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Abstract:

A set S of vertices in a graph G is called a dominating set of G if
every vertex in V (G)\S is adjacent to some vertex in S. A set S is
said to be a power dominating set of G if every vertex in the
system is monitored by the set S following a set of rules for power
system monitoring. The power domination number of G is the
minimum cardinality of a power dominating set of G. A dynamic
coloring of the vertices of a graph G starts with an initial subset
S of colored vertices, with all remaining vertices being non-
colored. At each discrete time interval, a colored vertex with ex-
actly one non-colored neighbor forces this non-colored neighbor
to be colored. The initial set S is called a forcing set (zero forcing
set) of G if, by iteratively applying the forcing process, every
vertex in G becomes colored. The zero forcing number of G, de-
noted Z(G), is the minimum cardinality of a zero forcing set of G.
In this paper, we obtain the zero forcing number for certain ben-
zenoid networks.
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1. Introduction

The idea of zero forcing on graphs is a current thought that is part of a
program study on minimum ranks of matrices with particular combinato-
rial limitations (American Institute of Mathematics 2008). Zero forcing is
utilized to study inverse eigenvalue problems, PMU placement problems,
and quantum control problems [1]. Zero forcing is also called graph infec-
tion or graph propagation in the zones identified with quantum dynamics
and control theory of quantum mechanical systems [2]. By the monotonous
utilization of a similar quantum transformation, this reality has been used
to accomplish noise protection, cooling, state preparation, quantum state
transfer and in computer science in the context of fast-mixed searching [2].

Recently, there has been a lot of interest in studying the forcing number
of graphs for its own sake, and its relation to other graph parameters,
such as the path cover number, connected domination number, and the
chromatic number. Among others, zero forcing number of a graph contain
upper bounds in terms of its degrees [3]. It is easy to see that the trivial
lower bound on the zero forcing number of a graph is Z(G) > ¢ — 1.

A benzenoid system, the so called benzenoid graph or hexagonal system,
is a finite connected planar graph with no cut vertices in which every interior
region is bounded by a regular hexagon. Polycyclic hydrocarbons formed
from n condensed benzenoid rings are the most important carcino-genics:
they are classified into two classes catacondensed and peri-condensed. By
means of dualist graph (consisting from the points corresponding to centres
of hexagons, connected by lines whenever two hexagons are condensed).
Dualist graph of catacondensed are trees and of peri-condensed contains
cycle. Peri-condensed benzenoid graphs pose significant challenges due to
their very nature of complex connectivity, as their dualists are not trees.
Peri-condensed compounds, their circum-scribings and circumcisions find
novel applications ranging from synthesis of new molecules such as Keku-
lenes [7].

Definition 1.1. [4] For v € V((), the open neighbourhood of v, denoted
as Ng(v), is the set of vertices adjacent with v; and the closed neighbour-
hood of v, denoted by Ng[v], is Ng(v) U {v}. For a set S C V(G). the

open neighbourhood of S is defined as Ng(S) = | Ng(v) and the closed
vES
neighbourhood of S is defined as Ng[S] = Ng(S)U S. For brevity, we

denote N¢(S) by N(S) and Ng[S]| by N[S].
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Definition 1.2. [4] For a graph G(V, E), S C V is a dominating set of G
if every vertex in V\S has at least one neighbour in S. The domination

number of G, denoted by v(G), is the minimum cardinality of a dominating
set of G.

Definition 1.3. [5] Let G(V, E) be a graph and let S C V(G). We define
the sets M'(S) of vertices monitored by S at level i, i > 0, inductively as
follows:

1. M°(S) = NI[S].

2. MH(S) = MY(S)U{w: Jv € M¥(S), N(v) N (V(G)\MS)) = w}.

If M>(S) = V(G), then the set S is called a power dominating set of
G. The minimum cardinality of a power dominating set in G is called the
power domination number of G written ,(G).

Definition 1.4. [5] The zero forcing process is a coloring game on a graph.
If u is a blue vertex and exactly one neighbor w of u is white, then change
the color of w to blue; this is called the color change rule and we say
that u forces w. A zero forcing set for G is a subset of vertices B such
that if initially the vertices in B are colored and the remaining vertices
are colored white, then repeated application of the color change rule can
color all vertices of G blue. A minimum zero forcing set is a zero forcing
set of minimum cardinality, and the zero forcing number Z(G) of G is the
cardinality of a minimum zero forcing set.

2. Main Result

In this section, we solve the zero forcing problem for certain benzenoid
networks.

In 2015 Ferrero et al. [5] proved the following theorem which shows the
relationship between zero forcing set and power dominating set.

Theorem 2.1. [5] Let G be a graph. Then [%W < 7,(G) and this bound
is tight.

In 2017 we obtained a sharp lower bound for certain class of benzenoid
networks described in Theorem 2.1 with respect to power domination num-
ber [6] . In this paper, we solve the zero forcing problem for such classes of
benzenoid networks.

The following lemma establishes a critical subgraph H of GG in the sense
that H contains at least one vertex of any zero forcing set.
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Lemma 2.2. Let G be a graph and H as shown in Figure 1 be a subgraph
G with degyw; = degow; = 2, Vi, © = 1,2,3,4. Then H is a critical
subgraph of .

Proof. Neither u nor v, when monitored, can further monitor any of
wi, 1=1,2,3,4, as deggu = degyv = 3.

Figure 1: Circled vertices constitute a zero forcing set of G

2.1. Zero Forcing of Pyrene Network

Pyrene is an alternante polycyclic aromatic hydrocarbon (PAH) and con-
sists of four fused benzene rings, resulting in a large flat aromatic system. It
is a colorless or pale yellow solid which forms during incomplete combustion
of organic materials and therefore can be isolated from coal tar together
with a broad range of related compounds. In the last four decades, a num-
ber of research works have been reported on both the theoretical and exper-
imental investigation of pyrene concerning its electronic structure, UV vis
absorption and fluorescence emission spectrum. Indeed, this polycyclic aro-
matic hydrocarbon exhibits a set of many interesting electrochemical and
photophysical attributes, which have result in its utilization in a variety
of scientific areas. Like most PAHs, pyrene is used to make dyes, plastics
and pesticides. Figure 2(b) depicts the graph of Circum-pyrene (1). In-
ductively, circum-pyrenes (n) is obtained from circum-pyrenes (n — 1) by
adding a layer of hexagons around the boundary of circum-pyrenes (n — 1).
Similar construction follows for circum-trizenes (n). See Figure 2(c) [7].

Lemma 2.3. Let G be a pyrene network PY (n), n > 2. Then Z(G) > n.

Proof. In PY(n), there are n critical subgraphs, each isomorphic to H
as described in Lemma 2.2. Therefore, Z(G) > n.


Marisol Martínez
fig-1
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Zero Forcing Algorithm in Pyrene Network
Input: Pyrene network PY(n), n > 2.

Algorithm: Name the vertices of PY(n), n > 2 as 1 to 2n? + 4n sequen-
tially from left to right, row wise beginning with the top most row. Select
the vertices {2,4} U {6,12,20,...n x (n+ 1)} in S,. See Figure 2(a).

Output: Z(PY(n)) =n+ 1.

Proof of Correctness: Every vertex in S, is adjacent to exactly one non-
colored vertex which in turn forces exactly one non-colored vertex. Then
Sy is a zero for cing set of PY'(n). This implice that, Z(PY (n)) =n + 1.
Hence the proof.

Theorem 2.4. Let G be a pyrene network PY (n),n > 2. Then Z(G) =
n+ 1.

Lemma 2.5. Let G be a circum-pyrene (n), n > 1. Then Z(G) > 2n + 2.

Proof. In circum-pyrene (n), there are 2n + 2 critical subgraphs, each
isomorphic to H as described in Lemma 2.2. Therefore, Z(G) > 2n+ 2.

Zero Forcing Algorithm in Circum-Pyrenes (n)
Input: Circum-pyrenes (n), n > 1.

Algorithm: Name the vertices of Circum-pyrenes (n), n > 1 as 1 to
6n2 +20n + 16, sequentially from left to right, row wise beginning with the
first row. Consider 2n+ 2 hexagons in the outer most layer of the Circum-
pyrenes(n). Let P* denote the path induced by the edges of the hexagons
that are not boundary edges of any other hexagon. Select 2n + 2 vertices
of degree 2 in P*, which are at distance 2 apart on P*. Apart from these
vertices, select one more vertex in S, from P*, adjacent to any one vertex
which is selected already. See Figure 2(b).

Output: Z(Circum—pyrenes (n)) = 2n + 3.


rvidal
Cuadro de texto
1003

rvidal
Cuadro de texto


1004 J. Anitha and Indra Rajasingh

Proof of Correctness: S, is a zero forcing set of Circum-pyrene (n) with
|Sn| = 2n + 3. See Figure 2(b). Every vertex in S, is adjacent to exactly
one-non colored vertex. Now S, is a zero forcing set of Circum-pyrene (n).
This implies that, Z(Circum — pyrene(n)) = 2n + 3. Hence the proof.

]

Figure 2: Cireled wvertices constitute (a) & minimum zero forcing set of pyrens FY (43 (b)
a minimnm gero foreing set of eircum-pyrens(1) (¢) a minimum zero forcing set of cireum-
trizencs(1)

Lemma 2.6. Let G be a circum-trizenes (n), n > 1. Then Z(G) > 2n+2.
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Proof. In circum-trizenes (n), there are 2n + 2 critical subgraphs, each
isomorphic to H as described in Lemma 2.2. Therefore, Z(G) > 2n+ 2.

Zero Forcing Algorithm in Circum-Trizenes
Input: Circum-trizenes(n), n > 1.

Algorithm: Name the vertices of Circum-trizenes(n), n > 1 as 1 to
6n2 + 18n + 13 sequentially from left to right, row wise begining with the
first row. Consider 2n + 2 hexagons in outer most layer of the Circum-
pyrenes(n). Let P* denote the path induced by the edges of the hexagons
that are not boundary edges of any other hexagon. Select 2n + 2 vertices
of degree 2 in P*, which are at distance 2 apart on P*. Apart from these
vertices, select one more vertex in S from P*, select one more vertex in .S),
from P*, adjacent to any one vertex which is selected already. See Figure
2(c).

Output: Z(Circum—trizenes(n)) = 2n + 3.

Proof of Correctness: Every vertex v € S, is adjacent to exactly one-
non colored vertex. Proceeding inductively, every vertex in the graph is
colored. Now S,, = 2n + 3. This implies that, Circum-pyrene (n) = 2n+ 3.
Hence the proof.

Theorem 2.7. Let G be a circum-pyrenes (n) or a circum-trizenes(n),
n > 1. Then Z(G) = 2n + 3.

2.2. Zero Forcing of Circum-Coronene

Coronene is generated by circumscribing the benzene (CgHg) hexagon with
a rim of 6 hexagons (C18 H6). Since benzene is the only possible (CsHg)
hexagonal isomer, coronene is the only possible (CoqHi2) isomer com-
posed of strictly hexagonal rings. Benzene is the excised internal struc-
ture of coronene. Circumscribing coronene (Ca4H12) gives circum-coronene
(Cs4Hig).

Lemma 2.8. Let G be a circum-coronene(n), n > 1. Then Z(G) > 2n+3.
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Proof. In circum-coronene(n), there are 2n + 3 critical subgraphs, each
isomorphic to H as described in Lemma 2.2. Therefore, Z(G) > 2n+ 3.

(a il

Figure 3: Circlad vertices constitute (o) a minimum gero forcing set of cirenm-corens(1) (H)
a minimwm zero foreing sst of cireum-naphthalenes(1) () a minimum zero foreing sst of
cireum-anthracenes| 1)

Zero Forcing Algorithm in Circum-Coronene
Input: Circum-coronene(n), n > 1.

Algorithm: Name the vertices of Circum-Coronene (n), n > 1 as 1 to
6n2 sequentially from left to right, row wise begining with the first row.
Consider 2n + 3 hexagons in outer most layer of the Circum-corenes(n).
Let P* denote the path induced by the edges of the hexagons that are not
boundary edges of any other hexagon. Select 2n + 3 vertices of degree 2
in P*, which are at distance 2 apart on P*. Apart from these vertices,
select one more vertex in S5, from P*, select one more vertex in S, from
P*, adjacent to any one vertex which is selected already. See Figure 3(a).
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Output: Z(Circum—trizenes(n)) = 2n + 4.

Proof of Correctness: Every vertex v € S,, is adjacent to exactly one
non-colored vertex. Proceeding inductively, every vertex in the graph col-
ored. Now |S,,| = 2n + 4. This implies that, Z(Circum — coronene(n)) =
2n + 4. Hence the proof.

Lemma 2.9. Let G be a circum-coronene(n), n > 1. Then Z(G) = 2n+4.

2.3. Zero Forcing of Circum-Polyacenes

In this section we compute zero forcing number of various n-Circum-Polyacenes.
The polyacenes are a class of organic compounds and polycyclic aromatic
hydrocarbons made up of linearly fused benzene rings. The larger rep-
resentatives have potential interest in optoelectronic applications and are
actively researched in chemistry and electrical engineering. Some members
of polyacenes are naphthalenes (C10Hg), anthracenes (C14H1g), tetracenes
(C1sHi2), pentacenes (Ca2H1g), hexacenes (CagHig). Circumscribing poly-
acenes gives n-circum-polyacenes which is obtained by circumscribing a set
of linear catacondensed benzenoids. Some members of polyacenes when cir-
cumscribed are circum-naphthalenes(n) commonly known as ovalenes and
circum-ovalenes, circum-anthracenes (n), circum-tetracenes (n), circum-
pentacenes (n), circum-hexacenes (n).

Let H,, denote a linear chain of n hexagons. Adding k layers of hexagons
to the boundary of H,, gives rise to various chemical structures as follows:
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Figure 4 Cireled wertices constitute (a) a minimum zero forcing set of eireum-
tetracenes(1) (b) a minimum zero foreing set of cireum-pentacencs(1) (&) a minimum zero
foreing set of cirenm-hexacenss(1)

1. Circum-naphthalenes (n) when n =2 and k= 1,...,n. See Figure 4(b)

2. Circum-anthracenes (n) when n =3 and k = 1,...,n. See Figure 4(c).
3. Circum-tetracenes (n) when n =4 and k = 1,...,n. See Figure 5(a).
4. Circum-pentacenes (n) when n =5 and k = 1,...,n. See Figure 5(b) .
5. Circum-hexacenes (n) when n =6 and k = 1,...,n. See Figure 6.[7]

Theorem 2.10. Let G be a circum-naphthalenes(n), n > 1. Then Z(G) =
2n + 3.

Theorem 2.11. Let G be a circum-anthracenes(n), n > 1. Then Z(G) =
2n + 4.
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Theorem 2.12. Let G be a circum-tetracenes(n), n > 1. Then Z(G) =
2n + 5.

Theorem 2.13. Let G be a circum-pentacenes(n), n > 1. Then Z(G) =
2n + 6.

Theorem 2.14. Let G be a circum-hexacenes(n), n > 1. Then Z(G) =
2n+ 7.

Conclusion

In this paper, we have obtained the zero forcing number for pyrene net-
works, circum-pyrene networks, circum-trizene networks and circum-polyacenes
networks.
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