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1. Introduction 

Visual cues obtained from the movement of speech articulators like lip, tongue or teeth play a role in improving the 

automatic recognition of speech. The recognition of speech from visual cues or VSR greatly depends on the choice 

of visual feature derived from the sequence of images. The visual features could be broadly categorized as static 

(such as contour and geometry of the lips) or dynamic (sequential movements of the speech articulators) features. 

While the contour and dimension of the lip are essential visual cues, the (temporal) trajectory of lip movements 

could provide better discriminatory evidence. This paper explores the motion-based image features and combines 

them with geometric features to exploit the complementary evidence present in the static and dynamic features. The 

motion-based features are estimated using the following techniques i) Block-based ii) MHI iii) Optical flow 

analysis. Block-based technique divides the current frame into macroblocks that are compared with the 

corresponding block with its adjacent neighbors in the previous frame, and creates a vector that stipulates the 

movement of a macroblock from one location to another in the previous frame [1]. The matching of one macroblock 

with another is based on the output of cost functions such as Mean Absolute Difference (MAD) and mean squared 

error. Block-based motion estimation algorithms are further classified as follows: 1) Search position 2) multi-

resolution 3) matching criterion 4) fast full search 5) computation-aware. The full-search block-based motion 

estimation gives a higher performance in searching the best match. Other techniques used under these categories are 

2-D logarithmic search, coarse-fine three steps and conjugate search [3]. These algorithms have been widely 

adopted in speech applications such as speech recognition and speaker identification. The block-based motion 

features are more accurate and have high computation complexity. 

MHI is an accumulation of Difference of Frames (DOF) in a video. DOF shows the intensity difference between the 

current frame and the previous frame and has limited dynamic information [2]. Instead of DOF, multiple frame 

DOFs are used which identifies the regions that have pixel intensity greater than the threshold. MHI provides 

temporal-spatial (dynamic) information from the video content, assigning higher weight-age to more recent 

movements. The pixels in the region of lip movement have higher intensity compared with the pixel where there is 

no occurrence of lip movement. Hence MHI produces a grayscale image where brightness indicates the direction of 

the recent motion in the image sequences. MHI is invariant to skin color and has low computational complexity. In 

[2], Zernike moments and DCT based feature descriptors are used to extract the features from MHI of viseme. SVM 

classifier is used to train the Zernike and DCT Features (without rotation). MHI with DCT feature based recognition 

is better compared to Zernike features. For the rotated MHI, Zernike moments based recognition gives the highest 

recognition accuracy than DCT features. Block motion estimation was proposed for audio-visual speech recognition 

for tulips digit datasets in [3]. In [4], normal image velocity vectors were proposed for a audio-visual speech 

recognition and speaker recognition of digits and XM2VTS datasets. The acoustic features (Mel frequency cepstral 

coefficients) and velocity vectors of visual speech were integrated at the feature level. Hierarchical grid based 

motion estimation was used to extract the motion features for speaker identification and speech recognition task in 

[5]. In addition to lip motion, contour/shape based information is extracted using a quasi-semi automatic technique. 

The experiments were conducted for names and digits of MVGL-AVD database. The performance was better using 

grid-based lip motion vectors than compared to lip-contour based motion features [6].  

Motion features using optical flow analysis by the Lucas-Kanade algorithm for automatic lip reading system was 

proposed in [7]. In addition, two other features such as geometric features and statistical control parameter were also 

used. The geometric features such as mouth height, width, area, aperture height, width, area and nose to chin 

distances were extracted using active appearance model. Experiments were carried out for two different tasks, 

connected digit/letter and continuous speech recognition for the Dutch language. The speech recognition of digits 

and letters gave better recognition accuracy compared to continuous speech recognition. In [8], two different 

methods were proposed for motion features using optical flow analysis. In the first method, optical flow 

horizontal/vertical component based speech information was used as motion features. Secondly, directional MHI 

(Direction: Up, Down, Left and Right), Zernike, and Hu moments were used to extract the motion features. SVM 

classifier was used to classify the motion features. Optical flow motion analysis for multimodal speech system using 

acoustic and visual information in normal and noisy conditions was proposed in [9]. The visual features (of 

dimension 2) were extracted using the Horn-Schunck algorithm of optical-flow analysis consists of minimum and 

maximum values used as features. In [10], a motion based VSR system and visemes segmentation. MHI was 

calculated from each viseme, and then Level 1 SWT was applied to MHIs. The approximate image from SWT was 

further transformed into Zernike moment features. These features were classified by support vector machines. [11] 
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reported a Zernike moments based audio-visual speech recognition task. Zernike moments of the 9
th

 order were 

applied to every ROI and 9x1 dimensions Zernike features were calculated. Among all the three techniques, MHI 

based feature extraction technique was recommended in this paper due to their very low complexity. 

              Table 1: Proposed Systems of a Visual Speech Recognition System 

  

   

          
        

      

                                    Fig 1. Block diagram of proposed VSR systems using feature and model fusion 

In this study, the dynamic motion-based features, namely MHI-DCT (MC), MHI-DWT (MW) and MHI-ZM (MZ) 

are each combined with static geometric features, namely ASM (S). These combined features are used to build the 

VSR systems, , , and , respectively. These systems correspond to the feature level fusion (refer table 

1) systems that incorporate model level fusion using the same features have also been built ( , , and , 

respectively). To study the effect of the fusion, both at feature-level and model-level fusion are explored and for the 

purpose of comparison, VSR systems are built separately for each feature (, , , and , respectively). 

The block diagram of the visual speech recognition system is shown in figure 1. Face detection and lip region 

tracking are performed using the Viola-Jones algorithm [12]. Once the lip region is identified, the MHI is calculated 

for each viseme from which motion-based features are extracted (DCT, DWT, and ZM). The geometric features are 

extracted using ASM technique. Since the geometric features better capture the variation in the dimensions of the 

lips across sound units, and the motion-based features capture the variations in the sequence of lip movements, the 

geometric and motion-based features are combined in this study. The observation vector of motion-based features is 

given as _, ,  , and the geometric features  _ where mc stands MHI based DCT, mw

stands MHI based DWT and mz stands MHI based Zernike, respectively. Feature fusion is performed using a simple 

feature vectors plain concatenation method. The model level fusion is obtained using a two-stream Hidden Markov 

Model (HMM)-Gaussian Mixture Model (GMM). Feature fusion (equation 1) and model fusion (equation 2) are 

given as: 

   _,_, = _, , _,  ∈      (1)   Where ,_ = // +     

    

     ,,  |    =   _;  Σ  + _;  Σ
                           (2) 

This paper is organized as follows. Motion analysis of the visual speech is presented in Section 2. In Section 3, the 

feature extraction methods and modeling used in this work are discussed. The performance of the VSR systems is 

analyzed in Section 4. Section 5 summarizes this study. 

2. Motion Analysis of Visual Speech 

The visemes or visual phonemes are analyzed using the block matching and MAD techniques. In the block matching 

technique, the motion is estimated for the current image frame by calculating the movement of each of the 

Benchmark 
Systems 

Symbols used for 
benchmark system 

Proposed Systems 
(Feature and Model Level) 

Symbols used for 
proposed systems 

MHI-DCT 
 Feature   

 Level 

MHI-DCT+ASM 

MHI-DWT+ASM 
MHI-ZM +ASM 

, , 
MHI-DWT   


MHI-ZM 

Model 
Level 

MHI-DCT+ASM 

MHI-DWT+ASM 

MHI-ZM +ASM 

,  , 
ASM  



, 
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             

 _, ,    _
_,_, = _, , _,  ∈  ,_ = // +  
  ,,  |    =   _;  Σ  + _;  Σ

      

macroblock into which the frame is divided. The movement of each macroblock is represented by a vector obtained 

by comparing this macroblock with the corresponding and the neighboring macroblocks in the previous reference 

frame [8]. That block in the reference frame which yields the least cost (least sum of absolute difference with the 

current macroblock) is chosen as the closest match and the corresponding displacement in search region is 

represented as the motion vector. Figures 2 and 3 depict the motion vectors computed using a block matching 

technique for the visemes  of digits ‘9’ and ‘1’, respectively for a sample of 4 frames.  

Fig 2. Block-based motion representation for the viseme (‘nine’)                Fig 3. Block based motion representation for the viseme (‘one’)

The MAD between a sequence of consecutive frames, which captures the mouth movements, shows a similarity and 

different utterances of the same word (as depicted in Figure 4 (a) & 4 (b) for digits ‘zero’ and ‘four’, respectively. 

The MAD is dissimilar for the utterances of different words (here, digits) as shown in figure 4 (c) & 4 (d). The next 

section discusses the feature extraction method used for visual speech. 

     

Fig  4.  Mean absolute difference of consecutive frames for the different utterances of the same word “zero” and “four” ((a) and (b)) and 

different words ((c) and (d)) of the visual phonemes for digits  

3. Feature Extraction of visual speech 

The following steps are involved in visual speech feature extraction is discussed detail in this section.  i) Face 

identification ii) Lip Region of Interest (ROI) detection iii) Classification of speaking and non-speaking Lip ROI iv) 

Motion-based feature extraction  v) Geometric feature extraction.  

Table 2. Database for this Study 

Camera SONY Handycam HDR- PJ660/B                        Training and Testing Data 

Total no speakers 20 Training utterances 35 Total testing utterances 3000 

Data sets Digits (English) (0-9) Testing utterances 15 Total training utterances 7000 

A video speech corpus (refer to table 2) is collected from twenty speakers. The horizontal distance from d1 the 

speaker’s face position to a camera is about 32 cm and the camera is at a height d2 of 63 cm from the ground. A 

video of a sound unit consists of a large number of image frames. Hence each image frame ,  classified 

further as speaking or non-speaking frame (manually- can be automated), and only the speaking frames are 

considered for the study. Face detection which is the first process involved in VSR system is discussed next. 

3.1. Face and Lip ROI Extraction 

Face detection determines the reliability of visual speech systems. Face detection methods are classified as 

knowledge-based, appearance-based, template matching, feature invariance and color based. In this study, the 

feature invariant Viola-Jones algorithm is used [12,18]. Since this algorithm shown invariant to pose and orientation 

changes compared to other methods. This algorithm detects a face in an image by scanning subwindows of the 

image multiple times with a re-scalable detector. The scale-invariant detector is constructed using an integral image 



928 Radha N  et al. / Procedia Computer Science 171 (2020) 924–933

and Haar-like features. The Viola-Jones algorithm uses a 24x24 window as the base window size to evaluate the 

features. Since a large number of rectangular Haar-like features have to be evaluated, to reduce computation, to find 

the best features and eliminate redundancy, Adaboost machine learning algorithm is used. This classifier constructs 

a strong classifier as a weighted combination of weak classifiers. Once the face is detected the lip region is extracted 

next using the same algorithm. The ROI is normalized into a 64x40 frame which represents the visual speech 

information. The ROI extraction is a pre-processing step for the extraction of visual features [17]. It’s simply 

defined as a rectangle containing the intensity of the speaker’s mouth region. From the extracted ROI, motion-based 

visual features are extracted is discussed next section. 

3.2. Motion based feature extraction from MHI 

Motion features are extracted using the MHI algorithm. MHI is a representation of a sequence of lip motion images, 

from which Zernike moments, DCT, and DWT coefficients are derived. The following computes the MHI and 

Zernike moments. DOF is the difference between two consecutive frames,  & , in a sequence of images is 

given as 

                   ,  =  ,  −  ,            (3)                                    

An alternative suggestion to enhance this difference is to choose  instead of  , Where  =  2 ,  ,  …  etc for 
frames.  

   
Fig  5. The DOF of 2 consecutive frames (row 1), and 2 spaced         Fig 6. MHIs of visemes of digits (top row L-to-R) zero to four, (bottom   

apart frames (row 2 and 3), and the corresponding binary images.        L-to-R) five to nine. 

Figure 5 depicts these differences  −  of  frames are each used to compute the binary gray scale images as: 

,  =  0 ,  ,  < 1,      ℎ                                 (4)                                                                                        

  

Where  is a n empirically chosen threshold level. The MHI is the computed recursively as: ,  =   . ,  + ,          (5)  Where    = 2,3, … . ,       
             

The intensity of the pixel in the final MHI represents the cumulative motion of the facial articulators, especially the 

lip. Gray values of the MHI are the temporal feature descriptor of the motion. The pixels in the region of lip 

movement have higher intensity compare with the pixel where there is no movement. MHI of viseme utterances 

computation for digits is shown in figure 6. The MHI of digit datasets are further processed by Zernike moments and 

by image transform approach DCT/DWT. Finally, Zernike moments, DCT, and DWT features from MHI are 

discussed in the next section.   

3.3. Feature Extraction using ZM, DCT and DWT 

Moments are a measure of the spatial distribution of the shape of an object. Moments invariants are important to 

shape descriptors in computer vision. One of the motivations of using ZM has a rotational property which performs 

rotation, scale, and translation invariant to transformations except shearing [2]. Zernike moments are orthogonal 

computed using Zernike polynomial and defined within a unit circle. An image ,  and the respective polar 

representation ,  is mapped to unit the circle  +  ≤ 1, where  is circle radius and  is angle variation. 

Then Zernike moments  are calculated for order  and repetition  is given by  

 =       ,   
],  =     =  ∑ −1|| !! || ! || !  

 = f, f =  ∑ ∑ ,            0 ≤  ≤  − 1 0 =  ,  =  1 ≤  ≤  − 1

 = ∑                 11     =  ,  =  √    ,  =    , 

      3− 2   
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 ,  =  ,  −  ,     =  2 ,  ,  … 

 −  
,  =  0 ,  ,  < 1,      ℎ 

,  =   . ,  + ,    = 2,3, … . ,   

, ,    +  ≤ 1    

 =       ,                             (6)                                                                                       

Where   is a Zernike polynomial function which is defined using a radial polynomial  given by 

],  =        (7)     =  ∑ −1|| !! || ! || !              (8)               

             

The radial polynomials function and the corresponding values of order 3 are given in table 3. Zernike moments are 

calculated for digits with the radial polynomial order of 6. The reconstructed ZM of 6
th

 order radial polynomial for 

different speakers with different utterances are given in table 4. This shows the within the speaker, the similarity is 

high across all the digits. But across speaker individual digits are varied because of their manner of articulation are 

different. In this work, Zernike features (order 12: 49 dimensions) are calculated and thus used to build the VSR 

systems. Visual feature extraction using image transforms such as DCT and DWT based features from MHI is 

discussed next.    

        Table 3. Radial Polynomial Functional Values                               Table 4. ZM of Order 6 for the Different Utterance of Each Digit                                        

                  

DCT coefficients (dimension 64) of feature sets  are extracted from each MHI is given as  = f,                                      (9)      f =  ∑ ∑ ,        (10)  Where     0 ≤  ≤  − 1   0 =  ,  =  1 ≤  ≤  − 1
Pixel variations are captured by the DCT coefficients and these variations are very sensitive to illumination 

conditions. Hence, this study explores the other pixel-based transforms such as DWT have two properties such as 

multi-resolution and uniform scalability in nature. DWT translates the visual speech signal into wavelets and these 

wavelets were derived from a mother wavelet. The wavelet function  is represented as follows  = ∑                 11  Where      =  ,  =  √    
The wavelet function of visual image ,  is given by  =    ,                        (12) 

This transform converts visual signal (image) into Low-High (LH), Low-Low (LL), Low-High (LH) and High-High 

(HH) sub-bands. The pixels representation in those subbands (LL, LH, HL, and HH) indicates the DWT 

coefficients. The coefficients present in the LL subband (approximation band) carries most significant information 

compared to other coefficients in different subbands is used in this work. Geometric feature extraction using ASM is 

discussed in the next subsection. 

3.4. Active Shape Model 

An ASM uses a statistical shape model known as a point distribution model (PDM) obtained from statistics of hand-

labeled training data sets and makes a shape-constrained iterative fitting for testing data sets. A PDM is calculated 

from a set of training lip images in which 36 points were used (20 points on the outer lip and 16 in the inner lip 

contour) as a landmark point have been located by eye. Each shape model (speaker dependent) is represented by 

Radial  

Functions 

Values Radial  

functions 

Values 

 1        3− 2   
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,  of its contour position (landmark points). The 2D shape model  using PDM is given by   = , ,, , … ,                 (13) 

Each visemes are defined with five different shapes for ten digits and ten speakers using PDM totally 10*5*10=500 

shapes/model was used for training. This is an unaligned shapes are converted into aligned shapes. In the first 

reference, the shape is selected (example as the first one). All the shapes are translated to the center position.  Then 

reference shape is scaled to unit size and considered as a mean shape ̅. Next step is aligning all shapes  to the ̅  

and thus aligned shapes in which mean shape ̅  are recalculated. This process is repeated until the mean shape does 

not change much in their progress. The output is mean shape and set of aligned shapes. The mean shape ̅  describes 

most variance and the shape is determined using a principal component analysis [13]. The mean shape  ̅ and the 

covariance  is given by 

    ̅ =  1  
                14           =  1 − 1  

 − ̅   − ̅     15
A shape can be aligned with another shape or two vectors  ,  alignment carried by applying a transforms 
such as scaling, rotating, and translation. The transforms are given by 

  =    +     −          (16) 

The shape model consists of an average lip and allowed variation of the average lip is shown below  =  ̅ +                                                                   17
Where  is the eigenvectors of the covariance matrix and  is varying parameter used to generate different shapes. 

For example  in which the value range from −3√ , 0, and +3√ where  is the largest eigen values. All gray 

scale lip frames of the first viseme utterances of digits for all 10 speakers were used as training data and profile 

models were created.  Each mode is plotted at plus and minus three standard deviations from the mean on the same 

axes. While testing images among the global models, first builds the profile by generating the start shape by location 

represents the overall position of the lip. To measure the fitness of the profile against the profile model of the best 

profile match cost function is used [13]. This generates new suggested shape conforms to shape model until no 

further improvements in fit are possible. From the extracted shape model ten geometric features were extracted and 

the features are modelled by HMM is discussed in the next section.  

3.5. HMM Modelling 

Three features from the three different modalities were modeled by single stream left-to-right Gaussian HMM is 

shown in figure 7a. Each state in HMM is a Gaussian mixture. Three HMM models were created for training. The 

probability of the feature vector  being in any of I viseme models denoted by  , is shown as. | =   
                                                                18

Where   are the mixture weights and ∑  = 1 [12].  For each visual speech, a GMM model is represented by 

GMM mean, covariance, and a weight parameter given by,  =  ,  , Σ.    

                                      
    Fig 7.  Types of HMM Model used 

The model level fusion is carried by a state synchronous two stream Gaussian L-to-R HMM (product HMM) that 

combines a stream of models at an intermediate level for visemes [15]. Two stream HMM is constructed by two 

different set of feature model (DCT features  and geometric features ) and with stream weighting factors [16]. 

 =   +  ,, ∨  = ∏ , ∨                      20          ∈   ∈   = { ,  ∈ }

 ,  ,  ,         
       

 ,  , ,        .         

     
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,    = , ,, , … ,  
̅  ̅̅ ̅ ̅

̅ =  1  
                14           =  1 − 1  

 − ̅   − ̅     15
   

  =    +     −    
 =  ̅ +                                                                   17  −3√ 3√ 

 | =   
                                                                18 ∑  = 1  =  ,  , Σ

 

The combined model level fusion is given by  =   + 
                        (19)     ,, ∨  = ∏ , ∨                      20          ∈ 

Each model   consists of composite states  ∈   with emission score values  = { ,  ∈ } as shown in eq.20. An 

example of such a model is depicted in figure 7b.  Each model is represented by 5 states, out of which 2 states 

denote the starting and ending states and the other 3 states represent the actual features. The product HMM has the 

same number of mixture weight, mean, and variance parameters [19]. Each state has two stream components and 

can be controlled by weighting parameter of that stream. Experimental results at the feature level and model level 

are discussed in the next section. 

4. Experimental Analysis 

The experiments are carried out for the benchmark ( ,  ,  , and ) and the proposed systems at feature 

level (, , ) and model level (, , ). The viseme level HMM models, which have L-to-R 

states with the varying number of the Gaussian mixtures are evaluated with MHI-DCT, MHI-DWT, MHI-ZM, and 

ASM feature sets denoted as  ,   ,  ,   respectively. The corresponding VSR systems built 

are , ,  and , . Viseme recognition rates for varying number of states with 

different Gaussian mixtures are plotted in figure 8 (a-d).  

     
a)                                                  b)                                                       c)                                                   d) 

Fig 8. Recognition rate of the  ,  , , and  systems for varying number of states (s) with Gaussian mixtures (M). 

The MHI-ZM baseline system, , achieves highest recognition rate at s=9 and M=10 compared to the 

MHI-DCT baseline system. This system  gives us 74% accuracy values. The geometric based recognition 

system,   , has a recognition 76% for state s=9 and M=12 [12]. Compared to other baseline system,  , achieves highest recognition accuracy of 85.5% for state s=7 and M=8. The comparative study 

performance analysis of motion based benchmark VSR system recognition is shown in table 5. Feature level 

combined DCT-ASM, DWT-ASM, and ZM-ASM feature sets denoted as  , , and  respectively. The 

corresponding VSR systems built are  ,   , and  .  The feature vectors are 

combined using simple plain concatenation technique[13,14], an the dimensions are 74 (64 DCT coeffiecients+10 

geometric features) for , 266 (256 wavelet coeffiecients+10 geometric features)  for , and 59 (49 zernike 

moments+10 geometric features) for  sytems. Viseme recognition rates of feature level combined ,  
and    systems for varying number of Gaussian mixtures with different states are plotted in figure 9 (a-c). 

Table 5. Performance (%) of VSR Systems                                               Table 6.  Performance Comparison of VSR Systems  

                                                                                           

                                   

Fusion Levels Recognition Rate (%)   
Feature-Level 84.5 96.2 93.5 

Model-Level 

(Increasing  weight to 

ASM) 

90.6 98.5 96 

Model-Level 

(Increasing  weight to 

DCT/DWT/ZM) 

80.5 96.3 98.0 

No of 

States 

VSR Systems    
1 31.5 38 50 52 

3 48 49 70 57.3 

5 72 70.3 82.3 60.1 

7 74 80.5 85.5 68.3 

9 74.5 82 85 76 
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a)                                                    b)                                                                                c)         

Fig 9. Recognition rate of the feature level combined ,   and        systems for varying Gaussian mixtures and states. 

  

The DCT-ASM fusion based recognition system, , has 85% highest recognition accuracy for state s=7 and 

M=36.  The DWT-ASM fusion based recognition system, , achieves 96% high recognition accuracy of 96% 

for state s=7, M=48 and, M=64. The ZM-ASM fusion based recognition system,  , gives 94% recognition 

accuracy for state s=7 and M=8. The highest recognition gain provided at state s=5 and s=7 for combined systems. 

DCT-ASM fusion based system,  , ZM-ASM based systems     and DWT-ASM based 

systems  ,have shown improved performance over the individual feature based systems (benchmark 

systems). This shows that combined systems achieves 10% gain in their recognition performance compared to the 

benchmark systems. It is observed that some additional gain in DWT based combined system recognition 

performance. Among all the feature fusion based system, DWT based visual speech recognition system provides the 

good recognition accuracy.  In model level fusion, the fusion is obtained using a weighted sum of the log likelihoods 

of the DWT-based stream and ASM-based stream given by   =  ,  ]∝  +   , ]∝           (21) where  ∝ and ∝ are the weighting factors.  

Fig 10. Performance of model-based fusion systems using weighted combinations (a) with (L-R) increasing weight to (DCT/DWT/ZM) systems, 
(b) with (L-R) decreasing weight to ASM systems (c) feature level fusion. 

The performance of different values of ∝  and ∝  are shown in the figure. 10 (a) (∝>∝, 0.5 ≤∝< 1  and 0.1 ≤∝< 0.5 ) and figure 10 (b) ∝>∝, 0.5 ≤∝< 1, and 0.1 ≤∝< 0.5. The highest performance is obtained 

when more weightage is given to geometric features than motion based features, showing that, though there is 

complementary information in the geometric features and motion features, the geometric cues play a more relevant 

role in discriminating visemes. The performance of the system based on model-level fusion   is the highest 

(98%) among all other systems. Thus the performance of systems based on both the model level fusion (98%) and 

feature level fusion (94.5%) is significantly better than individual systems (74%, 84.5%, 80% for a system based 

DCT, DWT, and ZM respectively). Feature level and model level fusion comparison analysis is given in table 6. It is 

clearly visible that the percentage of recognition performance increases when DCT, DWT, and Zernike features 

were combined with geometric features which could be used to build the good VSR system. Time complexity of 

  
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             
     

  =  ,  ]∝  , ]∝ ∝ ∝

∝ ∝ ∝>∝, 0.5 ≤∝< 10.1 ≤∝< 0.5 ∝>∝, 0.5 ≤∝< 1 0.1 ≤∝< 0.5
 

MHI is  and for the geometric features is  which is quadratic and linear respectively. Hence combining 

the two algorithms the new time complexity is . The overall complexity is  which is good for large 

datasets. 

5. Conclusion 

Visemes provide lesser discriminatory information than compared to the acoustic signal on the sound units, a 

vocabulary of digits dataset is chosen for this work and allows better discrimination in sounds. This study presented 

a motion based visual feature extraction method that creates features derived from MHI. Different types of features 

are Zernike, DCT, and wavelet coefficients were extracted from MHI. The three viseme models are built 

individually by using L-to-R Gaussian HMM and the recognition accuracy is tested. A two-level combined feature-

based framework of combined motion and geometric information using ASM is proposed which improves the 

conventional VSR system. Model level fusion is proposed with two streams L-to-R Gaussian HMM in which each 

stream is weighted with a weighting factor. The experimental analysis shows that combined motion and geometric 

features significantly improves the performance of the benchmark VSR system. The benchmark VSR system has the 

least recognition performance rate of 74% for DCT features. The performance of the benchmark VSR system is 85% 

and 80% for DWT and ZM features, respectively. VSR system performs significantly better while using the model-

level fusion (98%) and feature level fusion (94%). This improvement in performance due to the fusion shows the 

presence of complementary cues in the motion based and geometric-based features, and also that geometric cues 

provide better discrimination of visemes. The overall relative improvement in performance of the proposed work on 

fusion based VSR system is encouraging.  
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