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Zero forcing in Benzenoid network 1037

Definition 1.2. [4] For a graph G(V,E), S ⊆ V is a dominating set of G
if every vertex in V \S has at least one neighbour in S. The domination
number of G, denoted by γ(G), is the minimum cardinality of a dominating
set of G.

Definition 1.3. [5] Let G(V,E) be a graph and let S ⊆ V (G). We define
the sets M i(S) of vertices monitored by S at level i, i ≥ 0, inductively as
follows:

1. M0(S) = N [S].
2. M i+1(S) =M i(S) ∪ {w : ∃v ∈M i(S), N(v) ∩ (V (G)\M i(S)) = w}.
If M∞(S) = V (G), then the set S is called a power dominating set of

G. The minimum cardinality of a power dominating set in G is called the

power domination number of G written γp(G).

Definition 1.4. [5] The zero forcing process is a coloring game on a graph.
If u is a blue vertex and exactly one neighbor w of u is white, then change
the color of w to blue; this is called the color change rule and we say

that u forces w. A zero forcing set for G is a subset of vertices B such

that if initially the vertices in B are colored and the remaining vertices

are colored white, then repeated application of the color change rule can

color all vertices of G blue. A minimum zero forcing set is a zero forcing

set of minimum cardinality, and the zero forcing number Z(G) of G is the

cardinality of a minimum zero forcing set.

2. Main Result

In this section, we solve the zero forcing problem for certain benzenoid
networks.
In 2015 Ferrero et al. [5] proved the following theorem which shows the
relationship between zero forcing set and power dominating set.

Theorem 2.1. [5] LetG be a graph. Then
l
Z(G)
∆(G)

m
≤ γp(G) and this bound

is tight.

In 2017 we obtained a sharp lower bound for certain class of benzenoid
networks described in Theorem 2.1 with respect to power domination num-
ber [7]. In this paper, we solve the zero forcing problem for such classes of
benzenoid networks.

The following lemma establishes a critical subgraph H of G in the sense
that H contains at least one vertex of any zero forcing set.

rvidal
Cuadro de texto
1001

rvidal
Cuadro de texto
[6]



Marisol Martínez
fig-1


rvidal
Cuadro de texto
1002



Zero forcing in Benzenoid network 1039

Zero Forcing Algorithm in Pyrene Network

Input: Pyrene network PY (n), n ≥ 2.

Algorithm: Name the vertices of PY (n), n ≥ 2 as 1 to 2n2 + 4n sequen-
tially from left to right, row wise beginning with the top most row. Select
the vertices {2, 4} ∪ {6, 12, 20, . . . n× (n+ 1)} in Sn. See Figure 2(a).

Output: Z(PY (n)) = n+ 1.

Proof of Correctness: Every vertex in Sn is adjacent to exactly one non-
colored vertex which in turn forces exactly one non-colored vertex. Then
Sn is a zero for cing set of PY (n). This implice that, Z(PY (n)) = n+ 1.
Hence the proof.

Theorem 2.4. Let G be a pyrene network PY (n), n ≥ 2. Then Z(G) =
n+ 1.

Lemma 2.5. Let G be a circum-pyrene (n), n ≥ 1. Then Z(G) ≥ 2n+2.

Proof. In circum-pyrene (n), there are 2n + 2 critical subgraphs, each
isomorphic to H as described in Lemma 2.2. Therefore, Z(G) ≥ 2n+2. 2

Zero Forcing Algorithm in Circum-Pyrenes (n)

Input: Circum-pyrenes (n), n ≥ 1.

Algorithm: Name the vertices of Circum-pyrenes (n), n ≥ 1 as 1 to
6n2+20n+16, sequentially from left to right, row wise beginning with the
first row. Consider 2n+2 hexagons in the outer most layer of the Circum-
pyrenes(n). Let P ∗ denote the path induced by the edges of the hexagons
that are not boundary edges of any other hexagon. Select 2n + 2 vertices
of degree 2 in P ∗, which are at distance 2 apart on P ∗. Apart from these
vertices, select one more vertex in Sn from P ∗, adjacent to any one vertex
which is selected already. See Figure 2(b).

Output: Z(Circum−pyrenes (n)) = 2n+ 3.
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1040 J. Anitha and Indra Rajasingh

Proof of Correctness: Sn is a zero forcing set of Circum-pyrene (n) with
|Sn| = 2n + 3. See Figure 2(b). Every vertex in Sn is adjacent to exactly
one-non colored vertex. Now Sn is a zero forcing set of Circum-pyrene (n).
This implies that, Z(Circum− pyrene(n)) = 2n+ 3. Hence the proof.

Lemma 2.6. Let G be a circum-trizenes (n), n ≥ 1. Then Z(G) ≥ 2n+2.
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Proof. In circum-trizenes (n), there are 2n+ 2 critical subgraphs, each
isomorphic to H as described in Lemma 2.2. Therefore, Z(G) ≥ 2n+2. 2

Zero Forcing Algorithm in Circum-Trizenes

Input: Circum-trizenes(n), n ≥ 1.

Algorithm: Name the vertices of Circum-trizenes(n), n ≥ 1 as 1 to
6n2 + 18n+ 13 sequentially from left to right, row wise begining with the
first row. Consider 2n + 2 hexagons in outer most layer of the Circum-
pyrenes(n). Let P ∗ denote the path induced by the edges of the hexagons
that are not boundary edges of any other hexagon. Select 2n + 2 vertices
of degree 2 in P ∗, which are at distance 2 apart on P ∗. Apart from these
vertices, select one more vertex in S from P ∗, select one more vertex in Sn
from P ∗, adjacent to any one vertex which is selected already. See Figure
2(c).

Output: Z(Circum−trizenes(n)) = 2n+ 3.

Proof of Correctness: Every vertex v ∈ Sn is adjacent to exactly one-
non colored vertex. Proceeding inductively, every vertex in the graph is
colored. Now Sn = 2n+3. This implies that, Circum-pyrene (n) = 2n+3.
Hence the proof.

Theorem 2.7. Let G be a circum-pyrenes (n) or a circum-trizenes(n),
n ≥ 1. Then Z(G) = 2n+ 3.

2.2. Zero Forcing of Circum-Coronene

Coronene is generated by circumscribing the benzene (C6H6) hexagon with
a rim of 6 hexagons (C18 H6). Since benzene is the only possible (C6H6)
hexagonal isomer, coronene is the only possible (C24H12) isomer com-
posed of strictly hexagonal rings. Benzene is the excised internal struc-
ture of coronene. Circumscribing coronene (C24H12) gives circum-coronene
(C54H18).

Lemma 2.8. Let G be a circum-coronene(n), n ≥ 1. Then Z(G) ≥ 2n+3.

rvidal
Cuadro de texto
1005

rvidal
Cuadro de texto



1042 J. Anitha and Indra Rajasingh

Proof. In circum-coronene(n), there are 2n+3 critical subgraphs, each
isomorphic to H as described in Lemma 2.2. Therefore, Z(G) ≥ 2n+3. 2

Zero Forcing Algorithm in Circum-Coronene

Input: Circum-coronene(n), n ≥ 1.

Algorithm: Name the vertices of Circum-Coronene (n), n ≥ 1 as 1 to
6n2 sequentially from left to right, row wise begining with the first row.
Consider 2n + 3 hexagons in outer most layer of the Circum-corenes(n).
Let P ∗ denote the path induced by the edges of the hexagons that are not
boundary edges of any other hexagon. Select 2n + 3 vertices of degree 2
in P ∗, which are at distance 2 apart on P ∗. Apart from these vertices,
select one more vertex in Sn from P ∗, select one more vertex in Sn from
P ∗, adjacent to any one vertex which is selected already. See Figure 3(a).
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Zero forcing in Benzenoid network 1043

Output: Z(Circum−trizenes(n)) = 2n+ 4.

Proof of Correctness: Every vertex v ∈ Sn, is adjacent to exactly one
non-colored vertex. Proceeding inductively, every vertex in the graph col-
ored. Now |Sn| = 2n+ 4. This implies that, Z(Circum− coronene(n)) =
2n+ 4. Hence the proof.

Lemma 2.9. Let G be a circum-coronene(n), n ≥ 1. Then Z(G) = 2n+4.

2.3. Zero Forcing of Circum-Polyacenes

In this section we compute zero forcing number of various n-Circum-Polyacenes.
The polyacenes are a class of organic compounds and polycyclic aromatic
hydrocarbons made up of linearly fused benzene rings. The larger rep-
resentatives have potential interest in optoelectronic applications and are
actively researched in chemistry and electrical engineering. Some members
of polyacenes are naphthalenes (C10H8), anthracenes (C14H10), tetracenes
(C18H12), pentacenes (C22H14), hexacenes (C26H16). Circumscribing poly-
acenes gives n-circum-polyacenes which is obtained by circumscribing a set
of linear catacondensed benzenoids. Some members of polyacenes when cir-
cumscribed are circum-naphthalenes(n) commonly known as ovalenes and
circum-ovalenes, circum-anthracenes (n), circum-tetracenes (n), circum-
pentacenes (n), circum-hexacenes (n).

LetHn denote a linear chain of n hexagons. Adding k layers of hexagons
to the boundary of Hn gives rise to various chemical structures as follows:
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