Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 1-(6-Chloro-2-methyl-4-phenyl-3quinolyl)ethanone

## Hoong-Kun Fun,<sup>a</sup>\*‡ Wan-Sin Loh,<sup>a</sup> S. Sarveswari,<sup>b</sup> V. Vijayakumar<sup>b</sup> and B. Palakshi Reddy<sup>b</sup>

<sup>a</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, and <sup>b</sup>Organic Chemistry Division, School of Science, VIT University, Vellore 632 014, India Correspondence e-mail: hkfun@usm.my

Received 30 September 2009; accepted 2 October 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.001 Å; R factor = 0.036; wR factor = 0.107; data-to-parameter ratio = 39.7.

In the title compound,  $C_{18}H_{14}CINO$ , the quinoline ring system is approximately planar with a maximum devation of 0.022 (1) Å and forms a dihedral angle of  $62.70 (3)^{\circ}$  with the phenyl ring. In the crystal, pairs of  $C-H \cdots O$  intermolecular hydrogen bonds link neighbouring molecules into inversion dimers, forming  $R_2^2(14)$  ring motifs. These inversion dimers are stacked along the *b* axis. The structure is further stabilized by  $C-H\cdots\pi$  interactions.

#### **Related literature**

For reference bond-length data, see: Allen et al. (1987). For background to quinolines, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001); Skraup (1880); Katritzky & Arend (1998); Jiang & Si (2002). For the biological activity of chalcones, see: Dimmock et al. (1999); Yamazaki et al. (2002). For a related structure, see: Fun et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).



‡ Thomson Reuters ResearcherID: A-3561-2009.

#### **Experimental**

#### Crystal data

| C <sub>18</sub> H <sub>14</sub> ClNO | V = 1434.86 (4) Å <sup>3</sup> |
|--------------------------------------|--------------------------------|
| $M_r = 295.75$                       | Z = 4                          |
| Monoclinic, $P2_1/n$                 | Mo $K\alpha$ radiation         |
| a = 10.4633 (2) Å                    | $\mu = 0.26 \text{ mm}^{-1}$   |
| b = 7.7959 (1) Å                     | $T = 100 { m K}$               |
| c = 17.5925 (3) Å                    | $0.57 \times 0.34 \times 0.27$ |
| $\beta = 90.887 \ (1)^{\circ}$       |                                |

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{\min} = 0.865, \ T_{\max} = 0.932$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.036$ | 192 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.107$               | H-atom parameters constrained                              |
| S = 1.07                        | $\Delta \rho_{\rm max} = 0.58 \text{ e} \text{ Å}^{-3}$    |
| 7613 reflections                | $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                               | $D-\mathrm{H}$       | $H \cdot \cdot \cdot A$ | $D \cdots A$                            | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------------------------------------------------------------|----------------------|-------------------------|-----------------------------------------|--------------------------------------|
| C15-H15 $A$ O1 <sup>i</sup><br>C11-H11 $A$ Cg1 <sup>ii</sup><br>C13-H13 $A$ Cg2 <sup>iii</sup> | 0.93<br>0.93<br>0.93 | 2.55<br>2.78<br>2.92    | 3.2047 (10)<br>3.6416 (7)<br>3.6255 (8) | 128<br>155<br>133                    |
|                                                                                                |                      |                         |                                         |                                      |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii)  $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iii)  $-x + \frac{3}{2}$ ,  $y + \frac{1}{2}$ ,  $-z + \frac{1}{2}$ . Cg1 and Cg2 are the centroids of the C1-C9/N1 and C10-C15 ring systems, respectively.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and WSL thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2352).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.
- Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.



0.27 mm

32340 measured reflections

 $R_{\rm int} = 0.023$ 

7613 independent reflections

6588 reflections with  $I > 2\sigma(I)$ 

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.
- Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009). Acta Cryst. E65, 02665–02666.
- Jiang, B. & Si, Y.-G. (2002). J. Org. Chem. 67, 9449-9451.
- Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.
- Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem. 63, 9989-9991.
- Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.
- Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.
- Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.
- Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.
- Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Skraup, H. (1880). Ber. Dtsch Chem. Ges. 13, 2086–2088.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett. 183, 23-30.

# supporting information

Acta Cryst. (2009). E65, o2688–o2689 [https://doi.org/10.1107/S1600536809040306]

## 1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)ethanone

## Hoong-Kun Fun, Wan-Sin Loh, S. Sarveswari, V. Vijayakumar and B. Palakshi Reddy

### S1. Comment

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto *et al.*, 1991; Michael, 1997) and biologically active compounds (Markees *et al.*, 1970; Campbell *et al.*, 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire *et al.*, 1994; Kalluraya & Sreenivasa, 1998; Roma *et al.*, 2000; Chen *et al.*, 2001; Skraup, 1880). Many synthetic methods such as the Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines, but due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002). Chalcones are open-chain flavonoids, possessing a variety of biological activities, including antioxidant, anti-inflammatory, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock *et al.*, 1999). More importantly, chalcones have shown several anticancer activities, such as inhibitors of cancer cell proliferation, carcinogenesis, and metastasis (Yamazaki *et al.*, 2002).

In the crystal structure (Fig. 1), bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and comparable to those in a closely related structure (Fun *et al.*, 2009). The quinoline ring system (C1–C9/N1) is approximately planar, with a maximum devation of 0.022 (1) Å at atom C1. The phenyl ring (C10–C15) forms a dihedral angle of 62.70 (3)° with the mean plane of the quinoline ring system. In the crystal packing (Fig. 2), pairs of C15—H15A···O1 hydrogen bonds link neighbouring molecules into dimers, forming  $R_2^2(14)$  ring motifs (Bernstein *et al.*, 1995). These inversion dimers are stacked along the *b* axis. The crystal structure is further stabilized by C—H··· $\pi$  interactions (Table 1), involving the C1–C9/N1 (centroid *Cg*1) and C10–C15 (centroid *Cg*2) ring systems.

### **S2.** Experimental

A mixture of 2-amino-5-chlorobenzophenone (2.3 g, 0.01 mol) and acetylacetone (1.0 g, 0.01 mol) with 0.15 ml concentrated HCl in a beaker was subjected to microwave irradiation for about 6 min. After completion of the reaction (monitored by TLC), the reaction mixture was washed with saturated solvent NaHCO<sub>3</sub> (10 ml) and then it was dried. After that it was washed with petroleum ether and recrystallized with chloroform (*M. p.* 224–226°C). IR (cm<sup>-1</sup>): 1704, 1480, 1385, 840, 711.

## **S3. Refinement**

All H atoms were positioned geometrically [C—H = 0.93 or 0.96 Å] and were refined using a riding model, with  $U_{iso}(H) = 1.2U_{eq}(Csp^2)$  or  $1.5U_{eq}(methyl C)$ . A rotating-group model was applied for the methyl groups.



## Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.



## Figure 2

The crystal packing of the title compound, viewed along the *b* axis, showing the  $R_2^2(14)$  ring motifs. C—H···O intermolecular interactions are shown as dashed lines.

1-(6-Chloro-2-methyl-4-phenyl-3-quinolyl)ethanone

| Crystal data                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>18</sub> H <sub>14</sub> ClNO<br>$M_r = 295.75$<br>Monoclinic, $P2_1/n$<br>Hall symbol: -P 2yn<br>a = 10.4633 (2) Å<br>b = 7.7959 (1) Å<br>c = 17.5925 (3) Å<br>$\beta = 90.887$ (1)°<br>V = 1434.86 (4) Å <sup>3</sup> | F(000) = 616<br>$D_x = 1.369 \text{ Mg m}^{-3}$<br>Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 9994 reflections<br>$\theta = 2.3-37.6^{\circ}$<br>$\mu = 0.26 \text{ mm}^{-1}$<br>T = 100  K<br>Block, yellow<br>$0.57 \times 0.34 \times 0.27 \text{ mm}$ |
| Z = 4                                                                                                                                                                                                                          | 0.57 ~ 0.54 ~ 0.27 mm                                                                                                                                                                                                                                                                 |
| Data collection                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                       |
| Bruker SMART APEXII CCD area-detector<br>diffractometer                                                                                                                                                                        | 32340 measured reflections<br>7613 independent reflections                                                                                                                                                                                                                            |
| Radiation source: fine-focus sealed tube                                                                                                                                                                                       | 6588 reflections with $I > 2\sigma(I)$                                                                                                                                                                                                                                                |
| Graphite monochromator                                                                                                                                                                                                         | $R_{\rm int} = 0.023$                                                                                                                                                                                                                                                                 |
| $\varphi$ and $\omega$ scans                                                                                                                                                                                                   | $\theta_{\rm max} = 37.6^\circ, \ \theta_{\rm min} = 2.3^\circ$                                                                                                                                                                                                                       |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2005)                                                                                                                                                           | $h = -17 \rightarrow 16$<br>$k = -13 \rightarrow 12$                                                                                                                                                                                                                                  |
| $I_{\min} = 0.865, I_{\max} = 0.932$                                                                                                                                                                                           | $l = -30 \rightarrow 30$                                                                                                                                                                                                                                                              |

Refinement

| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.036$<br>$wR(F^2) = 0.107$ | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| S = 1.07                                                                                                  | H-atom parameters constrained                                                                                          |
| 7613 reflections                                                                                          | $w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.2858P]$                                                                      |
| 192 parameters                                                                                            | where $P = (F_o^2 + 2F_c^2)/3$                                                                                         |
| 0 restraints                                                                                              | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                    |
| Primary atom site location: structure-invariant direct methods                                            | $\Delta  ho_{ m max} = 0.58 \ { m e} \ { m \AA}^{-3}$<br>$\Delta  ho_{ m min} = -0.24 \ { m e} \ { m \AA}^{-3}$        |
|                                                                                                           |                                                                                                                        |

### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x             | у           | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|---------------|-------------|---------------|-------------------------------|
| Cl1  | 1.179322 (16) | 0.65521 (3) | 0.247848 (10) | 0.02152 (5)                   |
| 01   | 0.56817 (6)   | 0.27543 (9) | 0.51440 (4)   | 0.02585 (12)                  |
| N1   | 0.98196 (6)   | 0.23575 (8) | 0.49910 (3)   | 0.01532 (10)                  |
| C1   | 0.98802 (6)   | 0.50843 (9) | 0.32517 (4)   | 0.01414 (10)                  |
| H1A  | 0.9336        | 0.5589      | 0.2894        | 0.017*                        |
| C2   | 1.11760 (6)   | 0.53229 (9) | 0.32124 (4)   | 0.01548 (11)                  |
| C3   | 1.20321 (6)   | 0.46250 (9) | 0.37595 (4)   | 0.01719 (11)                  |
| H3A  | 1.2907        | 0.4809      | 0.3723        | 0.021*                        |
| C4   | 1.15518 (6)   | 0.36706 (9) | 0.43465 (4)   | 0.01614 (11)                  |
| H4A  | 1.2107        | 0.3226      | 0.4714        | 0.019*                        |
| C5   | 1.02224 (6)   | 0.33535 (8) | 0.43995 (4)   | 0.01347 (10)                  |
| C6   | 0.93765 (6)   | 0.40614 (8) | 0.38437 (3)   | 0.01243 (10)                  |
| C7   | 0.80451 (6)   | 0.36943 (8) | 0.39077 (3)   | 0.01238 (10)                  |
| C8   | 0.76613 (6)   | 0.26872 (8) | 0.45085 (3)   | 0.01334 (10)                  |
| C9   | 0.85868 (6)   | 0.20413 (9) | 0.50445 (4)   | 0.01465 (10)                  |
| C10  | 0.70864 (6)   | 0.44156 (8) | 0.33610 (3)   | 0.01260 (10)                  |
| C11  | 0.70861 (6)   | 0.39520 (9) | 0.25902 (4)   | 0.01491 (10)                  |
| H11A | 0.7714        | 0.3219      | 0.2410        | 0.018*                        |
| C12  | 0.61476 (6)   | 0.45857 (9) | 0.20938 (4)   | 0.01612 (11)                  |
| H12A | 0.6143        | 0.4263      | 0.1585        | 0.019*                        |
| C13  | 0.52150 (6)   | 0.57038 (9) | 0.23602 (4)   | 0.01573 (11)                  |
| H13A | 0.4589        | 0.6126      | 0.2029        | 0.019*                        |
| C14  | 0.52217 (6)   | 0.61880 (9) | 0.31229 (4)   | 0.01545 (11)                  |

# supporting information

| H14A | 0.4607      | 0.6947       | 0.3298      | 0.019*       |  |
|------|-------------|--------------|-------------|--------------|--|
| C15  | 0.61476 (6) | 0.55367 (9)  | 0.36233 (4) | 0.01429 (10) |  |
| H15A | 0.6141      | 0.5849       | 0.4133      | 0.017*       |  |
| C16  | 0.81736 (8) | 0.09262 (10) | 0.56922 (4) | 0.02031 (13) |  |
| H16B | 0.8914      | 0.0471       | 0.5951      | 0.030*       |  |
| H16C | 0.7660      | -0.0001      | 0.5499      | 0.030*       |  |
| H16A | 0.7683      | 0.1595       | 0.6041      | 0.030*       |  |
| C17  | 0.62761 (6) | 0.22144 (9)  | 0.46068 (4) | 0.01645 (11) |  |
| C18  | 0.56993 (9) | 0.09744 (14) | 0.40461 (5) | 0.02852 (17) |  |
| H18A | 0.4785      | 0.1000       | 0.4083      | 0.043*       |  |
| H18B | 0.6004      | -0.0162      | 0.4156      | 0.043*       |  |
| H18C | 0.5940      | 0.1292       | 0.3541      | 0.043*       |  |
|      |             |              |             |              |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$    | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|-----|-------------|--------------|-------------|---------------|---------------|---------------|
| Cl1 | 0.01532 (7) | 0.02794 (10) | 0.02141 (8) | -0.00307 (5)  | 0.00332 (5)   | 0.00537 (6)   |
| 01  | 0.0226 (3)  | 0.0312 (3)   | 0.0242 (3)  | 0.0004 (2)    | 0.0103 (2)    | -0.0010 (2)   |
| N1  | 0.0162 (2)  | 0.0145 (2)   | 0.0153 (2)  | 0.00089 (17)  | -0.00179 (17) | 0.00089 (17)  |
| C1  | 0.0122 (2)  | 0.0158 (2)   | 0.0145 (2)  | 0.00001 (19)  | 0.00039 (18)  | 0.00054 (19)  |
| C2  | 0.0132 (2)  | 0.0166 (3)   | 0.0167 (2)  | -0.00137 (19) | 0.00138 (19)  | 0.0000 (2)    |
| C3  | 0.0123 (2)  | 0.0174 (3)   | 0.0219 (3)  | -0.0004 (2)   | -0.0010 (2)   | -0.0008(2)    |
| C4  | 0.0133 (2)  | 0.0153 (3)   | 0.0197 (3)  | 0.00069 (19)  | -0.0032 (2)   | -0.0008(2)    |
| C5  | 0.0136 (2)  | 0.0125 (2)   | 0.0143 (2)  | 0.00098 (18)  | -0.00177 (18) | -0.00102 (18) |
| C6  | 0.0118 (2)  | 0.0130 (2)   | 0.0125 (2)  | 0.00046 (18)  | -0.00022 (17) | -0.00075 (18) |
| C7  | 0.0121 (2)  | 0.0135 (2)   | 0.0115 (2)  | 0.00065 (17)  | 0.00041 (17)  | -0.00052 (18) |
| C8  | 0.0136 (2)  | 0.0143 (2)   | 0.0122 (2)  | 0.00014 (18)  | 0.00090 (18)  | -0.00009 (18) |
| С9  | 0.0168 (2)  | 0.0135 (2)   | 0.0136 (2)  | 0.00065 (19)  | -0.00055 (19) | 0.00067 (19)  |
| C10 | 0.0108 (2)  | 0.0151 (2)   | 0.0119 (2)  | -0.00022 (18) | 0.00032 (17)  | 0.00094 (18)  |
| C11 | 0.0140 (2)  | 0.0181 (3)   | 0.0127 (2)  | 0.0014 (2)    | 0.00037 (18)  | -0.0009(2)    |
| C12 | 0.0151 (2)  | 0.0200 (3)   | 0.0132 (2)  | -0.0002 (2)   | -0.00113 (19) | 0.0002 (2)    |
| C13 | 0.0127 (2)  | 0.0181 (3)   | 0.0164 (2)  | -0.00090 (19) | -0.00199 (19) | 0.0024 (2)    |
| C14 | 0.0116 (2)  | 0.0171 (3)   | 0.0176 (3)  | 0.00086 (19)  | 0.00059 (19)  | 0.0011 (2)    |
| C15 | 0.0122 (2)  | 0.0171 (3)   | 0.0136 (2)  | 0.00082 (19)  | 0.00122 (18)  | -0.00023 (19) |
| C16 | 0.0232 (3)  | 0.0199 (3)   | 0.0177 (3)  | 0.0000 (2)    | 0.0000 (2)    | 0.0065 (2)    |
| C17 | 0.0150 (2)  | 0.0194 (3)   | 0.0150 (2)  | -0.0010 (2)   | 0.00195 (19)  | 0.0031 (2)    |
| C18 | 0.0256 (4)  | 0.0377 (5)   | 0.0222 (3)  | -0.0151 (3)   | 0.0014 (3)    | -0.0032 (3)   |

Geometric parameters (Å, °)

| C11—C2 | 1.7401 (7)  | C10—C15  | 1.3985 (9)  |  |
|--------|-------------|----------|-------------|--|
| O1—C17 | 1.2146 (9)  | C10-C11  | 1.4032 (9)  |  |
| N1-C9  | 1.3181 (9)  | C11—C12  | 1.3944 (9)  |  |
| N1C5   | 1.3701 (9)  | C11—H11A | 0.9300      |  |
| C1—C2  | 1.3714 (9)  | C12—C13  | 1.3949 (10) |  |
| C1—C6  | 1.4196 (9)  | C12—H12A | 0.9300      |  |
| C1—H1A | 0.9300      | C13—C14  | 1.3937 (10) |  |
| C2—C3  | 1.4137 (10) | C13—H13A | 0.9300      |  |
|        |             |          |             |  |

## supporting information

| C3—C4        | 1.3742 (10) | C14—C15       | 1.3947 (9)  |
|--------------|-------------|---------------|-------------|
| С3—НЗА       | 0.9300      | C14—H14A      | 0.9300      |
| C4—C5        | 1.4173 (9)  | C15—H15A      | 0.9300      |
| C4—H4A       | 0.9300      | C16—H16B      | 0.9600      |
| C5—C6        | 1.4203 (9)  | C16—H16C      | 0.9600      |
| C6—C7        | 1.4284 (9)  | C16—H16A      | 0.9600      |
| C7—C8        | 1.3813 (9)  | C17—C18       | 1.5012 (11) |
| C7—C10       | 1.4891 (9)  | C18—H18A      | 0.9600      |
| C8—C9        | 1.4325 (9)  | C18—H18B      | 0.9600      |
| C8—C17       | 1 5081 (9)  | C18—H18C      | 0.9600      |
| C9—C16       | 1 5021 (10) |               | 0.0000      |
| 0, 010       | 1.0021 (10) |               |             |
| C9—N1—C5     | 118.23 (6)  | C12—C11—C10   | 120.24 (6)  |
| C2—C1—C6     | 119.46 (6)  | C12—C11—H11A  | 119.9       |
| C2—C1—H1A    | 120.3       | C10-C11-H11A  | 119.9       |
| C6—C1—H1A    | 120.3       | C11—C12—C13   | 120.03 (6)  |
| C1—C2—C3     | 122.01 (6)  | C11—C12—H12A  | 120.0       |
| C1—C2—C11    | 119.39 (5)  | C13—C12—H12A  | 120.0       |
| C3—C2—Cl1    | 118.59 (5)  | C14—C13—C12   | 119.97 (6)  |
| C4—C3—C2     | 119.00 (6)  | C14—C13—H13A  | 120.0       |
| С4—С3—НЗА    | 120.5       | С12—С13—Н13А  | 120.0       |
| С2—С3—НЗА    | 120.5       | C13—C14—C15   | 120.14 (6)  |
| C3—C4—C5     | 120.97 (6)  | C13—C14—H14A  | 119.9       |
| C3—C4—H4A    | 119.5       | C15—C14—H14A  | 119.9       |
| C5—C4—H4A    | 119.5       | C14—C15—C10   | 120.25 (6)  |
| N1—C5—C4     | 117.56 (6)  | C14—C15—H15A  | 119.9       |
| N1—C5—C6     | 123.19 (6)  | C10—C15—H15A  | 119.9       |
| C4—C5—C6     | 119.25 (6)  | C9—C16—H16B   | 109.5       |
| C1—C6—C5     | 119.27 (6)  | C9—C16—H16C   | 109.5       |
| C1—C6—C7     | 122.95 (6)  | H16B—C16—H16C | 109.5       |
| C5—C6—C7     | 117.78 (6)  | C9—C16—H16A   | 109.5       |
| C8—C7—C6     | 118.01 (6)  | H16B—C16—H16A | 109.5       |
| C8—C7—C10    | 120.53 (5)  | H16C—C16—H16A | 109.5       |
| C6—C7—C10    | 121.43 (5)  | O1—C17—C18    | 121.94 (7)  |
| C7—C8—C9     | 120.13 (6)  | O1—C17—C8     | 120.60 (7)  |
| C7—C8—C17    | 121.19 (6)  | C18—C17—C8    | 117.34 (6)  |
| C9—C8—C17    | 118.67 (6)  | C17—C18—H18A  | 109.5       |
| N1—C9—C8     | 122.66 (6)  | C17—C18—H18B  | 109.5       |
| N1—C9—C16    | 117.12 (6)  | H18A—C18—H18B | 109.5       |
| C8—C9—C16    | 120.21 (6)  | C17—C18—H18C  | 109.5       |
| C15—C10—C11  | 119.35 (6)  | H18A—C18—H18C | 109.5       |
| C15—C10—C7   | 119.49 (5)  | H18B—C18—H18C | 109.5       |
| C11—C10—C7   | 121.13 (6)  |               |             |
|              |             |               |             |
| C6—C1—C2—C3  | -2.09 (10)  | C5—N1—C9—C8   | 0.38 (10)   |
| C6—C1—C2—Cl1 | 179.09 (5)  | C5—N1—C9—C16  | 179.18 (6)  |
| C1—C2—C3—C4  | 0.36 (11)   | C7—C8—C9—N1   | -0.40 (10)  |
| Cl1—C2—C3—C4 | 179.19 (5)  | C17—C8—C9—N1  | 178.37 (6)  |

| $C_{2} - C_{3} - C_{4} - C_{5}$ | 1 27 (10)   | C7-C8-C9-C16                      | -179 17 (6) |
|---------------------------------|-------------|-----------------------------------|-------------|
| $C_{2} = C_{3} = C_{1} = C_{3}$ | -17952(6)   | $C_{17}$ $C_{8}$ $C_{9}$ $C_{16}$ | -0.40(9)    |
| $C_{0}$ N1 $C_{5}$ $C_{6}$      | 0.11(10)    | $C_{8}$ $C_{7}$ $C_{10}$ $C_{15}$ | 61.18(0)    |
| C9-N1-C5-C0                     | 0.11(10)    | 0-07-010-013                      | 01.10(9)    |
| C3—C4—C5—N1                     | 178.51 (6)  | C6—C7—C10—C15                     | -116.81 (7) |
| C3—C4—C5—C6                     | -1.13 (10)  | C8—C7—C10—C11                     | -116.99 (7) |
| C2-C1-C6-C5                     | 2.18 (10)   | C6-C7-C10-C11                     | 65.01 (9)   |
| C2-C1-C6-C7                     | -177.46 (6) | C15—C10—C11—C12                   | -0.88 (10)  |
| N1-C5-C6-C1                     | 179.78 (6)  | C7—C10—C11—C12                    | 177.30 (6)  |
| C4—C5—C6—C1                     | -0.60 (9)   | C10-C11-C12-C13                   | 0.91 (10)   |
| N1-C5-C6-C7                     | -0.57 (9)   | C11—C12—C13—C14                   | 0.02 (10)   |
| C4—C5—C6—C7                     | 179.06 (6)  | C12—C13—C14—C15                   | -0.97 (10)  |
| C1—C6—C7—C8                     | -179.83 (6) | C13—C14—C15—C10                   | 1.00 (10)   |
| C5—C6—C7—C8                     | 0.52 (9)    | C11—C10—C15—C14                   | -0.07 (10)  |
| C1-C6-C7-C10                    | -1.79 (10)  | C7—C10—C15—C14                    | -178.28 (6) |
| C5—C6—C7—C10                    | 178.56 (6)  | C7—C8—C17—O1                      | -113.46 (8) |
| C6—C7—C8—C9                     | -0.08 (9)   | C9—C8—C17—O1                      | 67.78 (9)   |
| C10—C7—C8—C9                    | -178.14 (6) | C7—C8—C17—C18                     | 70.31 (9)   |
| C6—C7—C8—C17                    | -178.81 (6) | C9—C8—C17—C18                     | -108.45 (8) |
| C10—C7—C8—C17                   | 3.13 (9)    |                                   |             |
|                                 |             |                                   |             |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                       | D—H  | Н…А  | D···· $A$   | D—H···A |
|-----------------------------------------------|------|------|-------------|---------|
| C15—H15A…O1 <sup>i</sup>                      | 0.93 | 2.55 | 3.2047 (10) | 128     |
| C11—H11A····Cg1 <sup>ii</sup>                 | 0.93 | 2.78 | 3.6416 (7)  | 155     |
| C13—H13 <i>A</i> … <i>Cg</i> 2 <sup>iii</sup> | 0.93 | 2.92 | 3.6255 (8)  | 133     |

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3/2, y-1/2, -z+1/2; (iii) -x+3/2, y+1/2, -z+1/2.