Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,3-Dimethyl-4-phenyIsulfanyl-1H-pyrazol-5-ol

Tara Shahani, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a* }} \ddagger$ R. Venkat Ragavan, ${ }^{\text {b }}$ V. Vijayakumar ${ }^{\text {b }}$ and S. Sarveswari ${ }^{\text {b }}$
${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {b }}$ Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
Correspondence e-mail: hkfun@usm.my

Received 8 February 2011; accepted 9 February 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.104 ;$ data-to-parameter ratio $=21.3$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$, the pyrazole ring makes a dihedral angle of $85.40(8)^{\circ}$ with the phenyl ring. In the crystal, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into a two-dimensional network parallel to the bc plane.

Related literature

For pyrazole derivatives and their microbial activity, see: Ragavan et al. (2009, 2010). For related structures, see: Shahani et al. (2009, 2010a,b,c). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=220.30$
Orthorhombic, Pbca
$a=10.9479$ (2) \AA
$b=11.3470$ (3) A
$c=17.7392(4) \AA$

$$
V=2203.67(9) \AA^{3}
$$

$Z=8$
Mo $K \alpha$ radiation
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.33 \times 0.13 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2009)
$T_{\text {min }}=0.917, T_{\text {max }}=0.971$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.104$
$S=1.04$
3027 reflections
142 parameters

12209 measured reflections 3027 independent reflections 2406 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.94(2)$	$1.71(2)$	$2.6446(16)$	$173(2)$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.53	$3.2549(19)$	135
Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z ;$ (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSH also thanks USM for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2676)

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Ragavan, R. V., Vijayakumar, V. \& Kumari, N. S. (2009). Eur. J. Med. Chem. 44, 3852-3857.
Ragavan, R. V., Vijayakumar, V. \& Kumari, N. S. (2010). Eur. J. Med. Chem. 45, 1173-1180.
Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. \& Sarveswari, S. (2009). Acta Cryst. E65, o3249-o3250.

Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. \& Sarveswari, S. (2010a). Acta Cryst. E66, o142-o143.
Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. \& Sarveswari, S. (2010b). Acta Cryst. E66, o1357-o1358.
Shahani, T., Fun, H.-K., Ragavan, R. V., Vijayakumar, V. \& Sarveswari, S. (2010c). Acta Cryst. E66, o1482-o1483.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[^0]
supplementary materials

1,3-Dimethyl-4-phenylsulfanyl-1 H -pyrazol-5-ol

T. Shahani, H.-K. Fun, R. V. Ragavan, V. Vijayakumar and S. Sarveswari

Comment

Antibacterial and antifungal activities of the azoles are most widely studied and some of them are in clinical practice as anti-microbial agents. However, the azole-resistant strain had led to the development of new antimicrobial compounds. In particular pyrazole derivatives are extensively studied and used as antimicrobial agents. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have the broad spectrum of biological properties, such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic, molecular modelling, and antiviral activities. Pyrazole derivatives also act as antiangiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists, kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity, and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming the synthesis of new antimicrobial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan et al., 2009, 2010). The structure of the title compound is presented here.

In the title compound, (Fig. 1), the $1 H$-pyrazol ring (C7-C9/N1/N2) [maximum deviation of 0.00117 (14) \AA] makes a dihedral angle of $85.40(8)^{\circ}$ with the phenyl ring (C1-C6). The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to those closely related structures (Shahani et al., 2009, 2010a,b,c).

In the crystal packing (Fig. 2), pairs of intermolecular $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 1$ and $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1$ hydrogen bonds (Table 1) link the molecules into two-dimensional networks parallel to the $b c$ plane.

Experimental

The compound has been synthesized using the method available in the literature (Ragavan et al., 2009) and recrystallized using the ethanol-chloroform 1:1 mixture (yield 60%, m.p. 444 K).

Refinement

The H atoms bound to C atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$. The H atoms attached to the N atom was located from the difference map and refined freely, $[\mathrm{N}-\mathrm{H}=0.94$ (2) $\AA]$.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

supplementary materials

Fig. 2. The crystal structure of the title compound viewed approximately along the b axis. Intermolecular interactions are shown in dashed lines. Hydrogen bond not involved in intermolecular interactions are omitted for clarity.

1,3-Dimethyl-4-phenylsulfanyl-1H-pyrazol-5-ol

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=220.30$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=10.9479$ (2) \AA
$b=11.3470$ (3) \AA
$c=17.7392(4) \AA$
$V=2203.67(9) \AA^{3}$
$Z=8$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.917, T_{\text {max }}=0.971$
12209 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.104$
$S=1.04$
3027 reflections
142 parameters
0 restraints
$F(000)=928$
$D_{\mathrm{x}}=1.328 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2873 reflections
$\theta=2.8-29.1^{\circ}$
$\mu=0.27 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.33 \times 0.13 \times 0.11 \mathrm{~mm}$

3027 independent reflections
2406 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=29.4^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-11 \rightarrow 15$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 24$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0481 P)^{2}+0.8061 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.33$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.31$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
S1	$0.09449(3)$	$0.31932(3)$	$0.09298(2)$	$0.01802(11)$
O1	$0.32686(10)$	$0.34450(8)$	$-0.02532(6)$	$0.0207(2)$
N1	$0.20240(12)$	$0.61926(10)$	$0.00845(8)$	$0.0202(3)$
N2	$0.28173(12)$	$0.54374(10)$	$-0.02791(7)$	$0.0192(3)$
C1	$0.28747(15)$	$0.36136(13)$	$0.19278(9)$	$0.0225(3)$
H1A	0.3057	0.4285	0.1649	0.027^{*}
C2	$0.35663(15)$	$0.33304(13)$	$0.25590(9)$	$0.0254(3)$
H2A	0.4211	0.3816	0.2700	0.031^{*}
C3	$0.33066(15)$	$0.23327(14)$	$0.29808(9)$	$0.0236(3)$
H3A	0.3766	0.2154	0.3407	0.028^{*}
C4	$0.23531(15)$	$0.16043(13)$	$0.27606(9)$	$0.0243(3)$
H4A	0.2180	0.0929	0.3037	0.029^{*}
C5	$0.16551(14)$	$0.18758(13)$	$0.21304(9)$	$0.0212(3)$
H5A	0.1019	0.1382	0.1986	0.025^{*}
C6	$0.19092(13)$	$0.28904(12)$	$0.17148(8)$	$0.0173(3)$
C7	$0.16428(13)$	$0.43840(11)$	$0.04922(8)$	$0.0166(3)$
C8	$0.26321(13)$	$0.43076(11)$	$-0.00304(8)$	$0.0164(3)$
C9	$0.13144(14)$	$0.55679(12)$	$0.05474(8)$	$0.0178(3)$
C10	$0.38173(15)$	$0.5866(13)$	$-0.07387(10)$	$0.0239(3)$
H10A	0.4171	0.5222	-0.1013	0.036^{*}
H10B	0.4427	0.6217	-0.0420	0.036^{*}
H10C	0.3517	0.6446	-0.1087	0.036^{*}
C11	$0.03683(15)$	$0.61354(14)$	$0.10271(9)$	$0.0248(3)$
H11A	0.0198	0.6912	0.0839	0.037^{*}
H11B	0.0661	0.6189	0.1536	0.037^{*}
H11C	-0.0365	0.5672	0.1016	0.037^{*}
H1N1	$0.1983(19)$	$0.700(2)$	$-0.0036(13)$	$0.047(6)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01876(19)$	$0.01847(18)$	$0.0168(2)$	$-0.00372(13)$	$-0.00109(13)$	$0.00267(13)$
O1	$0.0267(6)$	$0.0139(4)$	$0.0215(6)$	$0.0008(4)$	$0.0046(4)$	$0.0000(4)$
N1	$0.0264(7)$	$0.0129(5)$	$0.0212(7)$	$0.0017(5)$	$-0.0005(5)$	$-0.0006(5)$
N2	$0.0240(6)$	$0.0131(5)$	$0.0206(7)$	$-0.0002(5)$	$0.0034(5)$	$0.0007(5)$
C1	$0.0273(8)$	$0.0198(7)$	$0.0204(8)$	$-0.0046(6)$	$-0.0027(6)$	$0.0034(6)$
C2	$0.0285(8)$	$0.0257(7)$	$0.0221(9)$	$-0.0037(6)$	$-0.0065(7)$	$-0.0002(6)$
C3	$0.0255(8)$	$0.0298(8)$	$0.0155(8)$	$0.0053(6)$	$-0.0012(6)$	$0.0006(6)$
C4	$0.0247(8)$	$0.0260(7)$	$0.0222(8)$	$0.0015(6)$	$0.0032(6)$	$0.0082(6)$
C5	$0.0197(7)$	$0.0213(7)$	$0.0225(8)$	$-0.0015(6)$	$0.0013(6)$	$0.0043(6)$
C6	$0.0196(7)$	$0.0188(6)$	$0.0134(7)$	$0.0007(5)$	$0.0019(5)$	$0.0003(5)$
C7	$0.0193(7)$	$0.0148(6)$	$0.0156(7)$	$-0.0014(5)$	$-0.0003(5)$	$0.0005(5)$
C8	$0.0224(7)$	$0.0127(6)$	$0.0141(7)$	$-0.0017(5)$	$-0.0018(6)$	$0.0001(5)$
C9	$0.0207(7)$	$0.0179(6)$	$0.0149(7)$	$0.0009(5)$	$-0.0035(6)$	$-0.0002(5)$
C10	$0.0283(8)$	$0.0184(7)$	$0.0250(8)$	$-0.0043(6)$	$0.0050(7)$	$0.0032(6)$
C11	$0.0248(8)$	$0.0250(7)$	$0.0245(9)$	$0.0071(6)$	$-0.0008(6)$	$-0.0021(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 7$	$1.7356(14)$
$\mathrm{S} 1-\mathrm{C} 6$	$1.7809(15)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.2648(17)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.3343(19)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.3801(17)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$0.94(2)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.3708(17)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.4494(19)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.389(2)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.391(2)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.387(2)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.388(2)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 6$	$103.83(7)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{N} 2$	$108.92(11)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$129.0(13)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1$	$121.9(13)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$109.70(12)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 10$	$127.39(13)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10$	$121.97(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.79(14)$
C2-C1-H1A	120.1
C6-C1-H1A	120.1
C3-C2-C1	$120.80(15)$
C3-C2-H2A	119.6

C3-H3A	0.9300
C4-C5	$1.389(2)$
C4-H4A	0.9300
C5-C6	$1.395(2)$
C5-H5A	0.9300
C7-C9	$1.3942(19)$
C7-C8	$1.428(2)$
C9-C11	$1.487(2)$
C10-H10A	0.9600
C10-H10B	0.9600
C10-H10C	0.9600
C11-H11A	0.9600
C11-H11B	0.9600
C11-H11C	0.9600
C1-C6-S1	$123.32(11)$
C5-C6-S1	$117.02(11)$
C9-C7-C8	$107.44(12)$
C9-C7-S1	$127.24(12)$
C8-C7-S1	$125.24(10)$
O1-C8-N2	$122.79(13)$
O1-C8-C7	$131.88(13)$
N2-C8-C7	$105.33(12)$
N1-C9-C7	$108.57(13)$
N1-C9-C11	$121.85(13)$
C7-C9-C11	$129.57(14)$
N2-C10-H10A	109.5

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.26(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.56(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.7
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.92(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.0
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.0
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.66(14)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	$-1.48(17)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 10$	$-171.15(14)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.0(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.9(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.8(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-1.0(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{S} 1$	$178.43(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.1(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$	$-178.38(12)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 6-\mathrm{C} 1$	$7.87(15)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 6-\mathrm{C} 5$	$-172.70(12)$
$\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 9$	$-100.38(14)$
$\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 7-\mathrm{C} 8$	$83.36(14)$

$\mathrm{N} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{~N} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{C} 9-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{C} 9-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{C} 9-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{O} 1$	$-177.46(13)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 8-\mathrm{O} 1$	$-8.5(2)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$2.10(16)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$171.06(14)$
$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1$	$177.55(16)$
S1-C7-C8-O1	$-5.6(2)$
$\mathrm{C} 9-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$-1.96(16)$
S1-C7-C8-N2	$174.91(11)$
N2-N1-C9-C7	$0.18(17)$
N2-N1-C9-C11	$179.36(13)$
C8-C7-C9-N1	$1.12(17)$
S1-C7-C9-N1	$-175.67(11)$
C8-C7-C9-C11	$-177.97(15)$
S1-C7-C9-C11	$5.2(2)$

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{Ol}^{\mathrm{i}}$	$0.94(2)$	$1.71(2)$	$2.6446(16)$	$173(2)$
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.93	2.53	$3.2549(19)$	135

Symmetry codes: (i) $-x+1 / 2, y+1 / 2, z$; (ii) $x,-y+1 / 2, z+1 / 2$.

supplementary materials

Fig. 1

Fig. 2

Copyright of Acta Crystallographica: Section E (International Union of Crystallography $\mathrm{IUCr})$ is the property of International Union of Crystallography - IUCr and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: \ddagger Thomson Reuters ResearcherID: A-3561-2009.

