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A B S T R A C T

Electrocardiogram (ECG) is the procedural electrical activity recording of the heart that arises from the heart
muscle's electrophysiological pattern. But in clinical atmosphere during acquisition, the ECG signal is corrupted
with various types of artifacts. The parting of the preferred signal from noises caused by artifacts such as muscle
artifacts, power-line interference, base-line wandering and motion artifacts is a big covenant. Among these
noises a power-line interference of 50 Hz frequency is more severe and fluctuate the signals morphological
appearances. There are various tools like wavelet transform and empirical mode decomposition (EMD) being
used for filtering other than conventional filters. EMD based noise cancellation is a fully signal dependent
approach and adaptive in nature that can be used for real-time applications. This paper deliberates the
comparative analysis of EMD based filtering methods for noise cancellation in ECG signal under 48–51 Hz of
frequency under varying noise amplitudes.

1. Introduction

The noise cancellation in biomedical signal is very influential to
distinguish the essential signal features in noise. Wavelet transform
(WT) can be a useful tool for non-stationary signal investigation.
Wavelet shrinkage concepts developed by Donoho and Johnstone [1] is
the new idea in the avenue of denoising. The comparison of empirical
wavelet coefficient with a threshold has been performed using designed
shrinkage method [2]. In this method if its magnitude is less than a
threshold values it is set to zero. Poornachandra and Kumaravel [3,4]
developed a subband adaptive shrinkage function for denoising of ECG
signals. But the formation of wavelet thresholding trusts on the
conjecture that signal magnitudes control the magnitudes of the noise
in a wavelet depiction so that wavelet coefficients can be set to zero if
their magnitudes are less than a determined threshold [5]. Alternative
constraint of wavelet approach is that the basis functions are fixed and
thus do not inevitably match all real signals. Empirical mode decom-
position (EMD) is a recently familiarized practice and it is used for
processing non-linear and non-stationary signals. It has the property of
adaptive and signal-dependency [6]. Nimunkar and Tompkins [7]
presented a process for 50 Hz interference reduction in ECG signal,
this technique is progressed in a way that when SNR is low, the 50 Hz

interference gets separated in the first intrinsic mode function (IMF).
Blanco-Velasco et al. [8] used the succeeding procedure to denoise the
signal: (i) Delineate and separate the QRS complex; (ii) Use proper
windowing to preserve the QRS complex; (iii) Use statistical tests to
regulate the number of the IMFs contributing to the noise and (iv)
Filter the noise by partial reconstruction. Kopsinis and McLaughlin [9]
developed an EMD based denoising methods using wavelet threshold-
ing.

2. Empirical mode decomposition

The EMD was familiarized by Huang et al. [6] that helps to
decompose adaptively a signal into an assortment of AM–FM compo-
nents. It is fully a data reliant method and it does not necessitate any
basis function a prior. This method is perfectly suitable for signals that
vary nonlinearly and are not stationary. By this algorithm it will split
the signal into a totality of intrinsic mode functions. A function with
equal number of extrema and zero crossings are called IMFs [7,8].
Each IMF is a simple oscillatory approach as a counterpart to the
simple harmonic function used in Fourier analysis.

For any signal x(t), the EMD algorithm works as follows:
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1. All the minima and maxima of the signal x(t) is to be detected.
2. Interpolate the local maxima of x(t) using cubic spline to form an

envelope eu(t). Similarly the envelope connecting the minima is
represented as el(t).

3. Compute the mean, m1(t) of the two envelopes: m1(t) =[eu(t) +
el(t)]/2.

4. Compute the detail, h(t), by subtracting the mean from the signal,
h(t) =x(t) − m1(t).

5. Replicate the iteration on the residual m1(t). Carry on until the
residual is such that no IMF can be extracted and exemplifies a
monotonic function.

The above technique for extracting the IMF is referred to as the
sifting process. Finally, the EMD of the original signal can be
represented as the summation of IMFs and a residue (Eq. (1)):

∑x t c t r t( ) = ( )+ ( )
i

N

i
=1 (1)

An IMF is a function that satisfies the two following conditions: (a)
the number of extrema and the number of zero crossings must either
equal or differ at the most by one in whole data set, and (b) the mean
value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero at every point.

3. Proposed denoising methods

3.1. EMD based partial reconstruction

The corrupted ECG signal is adaptively decomposed into several
intrinsic components called intrinsic mode functions (IMFs) [8]. This
filtering mechanism aims at partial reconstructions of the decomposed
signal. It is developed based on the approach that most of the
significant structures of the signal are concentrated on the lower
frequency ones (last IMFs) and decrease towards high-frequency
modes (first IMFs). The spectrum on each level illustrate the separation
of 50 Hz component in first IMF level and remaining signal compo-
nents in all other levels. The residue signal at the end of the sifting
process has frequency of 0.5 Hz, corresponding to the frequency of
baseline wandering. Thus filtering by partial reconstruction of the
signal using the IMFs matches to the removal of first IMF level and the
residue signal. The reconstruction of enduring signal structures of IMF
levels gives a perfect denoised ECG signal. This method does not use
any pre or post processing and can be used under any noise levels [10].

3.2. EMD based adaptive filtering technique

The partial reconstruction of signal accomplishes well irrespective
of the noisy signal but it has the chance of removal of certain ECG
constituents. Thus an adaptive filter is used in the first IMF for the
decline of 50 Hz intervention. An adaptive filter is the prospective
choice for elimination of 50 Hz power line signal which can regulate its
coefficients in according with least mean square algorithm [11,12]. It is
an advanced filtering technique that is extensively used due to its less
computational complexity. The new weight update equation is given by
the Eq. (2).

w n w n μ e n x n( + 1) = ( ) + ( ) ( ) (2)

where w(n) is the weight; x(n) is the input vector of time delayed input
values, μ is known as the step size parameter and e(n) is the error
signal. X(n) =[x(n) x(n-1) x(n-2).. x(n-N+1)]T and W(n) =[w0(n)
w1(n) w2(n).. wN-1(n)]

T symbolize the coefficients of the adaptive
finite impulse response (FIR) filter tap weight vector at time n.

The construction of two-weight adaptive filtering structure is as
shown in Fig. 1. The primary signal is the noisy ECG signal and the
reference signal is the 50 Hz noise. The sum of the two weighted

versions of the reference signal is then subtracted from the ECG output
to produce an error signal. These error signals collected with the
weighed inputs are applied to the least mean square (LMS) algorithm,
which controls the adjustments applied to the two weights. In this case,
the adaptive noise canceller acts as a variable notch filter [13,14].

In this work, the decomposed IMF levels obtained after applying
EMD is the primary noisy ECG signal. The resultant is that the 50 Hz
interference gets separated in the first IMF level and the remaining
levels are free from the interference component. Thus a two-weighted
adaptive filtering is performed in IMF1 level. This structure will control
the amplitude and phase variation of the signal. Primary signal is taken
as d=x+ n (signal + noise), IMF1 signal is applied as the reference
signal and adaptation is accomplished. The best least-squares approx-
imation of the signal is minimization of mean square error (MSE).
Output of adaptive filter y(n) is computed with the eradication of 50 Hz
power line interference.

3.3. EMD based adaptive filtering by extracting the interference

In this technique the IMF1 is taken as the reference signal and it is
passed to a band pass filter. The range of band pass filter (BPF) is
considered as the range of unwanted interference in the original signal.
The filtered band of signal is applied as input to the adaptive structure.
The phase shifted version of the filtered signal is given as another input
to the adaptive filter. Adaptation is performed by feedback of the
estimated error signal, e(n). The main advantage of this technique is
that no other ECG components get removed rather than only the 50 Hz
interference part [15].

4. Results and discussion

In this section, we have discussed the simulation results of the
filtering concepts to evaluate our proposed methods. The performance
measures are carried out in comparison with some of the state-of-art
methods to confirm the proposed study.

4.1. Specification details of input

In this simulation study, we used simulated ECG signals and MIT–
BIH arrhythmia database for analyzing and denoising ECG signals. The
synthetic ECG signals are achieved using the ecgsyn software which is
downloaded from physionet, and Table 1 shows the specifications
considered in this study.

The ECG signal is degraded by 50 Hz and it is sampled at 360 Hz
for the study purpose. The corrupted ECG signal is further decomposed
into diverse IMFs and one residue. Fig. 2 shows only the first five IMF
levels (IMF1-5). The spectrum plots obtained from the first four IMF
levels are shown in Fig. 3, from which the power line interference can
be clearly observed.

4.2. Performance evaluation and comparison

The performance of the proposed technique is assessed by associat-
ing it with the wavelet technique of filtering like soft and hard
thresholding methods. The simulations were carried out in
MATLAB2015b® environment and the assessments were implemented
both qualitatively and quantitatively.

4.2.1. Qualitative evaluation
First, the performance of the proposed denoising algorithm was

compared qualitatively by visual assessment. Fig. 4 shows the denoised
signal obtained from the three proposed methods such as partial
reconstruction, adaptive filtering and adaptive filtering by extracting
the interference. A band pass filter is placed in the path of noisy signal
to exactly separate only the noisy component. The band of frequency is
chosen as 48 – 51 Hz. It is to be revealed that the pattern of the
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denoised ECG signal resulting from the proposed method resembles
the original ECG signal more and seems flatter in comparison to the
signal obtained from the wavelet method.

4.2.2. Quantitative evaluation
Now, the performance of proposed methods was compared quanti-

tatively with respect to the other methods based on the following
metrics. The performance of the denoised signal is analyzed using the
metrics like signal to noise ratio (SNR), percentage root mean-square
difference (PRD), improved signal to noise ratio (SNRimp), root mean
square (RMS) error and peak signal to noise ratio (PSNR) to study the
quality of the reconstructed signal. The SNR is the ratio of recovered
signal power to noise power. The RMS error is the difference between
RMS value of input signal and RMS value of the recovered signal.
PSNR is a parameter that indicates the quality of the recovered signal.

The following metrics are used for the comparison (Eqs. 3–6):

⎡
⎣⎢

⎤
⎦⎥SNR(dB) = 20 log x(n)

x(n) − d(n) (3)

∑ xMSE = 1
N

(x(n)−ˆ (n))
n=1

N
2

(4)

XPRD =
∑ (x(n)−x̂(n))

∑ x (n)
100n=1

N 2

i=1
N 2

(5)

SNR
x

(dB) = 10 log
∑ y(n)−x(n)

∑ ˆ (n)−x(n)
imp 10

n=1
N 2

n=1
N 2 (6)

where x(n) is the original signal and x̂(n) is the recovered signal.
The novelty of this paper is that the amplitude variation and

frequency variation in a real time environment is considered.
Practically the noise varies within in the range of 48–51 Hz. The
sifting process has two effects: (i) Elimination of riding waves and (ii)
Smoothening of uneven amplitudes. To guarantee that the IMF
components will retain enough physical sense of both amplitudes and
frequency modulations, it is necessary for the sifting process to stop.
This is accomplished by limiting the use of standard deviation (SD)
computed from the two consecutive sifting results. Usually SD is
between 0.2 and 0.3. In our experimentation we have considered the

Fig. 1. Typical block diagram of two-weight adaptive filtering structure.

Table 1
Specification considered for processing the ECG signal.

Parameter Symbol Value Chosen

ECG sampling frequency sfecg 360 Hz
Approximate number of heart beats N 256
Additive uniformly distributed measurement noise Anoise 0 mV
Mean heart rate HRmean 60 beats/minute
Standard deviation of heart rate HRSD 1 beat/ minute
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Fig. 2. Empirical mode decomposition of a noisy ECG and its intrinsic mode function levels (IMF1-5).
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noise amplitude variation as 5%, 10%, 15%, 20% and 30%. A detailed
study has been carried out and the performance measures are
calculated at each noise level and frequency varying ranges. A SNR
variation of 43–45 dB is obtained at 10% and 20% noise variation at
various frequencies in partial reconstruction method. There is a
corresponding variation in MSE also and a very low value of 0.0035
is obtained at 10% noise with a frequency of 49.5 Hz. Performance
comparison of Adaptive filtering technique for various frequencies is
tabulated in Table 2. A noise level at 10%, 20% and 30% are considered
at various noise frequency values. In this technique the SNR value is
ranging from 40 dB to 42 dB. A MSE value of 0.003 is obtained at
49.5 Hz frequency. But some of the signal components are also
destroyed in this adaptive filtering method. Next experimentation is
carried out by band pass filtering the noise signal with a band pass filter
in the IMF1. This band of IMF1 is given as input to adaptive filter. The

performance of this method of filtering is better comapred to other-
proposed techniques. A SNR of 45 dB is achieved with minimum mean
square error. This adaptation result in undisturbed ECG signal
components and removal of undisired noise components.

The proposed methods yield the smallest MSE with better quality
(Tables 2–4). Compared to wavelet method EMD based denoising gives
improved SNR irrespective of the noise levels. Tables 2–4 presents the
comparison of different denoising methods in terms of SNR and MSE.
This method gives higher SNR value when noise level is low and
decreases gradually as noise level increases. SNR improvement of more
than 20 dB is obtained using the proposed method. The main
advantage is its simplicity in implementation and better accuracy even
though the level of noise is varying. It can be applicable to any
denoising applications even with very low frequency range. The
simulation is carried out on ECG signal for noise level from 0% to
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Fig. 3. Spectrum of IMF1-4.
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Fig. 4. Denoised ECG signal obtained from three methods: (a) EMD based partial reconstruction, (b) EMD based adaptive filtering and (c) EMD based adaptive filtering by extracting
the interference.
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100% of signal magnitude. The discussion on the results obtained from
simulation was broadly classified into lower, medium and high noise
levels. In minimum level, the noise range was less than 5% of signal
magnitude, for medium it was 5–20% of signal magnitude and for high
noise level it was greater than 20% of signal magnitude. Up to 20%
noise level range was considered as the practical noise level range was
considered as the practical noise level acquired at pre-amplifier stage of
any good instrumentation. The noise level more than 20% was
considered as deliberate noise case, which was a non-practical condi-
tion.

5. Conclusion

This study has made to clearly summarize the enlargement of EMD
based filtering techniques. The novel techniques presented reveal an
enhanced performance associated to wavelet denoising in the cases
where the signal SNR is low and there is no restriction that signal
magnitude should be higher than the noisy signal. These techniques
follow the property of signal dependency and are adaptive. The
experimental results demonstrated that EMD can be employed as an
effective tool for denoising. These recovered signals provided high
correlation values between the original and processed ECG signal and
thereby yielded good visual quality.
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