 3. The effects of the translation 
and foundation stiffness ratios on eigenvalues 
are clearly observed in Fig. 5, eigenvalues 
increases with an increment in both the 
translational and foundation stiffness ratios. As 
observed from the Table 1 and 3, the influence 
of foundation stiffness ratio on eigenvalue is 
more predominant than that of translation 
stiffness ratio alone. From the results presented 
in Tables 1 and 3, we can see that the influence 
of foundation stiffness ratio on eigenvalues is 
more predominant than that of translation 
stiffness ratio. From the results given in Tables 1 
to 3, one can easily find that the eigenvalues 
become lower for lower values of foundation 
and translation stiffness ratios.  As seen from 
Fig. 5, all the curves are stable up to a certain 
region beyond which the curves tend to 
converge for increasing values of translation 
and foundation stiffness ratios. 

 
Figure 3.  Effect of translational stiffness ratio T on eigenvalues, 

mn . 
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 Figure 4.  Effect of foundation stiffness ratio,   on eigenvalues, .mn  

 

 
Figure 5.  Effect of translational, T  and foundation,   stiffness ratios on eigenvalues, .mn   

Table 4. Eigenvalues for different Poisson ratios.  
ν 1000 T  10,100  T  1000,10  T  10,1  T  50,50  T  

0 31.62925 4.92456 10.03027 3.62553 7.28924 

0.1 31.62929 4.92466 10.03111 3.64904 7.2896 

0.2 31.62934 4.92476 10.0319 3.6708 7.28993 

0.3 31.62938 4.92485 10.03265 3.69097 7.29025 

0.4 31.62942 4.92494 10.03336 3.70974 7.29056 
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Figure 6.  Effect of Poisson ratio,  on eigenvalues, .mn  

 
5.   Conclusion 
 
This work deals with a method of computation 
of eigenvalues of flexural vibrations of a circular 
plate with translational edge supported and 
resting on Winkler foundation using a 
specifically written MATLAB code. The 
computed numerical results are presented in a 
tabular format to enable estimating the accuracy 
of approximate methods being used by other 
researchers for solving such problems. Two-
dimensional plots of eigenvalues are drawn for 
a wide range of translational and foundation 
stiffness ratios facilitating their use in design. 
From the numerical and graphical results 
presented in this paper, it can be easily observed 
that the eigenvalues remain constant only for a 
limited range of constraints specific to each 
vibration mode and then steeply increase with 
the increasing values of foundation stiffness 
ultimately converging towards a constant value. 
It is also observed that the influence of 
foundation stiffness ratio on eigenvalues is 
more predominant than that of translational 
stiffness ratio. 
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