organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1methylpyridinium iodide

K. Senthil,^a S. Kalainathan,^a A. RubanKumar,^a V. Ramkumar^b and Jiban Podder^c*

^aCentre for Crystal Growth, School of Advanced Sciences, VIT University, Vellore, Tamil Nadu, India, ^bDepartment of Chemistry, IIT Madras, Chennai 600 036. TamilNadu, India, and ^cDepartment of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh Correspondence e-mail: jpodder59@gmail.com

Received 13 November 2013; accepted 22 November 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.020; wR factor = 0.052; data-to-parameter ratio = 15.0.

In the title molecular salt, $C_{16}H_{10}NO^+ \cdot I^-$, the dihedral angle between the pyridinium and benzene rings is $6.61 (8)^{\circ}$. In the crystal, the cation is linked to the anion by a $C-H\cdots I$ interaction arising from the activated aromatic C atom adjacent to the N⁺ cation.

Related literature

For background to organic non-linear optical materials, see: Jagannathan et al. (2007); Williams (1984). For a related structure, see: Chantrapromma et al. (2010).

a = 7.1760 (3) Å

b = 8.6895 (4) Å c = 12.1555 (6) Å

Experimental

Crystal data	
$C_{15}H_{16}NO^+ \cdot I^-$	
$M_r = 353.19$	
Triclinic, P1	

$\alpha = 92.645 \ (2)^{\circ}$	
$\beta = 92.115 \ (2)^{\circ}$	
$\gamma = 103.781 \ (2)^{\circ}$	
V = 734.47 (6) Å ³	
Z = 2	

Data collection

Bruker APEXII CCD	8523 measured reflections
diffractometer	2470 independent reflections
Absorption correction: multi-scan	2363 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2004)	$R_{\rm int} = 0.024$
$T_{\min} = 0.613, \ T_{\max} = 0.737$	

Mo $K\alpha$ radiation $\mu = 2.17 \text{ mm}^{-1}$

 $0.25 \times 0.20 \times 0.15 \text{ mm}$

T = 298 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	165 parameters
$wR(F^2) = 0.052$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
2470 reflections	$\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C1-H1\cdots I1^i$	0.93	2.96	3.872 (3)	168
Symmetry code: (i)	r = 1 $v = 1$ z			

etry code: (i) x

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

The authors thank the DRDO, Government of India, for financial support. They also thank the VIT University management, Vellore, for their constant support and encouragement and acknowledge the Department of Chemistry, IIT Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7162).

References

- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, 01975-01976.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Jagannathan, K., Kalainathan, S., Gnanasekaran, T., Vijayan, N. & Bhagavannarayana, G. (2007). Cryst. Res. Technol. 42, 483-487.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690-703.

supporting information

Acta Cryst. (2013). E69, o1848 [doi:10.1107/S1600536813031929]

2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylpyridinium iodide

K. Senthil, S. Kalainathan, A. RubanKumar, V. Ramkumar and Jiban Podder

S1. Comment

In recent years, the design of new organic nonlinear optical (NLO) materials have been studied (e.g. Jagannathan *et al.*, 2007). As part of our stuies in this area, the title pyridinium derivative compound was synthesized. It crystallizes in the centrosymmetric Pī triclinic space group, so it does not exhibit second-order nonlinear optical properties (Williams, 1984).

The cation is essentially planar and exist in E configuration. The dihedral angle between the pyridinium and benzene rings is $6.16 (8)^{\circ}$. Bond lengths and angles are comparable with those for closely related structure (Chantrapromma *et al.*, 2010). In the crystal, the cation is linked to the anion by a C—H…I interaction (Table 1).

S2. Experimental

The title compound was prepared by mixing 1:1 molar ratio of solutions of 1,2-dimethylpyridinium iodide (7.052 g, 30 mmol), 4-methoxy benzaldehyde (3.7 ml, 30 mmol) and piperidine (5 drops) in hot methanol (20 ml). The resulting mixture was refluxed at 60°C for 8 h to give yellowish crystalline product, which was filtered off and washed with diethyl ether and dried. Yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were obtained by recrystallization (three times) from methanol–acetonitrile (1:1) mixture by slow evaporation of the solvent at ambient temperature over several days (m.p. 514–516 K).

S3. Refinement

All hydrogen atoms were fixed geometrically (C—H 0.93–0.98 Å) and refined as riding, with $U_{iso}(H) = 1.2-1.5 U_{eq}(C)$.

Figure 1

ORTEP of the molecule with atoms represented as 30% probability ellipsoids.

2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylpyridinium iodide

Crystal data

C₁₅H₁₆NO⁺·I⁻ $M_r = 353.19$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.1760 (3) Å b = 8.6895 (4) Å c = 12.1555 (6) Å a = 92.645 (2)° $\beta = 92.115$ (2)° $\gamma = 103.781$ (2)° V = 734.47 (6) Å³

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.613, T_{\max} = 0.737$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.052$ S = 1.092470 reflections 165 parameters 0 restraints Z = 2 F(000) = 348 $D_x = 1.597 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8234 reflections $\theta = 2.4-28.4^{\circ}$ $\mu = 2.17 \text{ mm}^{-1}$ T = 298 K Slab, yellow $0.25 \times 0.20 \times 0.15 \text{ mm}$

8523 measured reflections 2470 independent reflections 2363 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 1.7^\circ$ $h = -8 \rightarrow 6$ $k = -10 \rightarrow 10$ $l = -12 \rightarrow 14$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0211P)^2 + 0.414P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 0.31 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.59 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0288 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.1445 (4)	0.0480 (3)	0.8878 (2)	0.0494 (6)	
H1	-0.2582	-0.0296	0.8742	0.059*	
C2	-0.1376 (4)	0.1673 (3)	0.9651 (2)	0.0560 (7)	
H2	-0.2451	0.1722	1.0043	0.067*	
C3	0.0321 (5)	0.2809 (3)	0.9843 (2)	0.0598 (7)	
H3	0.0397	0.3633	1.0372	0.072*	
C4	0.1896 (4)	0.2736 (3)	0.9260 (2)	0.0537 (6)	
H4	0.3039	0.3503	0.9400	0.064*	
C5	0.1799 (4)	0.1513 (3)	0.84555 (19)	0.0419 (5)	
C6	0.3386 (4)	0.1382 (3)	0.7790 (2)	0.0468 (6)	
H6	0.3297	0.0432	0.7383	0.056*	
C7	0.4961 (4)	0.2531 (3)	0.7722 (2)	0.0460 (5)	
H7	0.5055	0.3449	0.8167	0.055*	
C8	0.6550 (3)	0.2503 (3)	0.7027 (2)	0.0422 (5)	
C9	0.8189 (4)	0.3743 (3)	0.7121 (2)	0.0497 (6)	
H9	0.8233	0.4583	0.7632	0.060*	
C10	0.9754 (4)	0.3779 (3)	0.6488 (2)	0.0497 (6)	
H10	1.0838	0.4618	0.6580	0.060*	
C11	0.9687 (4)	0.2554 (3)	0.5718 (2)	0.0497 (6)	
C13	0.8062 (4)	0.1296 (3)	0.5607 (3)	0.0622 (7)	
H13	0.8019	0.0465	0.5088	0.075*	
C14	0.6536 (4)	0.1264 (3)	0.6246 (2)	0.0549 (6)	
H14	0.5470	0.0408	0.6163	0.066*	
C15	1.2825 (4)	0.3695 (4)	0.5113 (3)	0.0652 (8)	
H15A	1.2501	0.4670	0.4943	0.098*	
H15B	1.3708	0.3459	0.4594	0.098*	
H15C	1.3410	0.3800	0.5845	0.098*	
C16	-0.0104 (4)	-0.0956 (3)	0.7487 (2)	0.0561 (7)	
H16A	-0.1383	-0.1617	0.7491	0.084*	
H16B	0.0805	-0.1563	0.7676	0.084*	
H16C	0.0128	-0.0567	0.6766	0.084*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

N1	0.0107 (3)	0.0400 (2)	0.83019 (16)	0.0409 (4)
01	1.1126 (3)	0.2441 (3)	0.50511 (19)	0.0726 (6)
I1	0.43035 (2)	0.689767 (18)	0.803640 (16)	0.05847 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0449 (13)	0.0580 (14)	0.0471 (14)	0.0149 (11)	0.0023 (11)	0.0090 (11)
C2	0.0638 (17)	0.0679 (16)	0.0428 (14)	0.0267 (14)	0.0105 (12)	0.0086 (12)
C3	0.085 (2)	0.0533 (15)	0.0434 (14)	0.0208 (14)	0.0134 (14)	0.0002 (11)
C4	0.0653 (16)	0.0454 (13)	0.0461 (14)	0.0048 (12)	0.0071 (12)	0.0004 (11)
C5	0.0502 (13)	0.0407 (11)	0.0355 (12)	0.0111 (10)	0.0015 (10)	0.0082 (9)
C6	0.0512 (14)	0.0437 (12)	0.0445 (13)	0.0096 (11)	0.0032 (11)	-0.0003 (10)
C7	0.0524 (14)	0.0402 (12)	0.0460 (14)	0.0123 (10)	0.0012 (11)	0.0025 (10)
C8	0.0435 (12)	0.0410 (11)	0.0425 (13)	0.0114 (10)	-0.0032 (10)	0.0045 (9)
C9	0.0563 (15)	0.0415 (12)	0.0475 (14)	0.0053 (11)	0.0016 (12)	-0.0025 (10)
C10	0.0460 (13)	0.0471 (13)	0.0510 (15)	0.0022 (10)	-0.0012 (11)	0.0014 (11)
C11	0.0401 (13)	0.0570 (14)	0.0507 (15)	0.0100 (11)	-0.0010 (11)	-0.0012 (11)
C13	0.0506 (15)	0.0616 (16)	0.0677 (19)	0.0053 (13)	0.0024 (13)	-0.0226 (14)
C14	0.0422 (13)	0.0537 (14)	0.0620 (17)	0.0012 (11)	-0.0002 (12)	-0.0104 (12)
C15	0.0443 (15)	0.0802 (19)	0.0671 (19)	0.0053 (14)	0.0059 (13)	0.0111 (15)
C16	0.0487 (14)	0.0548 (14)	0.0596 (17)	0.0057 (12)	0.0012 (12)	-0.0122 (12)
N1	0.0442 (11)	0.0444 (10)	0.0349 (10)	0.0125 (8)	-0.0016 (8)	0.0045 (8)
01	0.0491 (11)	0.0816 (14)	0.0795 (15)	0.0041 (10)	0.0153 (10)	-0.0219 (11)
I1	0.04875 (13)	0.04564 (12)	0.07815 (17)	0.00721 (8)	0.00877 (9)	-0.00920 (8)

Geometric parameters (Å, °)

C1—N1	1.351 (3)	C9—C10	1.380 (4)	
C1—C2	1.357 (4)	С9—Н9	0.9300	
C1—H1	0.9300	C10—C11	1.375 (4)	
C2—C3	1.377 (4)	C10—H10	0.9300	
С2—Н2	0.9300	C11—O1	1.355 (3)	
C3—C4	1.369 (4)	C11—C13	1.393 (4)	
С3—Н3	0.9300	C13—C14	1.362 (4)	
C4—C5	1.397 (4)	C13—H13	0.9300	
C4—H4	0.9300	C14—H14	0.9300	
C5—N1	1.361 (3)	C15—O1	1.426 (3)	
C5—C6	1.445 (3)	C15—H15A	0.9600	
C6—C7	1.326 (4)	C15—H15B	0.9600	
С6—Н6	0.9300	C15—H15C	0.9600	
С7—С8	1.448 (4)	C16—N1	1.479 (3)	
С7—Н7	0.9300	C16—H16A	0.9600	
С8—С9	1.390 (3)	C16—H16B	0.9600	
C8—C14	1.400 (4)	C16—H16C	0.9600	
N1—C1—C2	121.2 (2)	С11—С10—Н10	120.5	
N1—C1—H1	119.4	C9—C10—H10	120.5	

C2—C1—H1	119.4	O1—C11—C10	124.9 (2)
C1-C2-C3	118.6 (3)	01-C11-C13	115.6(2)
C1—C2—H2	120.7	C10-C11-C13	119.5 (2)
C3—C2—H2	120.7	C14—C13—C11	121.0 (3)
C4—C3—C2	120.5 (3)	С14—С13—Н13	119.5
C4—C3—H3	119.8	С11—С13—Н13	119.5
C2—C3—H3	119.8	C13—C14—C8	120.9 (2)
C3—C4—C5	120.4 (3)	C13—C14—H14	119.6
C3—C4—H4	119.8	C8—C14—H14	119.6
C5—C4—H4	119.8	O1—C15—H15A	109.5
N1—C5—C4	117.4 (2)	O1—C15—H15B	109.5
N1—C5—C6	119.1 (2)	H15A—C15—H15B	109.5
C4—C5—C6	123.5 (2)	01—C15—H15C	109.5
C7—C6—C5	124.1 (2)	H15A—C15—H15C	109.5
C7—C6—H6	117.9	H15B—C15—H15C	109.5
С5—С6—Н6	117.9	N1—C16—H16A	109.5
C6-C7-C8	126.7 (2)	N1—C16—H16B	109.5
C6—C7—H7	116.6	H16A—C16—H16B	109.5
C8—C7—H7	116.6	N1—C16—H16C	109.5
C9—C8—C14	117.0 (2)	H16A—C16—H16C	109.5
C9—C8—C7	120.0 (2)	H16B—C16—H16C	109.5
C14—C8—C7	123.0 (2)	C1—N1—C5	121.9 (2)
C10—C9—C8	122.7 (2)	C1—N1—C16	117.2 (2)
С10—С9—Н9	118.7	C5—N1—C16	120.9 (2)
С8—С9—Н9	118.7	C11—O1—C15	118.6 (2)
C11—C10—C9	119.0 (2)		
N1—C1—C2—C3	-0.2 (4)	C9—C10—C11—C13	-1.1 (4)
C1—C2—C3—C4	0.3 (4)	O1—C11—C13—C14	178.9 (3)
C2—C3—C4—C5	0.6 (4)	C10-C11-C13-C14	0.2 (5)
C3—C4—C5—N1	-1.5 (4)	C11—C13—C14—C8	0.6 (5)
C3—C4—C5—C6	178.4 (2)	C9—C8—C14—C13	-0.6 (4)
N1—C5—C6—C7	167.1 (2)	C7—C8—C14—C13	179.6 (3)
C4—C5—C6—C7	-12.8 (4)	C2-C1-N1-C5	-0.9 (4)
C5—C6—C7—C8	-176.5 (2)	C2-C1-N1-C16	179.3 (2)
C6—C7—C8—C9	-174.0 (3)	C4—C5—N1—C1	1.7 (3)
C6—C7—C8—C14	5.8 (4)	C6-C5-N1-C1	-178.2 (2)
C14—C8—C9—C10	-0.2 (4)	C4—C5—N1—C16	-178.4 (2)
C7—C8—C9—C10	179.5 (2)	C6-C5-N1-C16	1.6 (3)
C8—C9—C10—C11	1.1 (4)	C10-C11-O1-C15	-2.1 (4)
C9—C10—C11—O1	-179.6 (3)	C13—C11—O1—C15	179.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C1—H1…I1 ⁱ	0.93	2.96	3.872 (3)	168

Symmetry code: (i) x-1, y-1, z.