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1 Introduction

A pair of primal and dual problems is called symmetric when in the case where the dual is expressed in the

form of the primal, then its dual is the primal. Dorn [7] was the first to introduce symmetric duality in the liter-

ature. Since then, researchers became engaged in deriving results on different aspects of symmetric duality.

Since more parameters are involved, a second-order dual provides tighter bounds for the value of the objec-

tive function of the primal problemwhen approximations are used. Suneja, Lalitha and Khurana [18] studied

a pair of Mond–Weir-type second-order dual programs and established the appropriate duality results under

ç-bonvexity/ç-pseudobonvexity assumptions. Gulati and Gupta [8] studied a pair of Wolfe-type second-order

symmetric dual programs involving nondifferentiable functions and derived appropriate duality theorems

under ç1-bonvexity/ç2-boncavity.
Ahmad [3] considered a pair of Mond–Weir second-order symmetric nondifferentiable multiobjective

programs and derived weak, strong and converse duality theorems under ç-pseudobonvexity assumptions.

Yang, Yang, Teo and Hou [22] derived the appropriate duality results for a pair of second-order symmetric

dual programs in multiobjective nonlinear programming under F-convexity. Later on, Gupta and Kailey [9]

pointed out some deficiency in strong duality results given in Yang, Yang, Teo and Hou [22] and gave the cor-

rect form of the theorem. Mandal and Nahak [11] studied symmetric duality under (p, r) − ñ − (ç, è)-invexity
assumptions and derived the duality theorems.

Yang, Yang and Teo [21] formulated a pair ofWolfe-type nondifferentiable second-order symmetric primal

and dual problems in mathematical programming and established weak and strong duality theorems under

second order F-convexity assumptions. They also studied symmetric minimaxmixed integer primal and dual

problems. Verma and Gulati [20] studied a pair of Wolfe-type nondifferentiable multiobjective second-order

symmetric dual programs involving two kernel functions and derived weak, strong and converse duality

theorems for this pair under invexity assumptions.

Agarwal, Ahmad, Gupta and Kailey [1] considered a pair of second-order mixed symmetric dual pro-

grams involving nondifferentiable functions and proved weak, strong, and converse duality theorems using

the notion of second-order F-convexity/pseudoconvexity assumptions. Ahmad [2] focused his attention on

mixed symmetric dual programs without nonnegative constraints and derived weak, strong, converse and

self-duality theorems. Kim, Lee and Lee [10] derived appropriate duality results for a pair of multiobjective

second-order symmetric dual programs, where the objective function contains a support function. Tripathy
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andDevi [19] extended the results of Ahmad [2], Suneja, Lalitha and Khurana [18] etc. by considering a pair of

second-order mixed symmetric duals for a class of nondifferentiable multiobjective programming involving

a square root term and established weak duality, strong duality and converse duality theorems under second

order (õ, ñ)-invexity and (õ, ñ)-pseudoinvexity assumptions.

Economic applications often require maximizing the efficiency of an economic system resulting in prob-

lems whose objective function is a ratio. Examples of such economic applications include maximization

of productivity, maximization of return on investment, minimization of cost/time. Fractional programming

deals with all these situations. Apart from these, fractional programming can be used in data envelopment

analysis, tax programming, risk and portfolio theory (see, for example, [4, 6, 16, 17]). Keeping this point of

view, in the present paper we derive duality results for Wolfe-type second-order fractional symmetric dual

programs. We also discuss minimax mixed integer programming problems. The structure of the paper is as

follows. In Section 2, we present some preliminaries and definitions.We derive theweak, strong and converse

duality theorems in Section 3. In Section 4, we discuss theminimaxmixed integer programming problem and

self duality in Section 5 followed by conclusion at last.

2 Preliminaries

Let S1 ⊂ ℝn and S2 ⊂ ℝm be open sets and let f(x, y) be a real-valued twice differentiable function defined

on S1 × S2. Then, ∇xf and ∇yf denote gradient vectors of f with respect to x and y respectively and ∇xyf
denotes the n×mmatrix of second-order partial derivatives. All vectors shall be considered as column vectors.

Definition 2.1 ([15]). The function f(x, y) is said to be ç1-bonvex in the first variable at u ∈ S1 for fixed v ∈ S2
if there exists a function ç1 : S1 × S1 → ℝn, such that for x ∈ S1 and q ∈ ℝn, we have

f(x, v) − f(u, v) + 12q
⊺∇xxf(u, v)q ≥ ç⊺1(x, u)(∇xf(u, v) + ∇xxf(u, v)q).

Definition 2.2 ([15]). The function f(x, y) is said to be ç2-bonvex in the second variable at v ∈ S2 for fixed
u ∈ S1 if there exists a function ç2 : S2 × S2 → ℝm, such that for y ∈ S2 and p ∈ ℝm we have

f(u, y) − f(u, v) + 12p
⊺∇yyf(u, v)p ≥ ç⊺2(y, v)(∇yf(u, v) + ∇yyf(u, v)p).

3 Second-order fractional symmetric duality

In this paper, we consider the following pair ofWolfe-type second-order fractional symmetric dual programs.

Consider the primal problem

min f(x, y) − y
⊺(∇yf(x, y) + ∇yyf(x, y)p) − 12p⊺∇yyf(x, y)p

g(x, y) − y⊺(∇yg(x, y) + ∇yyg(x, y)p) − 12p⊺∇yyg(x, y)p
(WFP)

subject to

[(g(x, y) − y⊺(∇yg(x, y) + ∇yyg(x, y)p) − 12p
⊺∇yyg(x, y)p)(∇yf(x, y) + ∇yyf(x, y)p)

− (f(x, y) − y⊺(∇yf(x, y) + ∇yyf(x, y)p) − 12p
⊺∇yyf(x, y)p)(∇yg(x, y) + ∇yyg(x, y)p)] ≤ 0,

for x ≥ 0, and the dual problem

max f(u, v) − u
⊺(∇xf(u, v) + ∇xxf(u, v)q) − 12q⊺∇xxf(u, v)q

g(u, v) − u⊺(∇xg(u, v) + ∇xxg(u, v)q) − 12q⊺∇xxg(u, v)q
(WFD)
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subject to

[(g(u, v) − u⊺(∇xg(u, v) + ∇xxg(u, v)q) − 12q
⊺∇xxg(u, v)q)(∇xf(u, v) + ∇xxf(u, v)q)

− (f(u, v) − u⊺(∇xf(u, v) + ∇xxf(u, v)q) − 12q
⊺∇xxf(u, v)q)(∇xg(u, v) + ∇xxg(u, v)q)] ≥ 0,

for v ≥ 0, where f : S1 × S2 → ℝ+ and g : S1 × S2 → ℝ+ \ {0} are differentiable functions, and p and q are
vectors inℝm andℝn respectively. It is assumed that in the feasible regions the numerator is nonnegative and

the denominator is positive.

For notational convenience, we can express the programs (WFP) and (WFD) in the following equivalent

form. For the primal problem we have

min l (EWFP)

subject to

f(x, y) − y⊺(∇yf(x, y) + ∇yyf(x, y)p) − 12p
⊺∇yyf(x, y)p

− l(g(x, y) − y⊺(∇yg(x, y) + ∇yyg(x, y)p) − 12p
⊺∇yyg(x, y)p) = 0 (3.1)

and

(∇yf(x, y) + ∇yyf(x, y)p) − l(∇yg(x, y) + ∇yyg(x, y)p) ≤ 0, (3.2)

for x ≥ 0. For the dual problem we have

max m (EWFD)

subject to

f(u, v) − u⊺(∇xf(u, v) + ∇xxf(u, v)q) − 12q
⊺∇xxf(u, v)q

−m(g(u, v) − u⊺(∇xg(u, v) + ∇xxg(u, v)q) − 12q
⊺∇xxg(u, v)q) = 0 (3.3)

and

(∇xf(u, v) + ∇xxf(u, v)q) −m(∇xg(u, v) + ∇xxg(u, v)q) ≥ 0, (3.4)

for v ≥ 0.
Theorem 3.1 (Weak duality). Let (x, y, l, p) and (u, v, m, q) be feasible solutions to (EWFP) and (EWFD) respec-

tively. Assume that

(i) f( ⋅ , v) −mg( ⋅ , v) is ç1-bonvex in the first variable at u for fixed v,
(ii) −f(x, ⋅ ) + lg(x, ⋅ ) is ç2-bonvex in the second variable at y for fixed x,
(iii) ç1(x, u) + u ≥ 0 and ç2(v, y) + y ≥ 0,
(iv) g(x, v) > 0.
Then, l ≥ m.
Proof. By the ç1-bonvexity of f( ⋅ , v) −mg( ⋅ , v) in the first variable at u for fixed v, we have

f(x, v) −mg(x, v) − (f(u, v) −mg(u, v)) + 12q
⊺∇xx(f(u, v) −mg(u, v))q

≥ ç⊺1(x, u)(∇x(f(u, v) −mg(u, v)) + ∇xx(f(u, v) −mg(u, v))q). (3.5)

By the ç2-bonvexity of −f(x, ⋅ ) + lg(x, ⋅ ) in the second variable at y for fixed x, we have

− f(x, v) + lg(x, v) − (−f(x, y) + lg(x, y)) + 12p
⊺∇yy(−f(x, y) + lg(x, y))p

≥ ç⊺2(v, y)(∇y(−f(x, y) + lg(x, y)) + ∇yy(−f(x, y) + lg(x, y))p). (3.6)
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On adding (3.5) and (3.6), we get

f(x, v) −mg(x, v) − (f(u, v) −mg(u, v)) + 12q
⊺∇xx(f(u, v) −mg(u, v))q

− f(x, v) + lg(x, v) − (−f(x, y) + lg(x, y)) + 12p
⊺∇yy(−f(x, y) + lg(x, y))p

≥ ç⊺1(x, u)(∇x(f(u, v) −mg(u, v)) + ∇xx(f(u, v) −mg(u, v))q)
+ ç⊺2(v, y)(∇y(−f(x, y) + lg(x, y)) + ∇yy(−f(x, y) + lg(x, y))p). (3.7)

From the dual constraint (3.4) and the condition ç1(x, u) + u ≥ 0 we have
(ç1(x, u) + u)⊺[∇xf(u, v) + ∇xxf(u, v)q −m(∇xg(u, v) + ∇xxg(u, v)q)] ≥ 0,

or

ç⊺1(x, u)[∇xf(u, v) + ∇xxf(u, v)q −m(∇xg(u, v) + ∇xxg(u, v)q)]
≥ −u⊺[∇xf(u, v) + ∇xxf(u, v)q −m(∇xg(u, v) + ∇xxg(u, v)q)]. (3.8)

Similarly, from the primal constraint (3.2) and the condition ç2(v, y) + y ≥ 0 we have
−(ç2(v, y) + y)⊺[∇yf(x, y) + ∇yyf(x, y)p − l(∇yg(x, y) + ∇yyg(x, y)p)] ≥ 0,

or

− ç⊺2(v, y)[∇yf(x, y) + ∇yyf(x, y)p − l(∇yg(x, y) + ∇yyg(x, y)p)]
≥ y⊺[∇yf(x, y) + ∇yyf(x, y)p − l(∇yg(x, y) + ∇yyg(x, y)p)]. (3.9)

From (3.7), (3.8) and (3.9), we conclude that

f(x, v) −mg(x, v) − (f(u, v) −mg(u, v)) + 12q
⊺∇xx(f(u, v) −mg(u, v))q

− f(x, v) + lg(x, v) − (−f(x, y) + lg(x, y)) + 12p
⊺∇yy(−f(x, y) + lg(x, y))p

≥ −u⊺[∇xf(u, v) + ∇xxf(u, v)q −m(∇xg(u, v) + ∇xxg(u, v)q)]
+ y⊺[∇yf(x, y) + ∇yyf(x, y)p − l(∇yg(x, y) + ∇yyg(x, y)p)],

which on using (3.1) and (3.3) reduces to

(l −m)g(x, v) ≥ 0.
Since g(x, v) > 0, it follows from the above inequality that

l ≥ m.
Hence, the theorem follows.

Theorem 3.2 (Strong duality). Let f and g be thrice continuously differentiable functions. Let ( ̄x, ̄y, ̄l, p̄) be an
optimal solution of (EWFP). Assume that

(i) ∇yyf( ̄x, ̄y) − ̄l∇yyg( ̄x, ̄y) is nonsingular,
(ii) the equality p̄⊺(∇y(∇yyf( ̄x, ̄y)p̄ − ̄l∇yyg( ̄x, ̄y)p̄)) = 0 implies that p̄ = 0,
(iii) ( ̄x⊺∇xg( ̄x, ̄y) − ̄y⊺∇yg( ̄x, ̄y))f( ̄x, ̄y) + ( ̄y⊺∇yf( ̄x, ̄y) − ̄x⊺∇xf( ̄x, ̄y))g( ̄x, ̄y) = 0.
Then, ( ̄x, ̄y, ̄l, ̄q = 0) is a feasible solution for (EWFD) and the objective values of (EWFP) and (EWFD) are equal.

Furthermore, if the hypotheses of Theorem 3.1 are satisfied, then ( ̄x, ̄y, ̄l, ̄q = 0) is an optimal solution of (EWFD).

Proof. Since ( ̄x, ̄y, ̄l, p̄) is an optimal solution of (EWFP), there exist á ∈ ℝ, â ∈ ℝ, ã ∈ ℝm, ì ∈ ℝn, such that
the following Fritz John conditions are satisfied at ( ̄x, ̄y, ̄l, p̄):

â(∇xf( ̄x, ̄y) − ̄l∇xg( ̄x, ̄y)) + (ã − â ̄y)⊺(∇yxf( ̄x, ̄y) − ̄l∇yxg( ̄x, ̄y))
+ (ã − â ̄y − âp̄2 )

⊺
(∇x(∇yyf( ̄x, ̄y)p̄) − ̄l∇x(∇yyg( ̄x, ̄y)p̄)) = ì, (3.10)

(ã − â ̄y − âp̄)⊺(∇yyf( ̄x, ̄y) − ̄l∇yyg( ̄x, ̄y))
+ (ã − â ̄y − âp̄2 )

⊺
(∇y(∇yyf( ̄x, ̄y)p̄) − ̄l∇y(∇yyg( ̄x, ̄y)p̄)) = 0, (3.11)
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ã⊺(∇yf( ̄x, ̄y) − ̄l∇yg( ̄x, ̄y) + ∇yyf( ̄x, ̄y)p̄ − ̄lg( ̄x, ̄y)p̄) = 0, (3.12)

á − â(g( ̄x, ̄y) − ̄y⊺(∇yg( ̄x, ̄y) + ∇yyg( ̄x, ̄y)p̄) − 12 p̄
⊺∇yyg( ̄x, ̄y)p̄) − ã(∇yg( ̄x, ̄y) + ∇yyg( ̄x, ̄y)p̄) = 0, (3.13)

(ã − â ̄y − âp̄)⊺(∇yyf( ̄x, ̄y) − ̄l∇yyg( ̄x, ̄y)) = 0, (3.14)

ì⊺x = 0, (3.15)

(á, â, ã, ì) ̸= 0, (á, â, ã, ì) ≥ 0. (3.16)

Since ∇yyf( ̄x, ̄y) − ̄l∇yyg( ̄x, ̄y) is nonsingular, it follows from (3.14) that

ã = â( ̄y + p̄). (3.17)

Now we claim that â ̸= 0. If â = 0, then from (3.17) we get ã = 0. This together with (3.10) yields that ì = 0.
From (3.13) we have á = 0, which contradicts (3.16). Hence, â ̸= 0. From now we assume that â > 0. Now it

follows from (3.11) and (3.17) and assumption (ii) that p̄ = 0. In particular, by (3.17), â > 0 and since ã ≥ 0, we
have ̄y ≥ 0. Also, it follows from (3.10) that

∇xf( ̄x, ̄y) − ̄l∇xg( ̄x, ̄y) = ìâ ≥ 0. (3.18)

Therefore, ( ̄x, ̄y, ̄l, p̄ = 0) is a feasible solution for the dual problem (EWFD).

It remains to show that the objective values of the two problems have the same value. This is equivalent

to the assertion that
f( ̄x, ̄y) − ̄x⊺∇xf( ̄x, ̄y)
g( ̄x, ̄y) − ̄x⊺∇xg( ̄x, ̄y) =

f( ̄x, ̄y) − ̄y⊺∇yf( ̄x, ̄y)
g( ̄x, ̄y) − ̄y⊺∇yg( ̄x, ̄y) .

Now, multiplying (3.18) by ̄x⊺ and using (3.15), we get
̄x⊺∇xf( ̄x, ̄y)
̄x⊺∇xg( ̄x, ̄y) =

̄l. (3.19)

Again, since p̄ = 0, we get from (3.17) that

ã = â ̄y. (3.20)

Using (3.20) and the conclusion that p̄ = 0 in (3.12), we have
̄y⊺∇yf( ̄x, ̄y)
̄y⊺∇yg( ̄x, ̄y) =

̄l. (3.21)

From (3.19) and (3.21), we get

̄x⊺∇xf( ̄x, ̄y)
̄x⊺∇xg( ̄x, ̄y) =

̄y⊺∇yf( ̄x, ̄y)
̄y⊺∇yg( ̄x, ̄y) ,

that is,

( ̄x⊺∇xf( ̄x, ̄y))( ̄y⊺∇yg( ̄x, ̄y)) = ( ̄x⊺∇xg( ̄x, ̄y))( ̄y⊺∇yf( ̄x, ̄y)). (3.22)

By assumption (iii), we get

̄x⊺∇xg( ̄x, ̄y) ⋅ f( ̄x, ̄y) + ̄y⊺∇yf( ̄x, ̄y) ⋅ g( ̄x, ̄y) = ̄y⊺∇yg( ̄x, ̄y) ⋅ f( ̄x, ̄y) + ̄x⊺∇xf( ̄x, ̄y) ⋅ g( ̄x, ̄y). (3.23)

On subtracting (3.23) from (3.22) and then adding f( ̄x, ̄y) ⋅ g( ̄x, ̄y) to both sides, we obtain
f( ̄x, ̄y) ⋅ g( ̄x, ̄y) − f( ̄x, ̄y) ⋅ ̄x⊺∇xg( ̄x, ̄y) − ̄y⊺∇yf( ̄x, ̄y) ⋅ g( ̄x, ̄y) + ̄y⊺∇yf( ̄x, ̄y) ⋅ ̄x⊺∇xg( ̄x, ̄y)

= f( ̄x, ̄y) ⋅ g( ̄x, ̄y) − g( ̄x, ̄y) ⋅ ̄x⊺∇xf( ̄x, ̄y) − ̄y⊺∇yg( ̄x, ̄y) ⋅ f( ̄x, ̄y) + ̄x⊺∇xf( ̄x, ̄y) ⋅ ̄y⊺∇yg( ̄x, ̄y),
which can be rewritten as

f( ̄x, ̄y) − ̄x⊺∇xf( ̄x, ̄y)
g( ̄x, ̄y) − ̄x⊺∇xg( ̄x, ̄y) =

f( ̄x, ̄y) − ̄y⊺∇yf( ̄x, ̄y)
g( ̄x, ̄y) − ̄y⊺∇yg( ̄x, ̄y) .

Under the assumptions of Theorem 3.1, if ( ̄x, ̄y, ̄l, ̄q = 0) is not an optimal solution of (EWFD), then there

exists another feasible solution (u, v,W, q) of (EWFD) such that ̄l < W. Since ( ̄x, ̄y, ̄l, p̄) is a feasible solution of
(EWFP) by Theorem 3.1, we have ̄l ≥W, hence contradiction implies that ( ̄x, ̄y, ̄l, ̄q = 0) is an optimal solution

of (EWFD).
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The converse duality theorem is simply stated as its proof would be analogous to that of Theorem 3.2.

Theorem 3.3 (Converse duality). Let f and g be thrice continuously differentiable functions. Let (ū, v̄, m̄, ̄q) be
an optimal solution of (EWFD). Assume that

(i) ∇xxf(ū, v̄) − m̄∇xxg(ū, v̄) is nonsingular,
(ii) the equality ̄q⊺(∇x(∇xxf(ū, v̄) ̄q − m̄∇xxg(ū, v̄) ̄q)) = 0 implies that ̄q = 0,
(iii) (ū⊺∇xg(ū, v̄) − v̄⊺∇yg(ū, v̄))f(ū, v̄) + (v̄⊺∇yf(ū, v̄) − ū⊺∇xf(ū, v̄))g(ū, v̄) = 0.
Then, (ū, v̄, m̄, ̄q = 0) is a feasible solution for (EWFP) and the objective values of (EWFP) and (EWFD) are equal.

Furthermore, if the hypotheses of Theorem 3.1 are satisfied, then (ū, v̄, m̄, ̄q = 0) is an optimal solution of (EWFP).

Remark 3.4. If g(x, y) = 1 for all x, y in (WFP) and (WFD), then the problem considered in this paper reduces

to the problem considered by Mishra [12] and Mond [14]. If in addition p = 0 and q = 0, then we get the dual
formulated by Chandra, Goyal and Husain [5] and Mond [13].

4 Minimax problems

Let U and V be arbitrary sets of integers inℝn1 andℝm1 respectively. We assume that the first n1 components

of x, 0 ≤ n1 ≤ n, belong to U and that the firstm1 components of y, 0 ≤ m1 ≤ m, belong to V. Then, we write
(x, y) = (x1, x2, y1, y2),

wherex1 = (x1, x2, . . . , xn
1

) ∈ U andy1 = (y1, y2, . . . , ym
1

) ∈ V, withx2 andy2 being the remaining components

of x and y respectively.
Definition 4.1. A vector function õ(z1, z2, . . . , zn), where z1, z2, . . . , zn are elements of an arbitrary vector

space, is called multiplicatively separable with respect to z1 if there exist vector functions ÷(z1) independent
of z2, . . . , zn and ì(z2, . . . , zn) independent of z1 such that

õ(z1, z2, . . . , zn) = ÷(z1)ì(z2, . . . , zn).
We consider the following pair of Wolfe-type symmetric fractional minimax mixed integer primal and dual

programs. For the primal program we have

max
x1
min
x2 ,y

f(x, y) − (y2)⊺(∇y2f(x, y) + ∇y2y2f(x, y)p) − 12p⊺∇y2y2f(x, y)p
g(x, y) − (y2)⊺(∇y2g(x, y) + ∇y2y2g(x, y)p) − 12p⊺∇y2y2g(x, y)p

(WFP*)

subject to

[(g(x, y) − (y2)⊺(∇y2g(x, y) + ∇y2y2g(x, y)p) − 12p
⊺∇y2y2g(x, y)p)(∇y2f(x, y) + ∇y2y2f(x, y)p)

− (f(x, y) − (y2)⊺(∇y2f(x, y) + ∇y2y2f(x, y)p) − 12p
⊺∇y2y2f(x, y)p)(∇y2g(x, y) + ∇y2y2g(x, y)p)] ≤ 0,

for x2 ≥ 0 and x1 ∈ U, y1 ∈ V. For the dual program we have

min
v1
max
u,v2
f(u, v) − (u2)⊺(∇x2f(u, v) + ∇x2x2f(u, v)q) − 12q⊺∇x2x2f(u, v)q
g(u, v) − (u2)⊺(∇x2g(u, v) + ∇x2x2g(u, v)q) − 12q⊺∇x2x2g(u, v)q

(WFD*)

subject to

[(g(u, v) − (u2)⊺(∇x2g(u, v) + ∇x2x2g(u, v)q) − 12q
⊺∇x2x2g(u, v)q)(∇x2f(u, v) + ∇x2x2f(u, v)q)

− (f(u, v) − (u2)⊺(∇x2f(u, v) + ∇x2x2f(u, v)q) − 12q
⊺∇x2x2f(u, v)q)(∇x2g(u, v) + ∇x2x2g(u, v)q)] ≥ 0,

for v2 ≥ 0 and u1 ∈ U, v1 ∈ V, where p and q are (m −m1) and (n − n1)-dimensional vector variables.
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To prove the symmetric duality, we shall need the following assumptions.

(i) The numerator is nonnegative and the denominator is positive over their feasible regions H and K
respectively.

(ii) The functions f(x, y) and g(x, y) are multiplicatively separable with respect to x1 or y1, that is,
f(x, y) = f1(x1)f2(x2, y), g(x, y) = g1(x1)g2(x2, y).

(iii) There hold f1(x1) > 0 and g1(x1) > 0 for all x1 ∈ U.
Let

ℎ = max
x1
min
x2 ,y
{f(x, y) − (y

2)⊺(∇y2f(x, y) + ∇y2y2f(x, y)p) − 12p⊺∇y2y2f(x, y)p
g(x, y) − (y2)⊺(∇y2g(x, y) + ∇y2y2g(x, y)p) − 12p⊺∇y2y2g(x, y)p

!!!!!!! (x, y, p) ∈ H}

and

k = min
v1
max
u,v2
{f(u, v) − (u

2)⊺(∇x2f(u, v) + ∇x2x2f(u, v)q) − 12q⊺∇x2x2f(u, v)q
g(u, v) − (u2)⊺(∇x2g(u, v) + ∇x2x2g(u, v)q) − 12q⊺∇x2x2g(u, v)q

!!!!!!! (u, v, q) ∈ K}.

As f(x, y) and g(x, y) are multiplicatively separable with respect to x1, it follows that
f(x, y) = f1(x1)f2(x2, y)

and

g(x, y) = g1(x1)g2(x2, y).
Hence ℎ can be written as

ℎ = max
x1
min
x2 ,y
{f
1(x1)
g1(x1) .
f2(x2, y) − (y2)⊺(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p) − 12p⊺∇y2y2f2(x2, y)p
g2(x2, y) − (y2)⊺(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p) − 12p⊺∇y2y2g2(x2, y)p

!!!!!!! (x, y, p) ∈ H},

where

H = {(x, y, p) !!!!!!! (g
2(x2, y) − (y2)⊺(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p)

− 12p
⊺∇y2y2g2(x2, y)p)(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p)

− (f2(x2, y) − (y2)⊺(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p)
− 12p
⊺∇y2y2f2(x2, y)p)(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p) ≤ 0, for x2 ≥ 0 and x1 ∈ U, y1 ∈ V},

that is,

ℎ = max
x1
min
y1
{f
1(x1)
g1(x1) ⋅ õ(y

1) !!!!!!! x
1 ∈ U, y1 ∈ V},

where

õ(y1) = min
x2 ,y2
{f
2(x2, y) − (y2)⊺(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p) − 12p⊺∇y2y2f2(x2, y)p
g2(x2, y) − (y2)⊺(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p) − 12p⊺∇y2y2g2(x2, y)p

!!!!!!!
(g2(x2, y) − (y2)⊺(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p)
− 12p
⊺∇y2y2g2(x2, y)p)(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p)

− (f2(x2, y) − (y2)⊺(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p)
− 12p
⊺∇y2y2f2(x2, y)p)(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p) ≤ 0, for x2 ≥ 0}. (4.1)

Similarly, k can be written as

k = min
v1
max
u1
{f
1(u1)
g1(u1) ⋅ ÷(v

1) !!!!!!! u
1 ∈ U, v1 ∈ V},
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where

÷(v1) = max
u2 ,v2
{f
2(u2, v) − (v2)⊺(∇x2f2(u2, v) + ∇x2x2f2(u2, v)q) − 12q⊺∇x2x2f2(u2, v)q
g2(u2, v) − (v2)⊺(∇x2g2(u2, v) + ∇x2x2g2(u2, v)q) − 12q⊺∇x2x2g2(u2, v)q

!!!!!!!
(g2(u2, v) − (v2)⊺(∇x2g2(u2, v) + ∇x2x2g2(u2, v)q)
− 12q
⊺∇x2x2g2(u2, v)q)(∇x2f2(u2, v) + ∇x2x2f2(u2, v)q)

− (f2(u2, v) − (v2)⊺(∇x2f2(u2, v) + ∇x2x2f2(u2, v)q)
− 12q
⊺∇x2x2f2(u2, v)q)(∇x2g2(u2, v) + ∇x2x2g2(u2, v)q) ≥ 0, for v2 ≥ 0}. (4.2)

We set

a = f
2(x2, y) − (y2)⊺(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p) − 12p⊺∇y2y2f2(x2, y)p
g2(x2, y) − (y2)⊺(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p) − 12p⊺∇y2y2g2(x2, y)p

and

b = f
2(u2, v) − (v2)⊺(∇x2f2(u2, v) + ∇x2x2f2(u2, v)q) − 12q⊺∇x2x2f2(u2, v)q
g2(u2, v) − (v2)⊺(∇x2g2(u2, v) + ∇x2x2g2(u2, v)q) − 12q⊺∇x2x2g2(u2, v)q

in (4.1) and (4.2) respectively and denote them by the auxiliary programs (ŴFP) and (ŴFD) respectively.

That is,

min a (ŴFP)

subject to

f2(x2, y) − (y2)⊺(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p) − 12p
⊺∇y2y2f2(x2, y)p

− a{g2(x2, y) − (y2)⊺(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p) − 12p
⊺∇y2y2g2(x2, y)p} = 0

and

(∇y2f2(x2, y) + ∇y2y2f2(x2, y)p) − a(∇y2g2(x2, y) + ∇y2y2g2(x2, y)p) ≤ 0,
for x2 ≥ 0, and

max a (ŴFD)

subject to

f2(u2, v) − (v2)⊺(∇x2f2(u2, v) + ∇x2x2f2(u2, v)q) − 12q
⊺∇x2x2f2(u2, v)q

− b{g2(u2, v) − (v2)⊺(∇x2g2(u2, v) + ∇x2x2g2(u2, v)q) − 12q
⊺∇x2x2g2(u2, v)q} = 0

and

(∇x2f2(u2, v) + ∇x2x2f2(u2, v)q) − b(∇x2g2(u2, v) + ∇x2x2g2(u2, v)q) ≥ 0,
for v2 ≥ 0.
Theorem 4.2 (Symmetric duality). Let ( ̄x, ̄y, ̄a, p̄) be an optimal solution of (ŴFP). Also, let

(i) f(x, y) and g(x, y) be thrice differentiable in x2 and y2,
(ii) for each feasible solution of (ŴFP) and (ŴFD), f(x, y) − ag(x, y) is ç1-bonvex in the first variable at x2 for

each (x1, y) and −f(u, v) + bg(u, v) is ç2-bonvex in the second variable at v2 for each (u, v1),
(iii) ∇y2y2f2( ̄x, ̄y) − ̄l∇y2y2g2( ̄x, ̄y) is nonsingular,
(iv) the equality p̄⊺(∇y2 (∇y2y2f2( ̄x, ̄y)p̄ − ̄l∇y2y2g2( ̄x, ̄y)p̄)) = 0 implies that p̄ = 0,
(v) (( ̄x2)⊺∇x2g2( ̄x, ̄y) − ( ̄y2)⊺∇y2g2( ̄x, ̄y))f2( ̄x, ̄y) + (( ̄y2)⊺∇y2f2( ̄x, ̄y) − ( ̄x2)⊺∇x2f2( ̄x, ̄y))g2( ̄x, ̄y) = 0.
Then, p̄ = 0, the objective values of (ŴFP) and (ŴFD) are equal and ( ̄x, ̄y, ̄a, ̄q = 0) is an optimal solution of
problem (ŴFD).
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Proof. The problems (ŴFP) and (ŴFD) become a pair of symmetric dual problems discussed in the previous

section for given y1(= v1) and so Theorem 3.2 becomes applicable in the light of the hypotheses made in this

section. Therefore, for y1 = ̄y1,
õ( ̄y1) = ÷( ̄y1).

Let us assume that ( ̄x, ̄y, ̄a, ̄q = 0) is not an optimal solution of problem (ŴFD). So, there exists ̂y1 ∈ V such
that ÷( ̂y1) < ÷( ̄y1). By the given hypotheses,

õ( ̄y1) = ÷( ̄y1) > ÷( ̂y1) = õ( ̂y1),
which contradicts the optimality of ( ̄x, ̄y, ̄a, p̄) for (ŴFP). This confirms the fact that ( ̄x, ̄y, ̄a, ̄q = 0) is an optimal

solution for (ŴFD) and the optimal values are equal.

Remark 4.3. If U = õ and V = õ, then (WFP*) and (WFD*) are reduced to the second-order symmetric dual

problems programs of Section 3.

5 Self-duality

A mathematical programming problem is called self-dual if we recast the dual in the form of the primal. The

programs (EWFP) and (EWFD) turn out to be self-dual if we take the functions f as skew symmetric and g as
symmetric, that is,

f(u, v) = −f(v, u), g(u, v) = g(v, u).
By recasting the dual problem (EWFD) as a minimum problem, we have

min −m
subject to

f(u, v) − u⊺(∇xf(u, v) + ∇xxf(u, v)q) − 12q
⊺∇xxf(u, v)q

− m(g(u, v) − u⊺(∇xg(u, v) + ∇xxg(u, v)q) − 12q
⊺∇xxg(u, v)q) = 0

and

(∇xf(u, v) + ∇xxf(u, v)q) − m(∇xg(u, v) + ∇xxg(u, v)q) ≥ 0,
for v ≥ 0, where

m = f(u, v) − u
⊺(∇xf(u, v) + ∇xxf(u, v)q) − 12q⊺∇xxf(u, v)q

g(u, v) − u⊺(∇xg(u, v) + ∇xxg(u, v)q) − 12q⊺∇xxg(u, v)q
.

By the properties mentioned above, we get

min z
subject to

f(v, u) − u⊺(∇xf(v, u) + ∇xxf(v, u)q) − 12q
⊺∇xxf(v, u)q

− z(g(v, u) − u⊺(∇xg(v, u) + ∇xxg(v, u)q) − 12q
⊺∇xxg(v, u)q) = 0

and

(∇xf(v, u) + ∇xxf(v, u)q) − z(∇xg(v, u) + ∇xxg(v, u)q) ≤ 0,
for v ≥ 0, where

z = f(v, u) − u
⊺(∇xf(v, u) + ∇xxf(v, u)q) − 12q⊺∇xxf(v, u)q

g(v, u) − u⊺(∇xg(v, u) + ∇xxg(v, u)q) − 12q⊺∇xxg(v, u)q
.

This shows that the dual problem (EWFD) is identical to (EWFP). Hence, the feasibility of (u, v, m, q) to (EWFD)

implies the feasibility of (v, u, m, q) to (EWFP). We now state the following self-duality theorem.
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Theorem 5.1. Let f be skew symmetric and let g be symmetric. Then, (EWFD) is self-dual. Furthermore,

if (EWFP) and (EWFD) are dual problems and ( ̄x, ̄y, m̄, p̄) is a joint optimal solution, then so is ( ̄y, ̄x, m̄, p̄)
and the common optimal value of the objective function is 0.

6 Conclusion

In this paper, we considered aWolfe-type second-order fractional dual symmetric program and derivedweak,

strong and converse duality theorems under ç-bonvexity assumptions. We also discussed minimax mixed

integer symmetric dual fractional programs and self-duality theorems. The present work can be extended

to multiobjective symmetric second-order fractional dual programs and also to nondifferentiable symmetric

second-order fractional dual programs. This may be taken as the future task of the authors.
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