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Abstract 

Ischemic stroke is a severe neuro disorder typically characterized by a block inside a blood vessel supplying 

blood to the brain. It remains the third leading cause of death, after a heart attack and cancer. Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) were the major imaging modalities used in 

diagnosing this disorder. While the CT imaging can be used at the primary stage, MRI proves to be a necessary 

aid for progressive diagnostic planning in the treatment of stroke injuries. Developing a fully automatic approach 

for lesion segmentation is a challenging issue due to the complex nature of the lesion structures. This research 

aims at examining the properties of such complex structures. It analyses the characteristics of the normal brain 

tissues and abnormal lesion structures using a three-level wavelet decomposition procedure. Four different 

wavelet functions namely Daubechies, Symlet, Coiflet and De-Meyer were applied to the different datasets and 

the resulting observations were examined based on their feature statistics. Experiments indicate that the feature 

statistics obtained using the Daubechies and the De-Meyer wavelets were able to distinguish between normal 

brain tissues and abnormal lesion structures. 

Key Words: Ischemic Stroke, Watershed Transformation, Discrete Wavelet, Feature Statistics, MRI, 

Segmentation, Feature Extraction, Automated Diagnosis 

 

1 Introduction 

 A Computer-Aided Detection (CAD) scheme can act as a vital aid to recognize the abnormal 

variations that clinicians may overlook sometimes and thus it improves the accuracy of the disorder 

prediction. Incorporating mathematical concepts into CAD models has made certain progress in the field of 

radiological science [1–2]. Automatic computer aided diagnosis of various disorders has been progressing 

rapidly in the past two decades. Among the various disorders, stroke takes the third place after heart attack 

and cancer for being the reason for death [3]. Computed Tomography (CT) and Magnetic Resonance 

Imaging (MRI) were the two major imaging techniques used for diagnosing the stroke disorder. Due to the 

rapid advancement in the diagnostic imaging modalities, the identification of infarct lesion is turning out to 

be progressively more feasible. However, it is very complex due to the arbitrary size, shape and location of 

the lesion structures. Manual segmentation in combination with some statistical measures has been broadly 

utilized in the past few years to explore the diverse aspects of stroke injuries.  
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 Despite of the fact that a wide range of segmentation approaches were introduced namely thresholding 

[4-5], region-based approaches [6-7], and clustering [8-9], these methods were reported to be complex when 

adopted for detecting the lesion structures. This is due to the fact that lesions usually have quite similar 

intensity with respect to some normal tissues. For instance, in T1- weighted MRI, an infarct lesion was 

indicated with intensities equivalent to those of Gray Matter (GM) or Cerebrospinal Fluid (CSF). Hence, a 

standard segmentation method might relate them together instead of treating it separately.  

 Several approaches were presented in the recent years for detecting the ischemic lesions using semi-

automated techniques. These approaches model the texture properties of the Region of Interest (ROI). The 

analysis of texture essentially describes a wide range of image analysis approaches which would characterize 

the variation in the surface patterns or intensities. This is highly suited for segmenting the lesion structures 

and characterizing it. In addition, it serves as a vital aid for longitudinal monitoring of disorders or recoveries 

[10]. 

Tan et al. developed a method for contrast enhancement of CT images in order to detect the lesion 

structures due to stroke [11].  Chawla et al. presented a two-level classification system using an automatic 

histogram to localize the ischemic lesions [12]. Bagher-Ebadian et al. introduced a classification system 

using adaptive (two-level) Gaussian mixture model and probabilistic neural network [13]. Dastidar et al. 

presented a semi-automated approach for segmenting the ischemic lesions using intensity histograms 

followed by region growing [14].  Nabizadeh et al. presented an approach for identifying the brain tumor 

regions using two different techniques namely Gabor wavelet features and statistical features [15]. Shuyu 

Yang et al. presented an approach for modeling of medical images using hybrid multi-level wavelet features 

[16]. 

Active contour models were also employed for segmentation of anatomical shapes from biomedical 

images [17]. Several variants of active contour based approaches were proposed in the last few years.  A 

structural feature region-based active contour model focused on the level set method was presented for image 

segmentation by Qi Ge et al. [18]. A non-convex vector-valued model of Active Contour Without Edges 

(ACWE) was introduced for texture image segmentation [19]. Deformable models were also applied to MRI 

images to segment the tumor lesions [20]. 

 Most of the above-discussed works were either manual or semi-automated approaches, leaving 

considerable overhead to the analyst or radiologist for fixing the parameters for analysis. Thus, this research 

aims to examine the properties of the lesion structures, which could be employed to address those issues. If 

the properties of the lesion structures were understood properly, then it could be further modeled as an 

automated system for segmenting the lesion structures. 

 The paper is structured as follows: Section 2 presents the complete details of the proposed approach 

for modeling the properties of the brain tissues. Section 3 presents the results obtained from the proposed 

method and the performance aspects of it. Section 4 presents the conclusion and possible future 

enhancements of the proposed work. 

2 Methodology 

The proposed approach employs skull stripping as the initial pre-processing step for eliminating the bony 

portions from the input MRI images. Later, a watershed-based segmentation procedure was applied to 

localize the lesion region [21]. From the extracted ROI, a three level wavelet decomposition has been carried 

out with different basis functions. Finally, statistical features were extracted to characterize the texture 

patterns of the normal and abnormal images. The overview of the proposed method appears in Figure 1.  
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Figure 1: Overview of the proposed methodology. 

2.1. Data Acquisition 

 
 The MRI datasets were collected from multiple online and offline sources. The online resources 

include the ISLES dataset provided as part of ISLES challenge held at Munich, Germany [22-23]. The 

other datasets were obtained from PBM Hospitals and Global Health City. A total of 45 datasets were 

used in this research, out of which, 25 had radiological evidence of ischemic stroke.  The format of the 

input MRI Slices was in Neuroimaging Informatics Technology Initiative (NIfTI) and Digital Imaging 

and Communication in Medicine (DICOM).A Sample normal and abnormal MRI slice with ischemic and 

hemorrhagic stroke was presented in Figure 2. 

 

     
                                          (a)                                    (b)                                    (c) 

Figure 2:  Normal MRI slice (b) MRI slice with ischemic stroke lesion (c) MRI Slice with hemorrhagic 

stroke lesion. 

2.2 Pre-processing 

  
 The skull portion is the largest connected region in the brain image with higher bone density. This 

information could be utilized as an essential sign to remove the bony portions from the input image. 

Initially, the input image is converted into a binary image based on the threshold obtained for the skull 

region using global thresholding. i.e. a mask is formed by setting the pixels from the skull region to ‘0’ 
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and the remaining pixels as ‘1’. This mask is convolved with the input image to remove the skull portion. 

The corresponding results are presented in Figure 3. 

 

  
(a)                               (b) 

Figure 3: Pre-processing: a) Input Image and b) Skull stripped image. 

2.3 Segmentation 

 The goal of the segmentation step is to identify and localize the ROI required for further processing. 

Watershed transformation has been widely applied to brain images in order to extract the abnormal 

regions from brain images [24]. This work involves watershed transform based segmentation procedure 

for identifying and localizing the lesion structures from the pre-processed images. This method considers 

the gray scale pixel intensities of the original image as the altitude of the water basin. The drops of water 

flow through the maxima of values and then reach the local minima. Thus, the watershed formed is 

equivalent to the boundary of the segmented regions. This segmentation procedure was applied to the 

input images and the resulting segmented regions were presented in Figure 4. It could be noted that, the 

lesion region were identified as local maxima for the abnormal slices and hence it was appropriately 

segmented. Similarly, for the normal images, the white matter content was predominately captured.  

  
(a)                           (b) 

Figure 4: (a) Segmented lesion region from abnormal slice (b) Segmented region from normal slice. 

 

2.4 Wavelet decomposition 

 The wavelet transform limits the energy of the signal in a combined space-scale domain. It 

decomposes an image into their elementary constituents across multiple scales [25]. A mother wavelet 

function is repeatedly dilated, shifted and convolved with the input data. Wavelet decompositions are 

extremely helpful for the characterization of point singularities and in the time-frequency analysis of non-

stationary signals [26]. Wavelet analysis consists of decomposing an image into a hierarchical set of 

approximations and details. At each level, the signal is decomposed into low and high frequencies, and 

this decomposition halves the resolution since only half of the samples are retained to represent the 

complete signal. Two dimensional discrete wavelet transform leads to a decomposition of approximation 

coefficients at level ‘j’ in four components. It is highly difficult to characterize the lesions which can be 

very small to be easily seen. In this research, lesions were characterized by the texture features computed 

from the Gray Level Co-occurrence Matrix (GLCM) in the wavelet domain. 

In this work, four different wavelet functions were applied to the input MRI images for examining the 

properties of the lesion structures. The discrete wavelet transform of an image f(x,y) of size [M,N] is 

given in Equation 1 and 2. 
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𝑊𝜑(𝑗0, 𝑚, 𝑛) =  1√𝑀𝑁 ∑ ∑ 𝑓(𝑥, 𝑦)𝜑𝑗0,𝑚,𝑛𝑁−1𝑦=0𝑀−1𝑥=0 (𝑥, 𝑦)                                               (1) 𝑊𝛾𝑖(𝑗, 𝑚, 𝑛) =  1√𝑀𝑁 ∑ ∑ 𝑓(𝑥, 𝑦)𝛾𝑗.𝑚,𝑛𝑖𝑁−1𝑦=0𝑀−1𝑥=0 (𝑥, 𝑦), 𝑖 = {𝐻, 𝑉, 𝐷}                           (2) 

where ‘j0’ represents the starting scale, ‘W(j0,m,n)’ defines the approximation coefficients of f(x,y) at 

scale ‘j0’, ‘𝑊𝛾𝑖(𝑗, 𝑚, 𝑛)’coefficients add horizontal ‘H’, vertical ‘V’ and diagonal ‘D’ details for scales ‘j 
≥ j0’.The detail coefficients along the vertical, horizontal and diagonal directions capture the edge activity 

of the image and the approximation coefficients concentrate on the inner details of the image. Four 

different wavelet functions namely Daubechies, Symlet, De-Meyer, and Coiflet were applied to the input 

images. The scaling and wavelet functions applied with respect to each wavelet type are presented in 

Figure 5.In this research, the level of decomposition was varied from ‘1’ to ‘5’ and the results were 

analyzed. It was inferred that the results obtained after third level was not significant due to more 

deviation obtained between the original image and the approximated image at those levels. Hence the 

level of decomposition was maintained to be ‘3’. The Daubechies wavelet decomposition for the 

segmented ROI was presented in Figure 6. 

                                            

(a)                                                           (b) 

                                          
(c)                                                          (d) 

Figure 5:  (a) Daubechies (b) Coiflet (c) Symlet (d) De-Meyer. 

 

    
                               (a)                                   (b)                                 (c)                                (d) 

Figure 6:  (a) Input image (b) Level-1 Approximation (c) Level-2 Approximation (d) Level-3 

Approximation. 
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2.5 Feature extraction 

 Once the wavelet decomposition has been completed, texture primitives should be extracted from it. It 

is characterized by the distribution of gray levels in a neighbourhood. To model the relationship between 

gray level values which add to the perception of texture, the Gray Level Co-occurrence Matrix (GLCM) 

is utilized in texture analysis. It is a 2D histogram which defines the occurrence of pixel pairs separated 

by a distance factor ‘d’. The detailed description of this matrix was discussed in [15]. The same process is 

adopted in this work except that the input images were handled in wavelet domain instead of the spatial 

domain. The main objective of this research is to identify an optimal feature vector which could 

categorize the nature of the brain tissues. Hence, the prominent features which will reflect the textural 

relationships based on the neighbourhood pixels were alone considered for analysis. Four features namely 

energy, entropy, homogeneity and contrast parameters were extracted from the GLCM. These four 

features along with the mean and standard deviation have been taken into account for examining the 

properties of the brain tissues. The four features extracted from the co-occurrence matrix were illustrated 

in Equations 3 to 6. In these relations, G is the maximum gray level of the image and p(i,j) is the 

probability of the element located at the position (i,j) in the wavelet domain. 

Energy 

 It quantifies the uniformity of an image. For a uniform image with less variation in their details, the 

energy parameter will be equal to 1.   𝑬𝒏𝒆𝒓𝒈𝒚 = ∑ ∑ (𝐩(𝐢, 𝐣))𝟐𝐆−𝟏𝐣=𝟎𝐆−𝟏𝐢=𝟎                                                                 (3) 

      Entropy 

 This parameter presents the information content of an image.   𝑬𝒏𝒕𝒓𝒐𝒑𝒚 = ∑ ∑ 𝐩(𝐢, 𝐣).  𝐋𝐨𝐠 (𝐩(𝐢, 𝐣))𝐆−𝟏𝐣=𝟎𝐆−𝟏𝐢=𝟎                                               (4) 

Contrast 

 The contrast parameter presents the amount of local differences in an image. It provides the level of 

variation in the contrast of the identified regions. If the variations are relatively higher in an image, then 

the contrast will consequently be high.                                    𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕 = ∑ 𝐧𝟐𝐆−𝟏𝐧=𝟎 (∑ ∑ 𝐩(𝐢, 𝐣)𝐆−𝟏𝐣=𝟏𝐆−𝟏𝐢=𝟏 ), |𝐢 − 𝐣| = 𝐧                                          (5)                        

Homogeneity 

 It provides the degree of nearness of the components in the GLCM with the diagonal of the same 

matrix. It indicates the uniformity of the contents present in the image.                              𝑯𝒐𝒎𝒐𝒈𝒆𝒏𝒆𝒊𝒕𝒚 = ∑ ∑ 𝐩(𝐢,𝐣)𝟏+|𝐢−𝐣|𝐆−𝟏𝐣=𝟎𝐆−𝟏𝐢=𝟎                                                      (6) 

These features were extracted for different datasets and the corresponding observations obtained were 

graphically presented in Figure 7 to 14. 
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Figure 7: Daubechies wavelet based statistical features obtained for normal datasets 

   

   

Figure 8: Daubechies wavelet based statistical features obtained for abnormal datasets. 

Figures 7 and 8 present the feature statistics obtained by applying the Daubechies wavelet to the 

segmented region from normal and abnormal slices. It could be noted that all these feature parameters 

exhibited clear distinction in terms of range of values obtained. 
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Figure 9: Symlet wavelet based statistical features obtained for normal datasets. 

   

   

Figure 10: Symlet wavelet based statistical features obtained for abnormal datasets. 

Figures 9 and 10 present the feature statistics obtained by applying the Symlet wavelet function to the 

segmented region from normal and abnormal slices. The energy parameter of the Symlet function exhibited 

maximum distinction between the normal and abnormal slices. 
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Figure 11: Coiflet wavelet based statistical features obtained for normal datasets. 

   

   

Figure 12: Coiflet wavelet based statistical features obtained for abnormal datasets. 

Figures 11 and 12 present the feature statistics obtained by applying the Coiflet wavelet function to the 

segmented region from normal and abnormal slices.  
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Figure 13: De-Meyer wavelet based statistical features obtained for normal datasets. 

   

   

Figure 14: De-Meyer wavelet based statistical features obtained for abnormal datasets. 

 Figures 13 and 14 present the feature statistics obtained by applying the De-Meyer wavelet function to 

the segmented region from normal and abnormal slices. The feature parameters namely mean, standard 

deviation, entropy, contrast and homogeneity parameters were higher for normal brain tissues than the 

lesion structures for the de-Meyer wavelet function. 

 

 The plots presented in Figures 7 to 14 indicate that these features were able to discriminate between 

normal and abnormal samples. Out of all the features, the energy parameter exhibited maximum 

discrimination between the two groups. The energy parameter obtained for the lesion structures was 

relatively high than the normal brain tissues for all the four wavelet functions. The homogeneity 

parameter was found to be relatively insignificant since it could not provide better discrimination for the 

normal and abnormal datasets.  



Karthik. R et al.  / Electronic Letters on Computer Vision and Image Analysis 15(3):1-16; 2016                          11 

 

3. Results and Discussion 

3.1 Results 

 The experiments were carried out on Intel(R) i5 processor. The frequency of the CPU core is 2.3 GHZ. 

The RAM capacity is 4 GB and the execution environment is MATLAB R2012b. Statistical measures 

namely mean, standard deviation, energy, entropy, contrast and homogeneity were computed for each 

wavelet function across 3 scales. The cumulative observations based on the feature statistics for different 

wavelet functions were presented in Tables 1 to 3. 

Table 1: Cumulative summary of feature statistics based on mean and standard deviation for all the 

wavelet-based methods. 

Type of wavelet 
Mean Standard deviation 

Level1 Level2 Level3 Level1 Level2 Level3 

Daubechies 
Normal 155.31 303.82 555.38 55.43 102.97 220.37 

Abnormal 208.99 406.84 719.76 91.47 178.18 379.37 

Coiflet 
Normal 118.15 232.09 483.64 81.80 159.14 286.01 

Abnormal 93.21 209.37 519.73 118.00 238.00 463.19 

Symlet 
Normal 119.07 254.71 520.94 81.49 148.32 261.43 

Abnormal 119.82 282.83 620.74 123.51 239.30 439.96 

De-Meyer 
Normal 107.78 140.74 172.02 83.95 164.11 276.08 

Abnormal 28.25 34.74 41.18 75.88 116.95 171.14 

Table 2: Cumulative summary of feature statistics based on entropy and energy for all the wavelet-based 

methods 

Type of wavelet 
Entropy Energy 

Level1 Level2 Level3 Level1 Level2 Level3 

Daubechies 
Normal 0.48 0.46 0.47 0.97 0.96 0.94 

Abnormal 0.84 0.82 0.78 0.41 0.43 0.47 

Coiflet 
Normal 0.47 0.44 0.40 1.07 1.28 1.46 

Abnormal 0.83 0.81 0.77 0.44 0.54 0.65 

Symlet 
Normal 0.48 0.45 0.42 0.99 1.05 1.15 

Abnormal 0.83 0.81 0.76 0.42 0.46 0.55 

De-Meyer 
Normal 0.39 0.34 0.27 1.78 2.15 2.72 

Abnormal 0.82 0.81 0.78 0.70 0.83 1.12 

It was observed that the energy parameter of the lesion-based structures was comparatively higher than 

the normal brain tissues for all the four-wavelet functions. Out of the four different wavelet functions, the 

Daubechies and De-Meyer wavelets were able to obtain a clear demarcation in the range of feature statistics 

between the typical brain tissues and abnormal lesion structures. While for the Daubechies wavelet function, 

the mean, standard deviation, energy and homogeneity parameters was greater for lesion structures than the 

normal brain tissues, on the other hand, the mean, standard deviation, entropy, contrast and homogeneity 

parameters were higher for normal brain tissues than the lesion structures for the De-Meyer wavelet function. 
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Table 3: Cumulative summary of feature statistics based on contrast and homogeneity for all the wavelet- 

based methods 

Type of wavelet 
Contrast Homogeneity 

Level1 Level2 Level3 Level1 Level2 Level3 

Daubechies 
Normal 2.35 3.35 4.23 0.96 0.94 0.92 

Abnormal 0.45 0.82 1.52 0.99 0.99 0.97 

Coiflet 
Normal 2.24 3.25 4.53 0.96 0.93 0.90 

Abnormal 0.48 0.87 1.72 0.99 0.98 0.96 

Symlet 
Normal 2.25 3.67 5.43 0.96 0.93 0.89 

Abnormal 0.46 0.98 2.02 0.99 0.98 0.96 

De-Meyer 
Normal 5.51 8.62 12.83 0.88 0.81 0.70 

Abnormal 1.34 2.13 3.02 0.97 0.95 0.93 

 

 These features could be trained using appropriate classifiers to predict the nature of the brain tissues. If 

it is classified of abnormal type, then the same segmentation procedure could be applied to identify the 

lesion. 

 

3.2 Discussion 

 
 The one-way ANOVA statistical test was done in Minitab to check if there is any significant 

discrimination between the features of normal and abnormal datasets. The test was conducted with 95% 

confidence interval and the results obtained were presented Tables 4 to 7. 

 

Table 4: Statistical significance of features obtained for Daubechies wavelet. 

 

Feature Level Statistical Significance 

Mean 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Standard deviation 

Level-1 None 

Level-2 P < 0.05 

Level-3 P < 0.05 

Energy 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Entropy 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Contrast 

Level-1 None 

Level-2 P < 0.05 

Level-3 P < 0.05 

Homogeneity 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

 

Table 5: Statistical significance of features obtained for Coiflet wavelet. 
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Feature Level Statistical Significance 

Mean 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Standard deviation 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Energy 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Entropy 

Level-1 None 

Level-2 None 

Level-3 P < 0.05 

Contrast 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Homogeneity 

Level-1 None 

Level-2 None 

Level-3 None 

 

Table 6: Statistical significance of features obtained for Symlet wavelet. 

 

Feature Level Statistical Significance 

Mean 

Level-1 None 

Level-2 None 

Level-3 P < 0.05 

Standard 

deviation 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Energy 

Level-1 None 

Level-2 P < 0.05 

Level-3 P < 0.05 

Entropy 

Level-1 None 

Level-2 P < 0.05 

Level-3 P < 0.05 

Contrast 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Homogeneity 

Level-1 None 

Level-2 None 

Level-3 P < 0.05 
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Table 7: Statistical significance of features obtained for De-Meyer wavelet. 

 

Feature Level Statistical Significance 

Mean 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Standard deviation 

Level-1 None 

Level-2 P < 0.05 

Level-3 P < 0.05 

Energy 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Entropy 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

Contrast 

Level-1 None 

Level-2 P < 0.05 

Level-3 P < 0.05 

Homogeneity 

Level-1 P < 0.05 

Level-2 P < 0.05 

Level-3 P < 0.05 

 

 The observations presented in Tables 4 to 7 indicate that the entropy, contrast, homogeneity and 

standard deviation parameters were not stable in discriminating the samples for most of the wavelet 

functions. In particular, Table 6 specifies that the symlet wavelet function was not effective in 

discriminating the normal and abnormal samples due to less statistical significance associated with the 

features obtained. However, Daubechies and De-Meyer wavelets were able to obtain better discrimination 

between the samples. Hence, these two wavelets could be used to differentiate the normal and abnormal 

brain tissues.  

 

4. Conclusion 
Automatic segmentation of lesion structures from brain MR images serves to identify the level of the 

influenced tissues for effective diagnosis in the treatment of ischemic stroke. The structure and properties 

of the lesion structures were generally complex and non-linear in nature. Therefore, it exhibits different 

characteristics in different imaging modalities. Hence developing a completely automated approach for 

lesion segmentation is a challenging research issue in medical image analysis. This work examines the 

properties of the normal brain tissues and abnormal lesion structures by subjecting the brain MR images 

to three-level wavelet decomposition. Four different wavelet functions namely Daubechies, Symlet, 

Coiflet and De-Meyer were applied to the different datasets and the resulting observations were clearly 

analyzed based on their feature statistics obtained. The observations indicate that there was a clear 

demarcation between the range of values in the statistical features obtained for normal and abnormal 

images. Specifically, the feature statistics obtained from the Daubechies and De-Meyer wavelets were 

able to distinguish clearly between the typical brain tissues and abnormal lesion structures based on mean, 

energy and entropy parameters. 
 This research was oriented towards the examination of different feature statistics for detection of 

ischemic stroke disorder. In future, this work can further be enhanced by classifying the stroke into  

different grades depending on its severity. In addition, it can be extended for characterizing the properties 

of hemorrhagic stroke lesions.  
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