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Any metal surface’s usefulness is essential in various applications such as machining and welding and aerospace and aerodynamic
applications. +ere is a great deal of wear in metals, used widely in machines and appliances. +e gradual loss of the upper metal
layers in all metal parts is inevitable over the machine or component’s lifetime. Artificial intelligence implementations and
computational models are being studied to evaluate different metals’ tribological behavior, as technological progress has been
made in this field. Different neural networks were used for different metals. +ey are classified in this paper, together with a
description of their benefits and inconveniences and an overview and use of the different types of wear. Artificial intelligence is a
relatively new term that uses mechanical engineering. +ere is still no scientific progress to examine various metal wear cases and
compare AI and computational models’ accuracy in wear behavior.

1. Introduction

Given the potential and technological developments we have
experienced in an industrial revolution, we have a long path
to cover as engineers.+e wear behavior varies frommetal to
metal, mainly depending on its properties or the method
used, and AI has helped companies better understand
metals’ wearing behavior and deploy them in processes or
machinery because the speed with precision is more critical
in the industry, helping companies increase their response
speed. Artificial intelligence is a computer science field
dealing with the simulation of computer systems to imitate
human intelligence. AI is a large field in computers and other
areas such as economics, theory of control, probability,
optimization, and bilingualism. AI is such a phenomenon

that it can model and find patterns in complex inputs and
outputs on the given data. It has been made an essential
element of our lives without even realizing weather pre-
diction, mechanical wear and tear, the probability of dif-
ferent diseases, and many more, as recommended by Netflix
and YouTube. An AI process consists of data acquisition and
correction to enhance its earlier forecasts over time. Me-
chanical engineering, as technology helps mechanical design
or engineering works, is AI’s biggest consumer. All sections
of mechanical engineering benefiting highly from AI are
robotics, automation, and sensor technology.

Wear means that the substance is consistently removed
from or deformed from a solid surface while moving about
another substance or fluid. Wear is a natural phenomenon
when two bodies are rubbed or slipped. Mechanical and
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chemical behavior and combinations of these factors, such
as corrosion, erosion, and abrasion, cause wear on the solid
surface of the material. Tribology is the wear science in-
volving friction, lubrication, and wear applications and
concepts. Wear is an essential characteristic of products
that must be carefully examined before producing a
product. Other processes such as fatigue, material failure,
and loss of functionality cause surface degradation. In the
manufacturing industry, wear is a constant inconvenience,
and it is expensive because it is causing loss of part and wear
deterioration. +e wear of the active surfaces, near-surface
compositions, and fragmentation leads to wear debris
caused by the plastic deformation of metals. +e wear waste
produced varies between nanometers and thousands. Wear
can be correlated with the help of the wear rate. +e
material mass or volume removed by the sliding distance of
each unit is the ratio. +e wear volume per unit is usually
expressed as a dimensionless entity called the wear coef-
ficient on the unit’s sliding distance (K). +e wear
mechanism is generally considered a negative feature and is
unwanted in most practical contexts, but it has many
applications. Wear, for example, is affected by processes
such as filing, lapping, sanding, and polishing used to create
finished surfaces.

+ey also collected datasets, if provided, software used,
benefits, and drawbacks, and all studies referred to for that
survey were fully applicable to explain the subject matter of
the case studies cited beforehand and cover artificial intel-
ligence and calculation models as shown in Figure 1.

2. Types of Wear

We must first understand the various types of wear before
applying artificial intelligence principles to evaluate wear
behavior. Wear can occur due to a single mechanism or a
complex combination of mechanisms. To solve a wear
problem, we must first understand the various wear
mechanisms at work. Abrasion or surface deterioration
occurs when the force acting on the surface is caused by load
stress or friction. When chemical reactions alter a material
body’s outer layer, the wear mechanisms responsible are
adhesion and tribo-oxidation. +e sections that follow de-
scribe the various types of clothing.

+e most common wear process encountered in the
industry is abrasive wear. According to reports, abrasion is
to blame for 50% of all wear issues. Abrasive wear is the
substance loss caused by hard particles being forced against
and moved along a solid surface [1]. +e wear mechanism
that causes abrasive wear is referred to as abrasion (scraping
off). Abrasion occurs when a solid body with a rough surface
collides with a coupling part with a soft surface. Abrasive
wear is classified into two types based on the type of contact
and the contact environment.

(a) +ree-body abrasion: A third dimension is included
in sliding two surfaces (as shown in Figure 2), hence
blaming the third body for material removal from
both surfaces (particles are usually assumed the third
body).

(b) Two-body abrasion: +is occurs when the hard
material on one surface absorbs material from the
opposite surface. Two-body abrasion is always pos-
sible because the asperities that cause removal on a
hard surface can never be removed entirely, even with
the most advanced polishing. As a result, wear debris
forms between the two sliding surfaces. Long-term
two-body abrasive wear causes three-body abrasion,
which causes more wear than two-body abrasion.

+ree mechanisms commonly cause abrasive wear:

(1) Ploughing: +e displacement of particles away from
the wear particles causes the formation of grooves.
Ridges form on the edges of the grooves and are
removed by abrasive materials moving through them.

(2) Cutting is the removal of material from a solid
surface in the form of primary debris or microchips.
+is method is similar to traditional machining.

(3) Fragmentation occurs when the indenting material is
removed from the surface, resulting in a localized
fracture.

Adhesive wear: +is occurs due to the interaction of
asperities between two surfaces [2]. Formalized paraphrase
adhesion is the wear mechanism that causes adhesive wear
(stickiness). It occurs when the compositions of the two
metals are incredibly similar. A bond can form because of this
compatibility, allowing parts to seize or become cold-welded
together (as seen in Figure 3). Because of these bonded
sections’ swaying and sliding motion, abrasion occurs on the
bordering surfaces. Adhesive wear is classified into two types:

(a) Classifying wear due to relative motion/direct con-
tact between two surfaces along with plastic defor-
mation, leading to transfer of metal debris onto the
other metal’s surface during wear.

(b) Cohesive-adhesive forces hold two faces together
even when a significant distance separates them. +e
actual transition could occur.

Surface fatigue: +is occurs when the surface of a ma-
terial is stressed. As a result of this phenomenon, which
thermal or mechanical forces can cause, surfaces crack. +e
fatigue wear caused due to particle detachment is mainly
because of cyclic increase of metal surface microcracks (as
shown in Figure 4). Each period increases the crack by a
small amount until a surface microcrack develops. As a
result, large surface cracks develop over time, posing a direct
threat to the components.

Corrosive wear/oxidation wear:+is material deterioration
combines corrosion and wear. It is defined as a wear phase in
which materials slide against each other in a corrosive envi-
ronment. It is a type of material degradation that combines
corrosion and wear. It is defined as a corrosive wear process in
which materials slide against each other. When there is no
sliding, corrosion on the surfaces forms a micrometer-thick
film layer, reducing or even preventing further corrosion. +is
film is chipped away during the sliding application, exposing
the metal surface to further corrosion (as shown in Figure 5).
+is process of wear occurs in the presence of harmful or
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oxidizing metals. Oxidation, also known as rust, is a severe
form of corrosive wear. Oxides create a decrease in the
equilibrium of friction between surfaces or are often a more
significant challenge to work with than the materials involved
and can be used as excellent abrasives.

Cavitation wear: A liquid medium causes cavitation wear
on metal surfaces. It happens when cavities in a liquid
flowing near the material are nucleated, developed, and
violently collapsed repeatedly. Because of the rapid changes

in liquid pressure, small vapor-filled craters with low vapor
pressure form. Cyclic stress occurs when these craters or
voids collapse near a metal surface. It causes surface fatigue,
which contributes to the wear of the base material over time.

3. Wear Tests

+e wear rate is defined as the volume loss per unit sliding
distance. It is a dimensionless quantity (K) that can assess
wear damage. +e wear rate is defined as the body’s height
adjustment ratio to the relative sliding distance duration.

two-body abrasive
wear

third body

three-body
abrasive
wear

Figure 2: Two-body and three-body abrasive wear.

material a

material b

adhesive wear

material b

material b

material a

Figure 3: Adhesive wear.
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Figure 1: Structure of the survey paper.
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Under normal conditions, wear progresses through three
stages, the first of which is the primary stage, during which
the surfaces involved adjust to one another, and the wear rate
can be high or low.+e second level, also known as the mid-
age process, follows the first and is distinguished by a
consistent wear rate. +is process consumes the majority of
the component’s operating life. Finally, the component
reaches the tertiary level, also known as the “old-age phase.”
+e surfaces involved experience rapid wear, resulting in the
component’s premature failure [3–11].

Wear tests are classified as follows:

(1) Pin-on-Disc Wear Test. +is is one of the most
common ways to test wear rates and wear resistance.
It is popular due to its ability to simulate various
wear modes including omnidirectional, bidirec-
tional, unidirectional, and quasi-rotational wear.
Many different materials can be tested for wear. A
test of wear resistance between PTFE (polytetra-
fluoroethylene) and its composites [12] was done
using a pin-on-disc wear test, and it was observed
that as the load increased, the coefficient of friction
decreased. Pure PTFE experienced maximum wear
followed by PTFE with 17% GFR, PTFE with 25%
bronze, and PTFE with 35% carbon which experi-
enced minimum wear.

(2) Block-on-Ring Wear Test. +is is widely used to
evaluate the sliding wear behavior of materials in
various simulated conditions. It also helps in ranking
material couples for specific tribological applica-
tions. A test of woven glass fibers is conducted on a
block-on-ring wear testing machine [13], and it was

found that aramid fiber-reinforced composites are
less prone to wear than simple glass fabrics. Also,
weaved 300 glass fabrics displayed better wear re-
sistance than woven 500 glass fabrics.

(3) Abrasion Wear Test. +is is used to test the abrasive
resistance of materials such as metals, composites,
ceramics, thick thermal spray, and weld overlay
coatings.

(4) Cavitation Erosion Vibratory Test. +e surface of the
test sample is immersed in liquid, and the cavitation
process is induced by vibrational erosion. Ultra-
sonic waves consisting of alternate expansions and
compressions are transmitted into the liquid, which
causes erosion (material loss) of the surface of the
sample. +is method is used to determine the rel-
ative wear resistance of test samples to cavitation
erosion. In a test between HN steel and AISI 304
steel [14], the samples’ cavitation wear increased
with the decrease in the pH value of the water. Also,
AISI 304 steel was more resistant to wear than HN
steel.

(5) Ball-on-Flat Wear Test. +is allows observing the
wear tracks’ dynamic load, friction force, and
depth. +ree different teeth from three different
young males were tested using this apparatus [15],
and it was observed that, for all the three teeth,
three different wear scars were observed. +e
enamel layer displayed better wear resistance and
had a lower friction coefficient than the dentin
region.

4. Wear Testing Case Studies

Tables 1 to 5 discuss various case studies that involve various
wear tests, briefly discussing the test and the implementa-
tions or additions in the metal workpiece chosen along with
the observed outcomes.

5. Computational and Artificial Intelligence
Models to Detect Wear Behavior

Artificial neural networks are a subset of AI widely used in
mechanical engineering. ANNs are modelled after the bi-
ological neural system like an animal brain and are made up
of neurons linked to each other that perform complex
computations in the same way that the brain does. Dr.
Robert Hecht–Nielson defined ANNs as “a computing
system composed of several simple, highly interconnected
processing elements that process information through their
dynamic state response to external inputs.” +e networks
are widely applicable in solving classification and optimi-
zation problems, predictions, pattern recognition, etc. Be-
cause ANNs are adaptable, they can imitate linear and
nonlinear relationships since the data are divided into
various layers, making them well generalizable. +ese are
trained using the datasets defined for training and then
further used to predict the output values with the help of
different algorithms (Figure 6) [4, 5].

removed fragments

repeated rolling
motion

surface and
subsurface cracks

surface fatigue

heavy load

Figure 4: Surface fatigue.

corrosive wear

Figure 5: Corrosive wear.
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Table 1: Comparison of materials with the pin-on-disc wear test and the results observed.

Materials used Tests performed Results observed Ref.

+e unreinforced portion was made of aluminum alloy
(Al-2014). Various SiC particles were added to the Al
alloy as a reinforcing substance.

Pin-on-disc wear
test

With the increase in grain size, weight loss was
observed to increase. It was discovered that composites
with larger particle sizes had better wear resistance.

[16]

AZ91D alloy Pin-on-disc
Due to the relative motion of AZ91D and stainless steel,
frictional heat is generated, which affects the rate of

wear.
[17]

1. Nylon gears
2. Acetal gear pairs

Pin-on-disc

+e acetal gear pair has a higher wear rate than the
nylon gear pair. Each acetal gear pair has a sliding speed
threshold above which the wear rate dramatically

increases.

[18]

A substrate made of BBS: LM 11 alloys was used, which
was reinforced with (a) SiC particles and (b) SiC fibers
for producing composites.

Pin-on-disc

+e wear rate of the base alloy with no reinforcements
was the highest, while the composites had the lowest
wear rate. Because of a solid particle-matrix interface,
the alloy reinforced with SiC particles had a low wear
rate, whereas the alloy reinforced with SiC fibers had a
higher wear rate due to a weak fiber-matrix interface.

[19]

Glass fiber-reinforced polyphenylene sulfide polymers
APK polymer
POM polymer
UHMWPE polymer
PA66 polymer

Pin-on-disc
A constant rate of steady-state wear was observed.
POM polymer observed the highest wear out of all. It
had the highest wear rate across all sliding distances.

[20]

147 Al alloy matrix composite containing the
following:
1. 10% B4C
2. 15% B4C
3. 20% B4C
4. 4147 Al/SiC composite

Pin-on-disc
Due to stronger SiC particle binding to the alloy matrix,
Al/SiC matrix alloys outperformed AL/B4C alloys in

terms of wear resistance.
[21]

Aluminum syntactic foam Pin-on-disc

+e wear rate decreased as the sliding velocity
increased.

Despite its porous nature, this material showed strong
wear resistance.

[22]

Untreated G3500 cast iron and S0050A cast steel
Treated G4TG3500 cast iron and TS0050A cast steel

Pin-on-disc

Untreated and treated cast iron outperformed
untreated cast steel in wear resistance.

Both EPN-treated substrates outperformed untreated
substrates in terms of wear resistance.

[23]

1. AA6061 alloy
2. AA6061 + 20 vol.% Saffil
3. AA6061 + 20 vol.% SiCp
4. AA6061 + 11 vol.% Saffil + 20% SiCp
5. AA6061 + 60 vol.% SiCp

Pin-on-disc test

Weight loss was found to decrease as the volume
percent of the reinforcement was increased.

Wear resistance was highest in the 60 percent SiCp
composite.

[24]

1. PEEK
2. PEK
3. PEKK

1. Pin-on-disc test
2. Abrasion test
on rubber wheels

A linear increment in wear volume was observed with
sliding distance and sliding load increase.

[25]

1. Alloy 2014
2. Alloy 2024
3. Cast alloy 201 containing Al2O3 and SiC

Pin-on-disc
Wear resistance was higher in aluminum matrices with
a high weight percent with no metallic component.
SiC-containing alloys showed a substantial change.

[26]

1. Grey cast iron
2. A356/25SiCp aluminum metal matrix composite

Pin-on-disc
MMCs have a slightly lower wear rate than grey cast

iron.
[27]

1. Al
2. Al + 10 SiC
3. Al + 20 SiC
4. Al + 30 SiC
5. Al + 40 SiC

Pin-on-disc

Resistance to wear for Al-SiC MMC is reported to be
more significant than that to Al; with an increase in
reinforcement volume, wear resistance reportedly

increased.

[28]

Ti-6Al-4V alloy without thermal oxidation and Ti-6Al-
4V alloy with thermal oxidation

Pin-on-disc
+e handled specimen has shallower and thinner wear

tracks than the untreated alloy.
[29]

1. Al-SiC-Gr composites
2. Al-SiC composites

Pin-on-disc
Al-SiC composites displayed lower resistance to wear

than Al-SiC-Gr hybrid composites.
[30]

Commercially available pure Al and aluminum-
scandium alloy

Pin-on-disc
+e aluminum-scandium alloy outperformed the pure

industrial alloy in terms of wear resistance.
[31]
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Table 1: Continued.

Materials used Tests performed Results observed Ref.

1. PEEK
2. 20 wt.% GF-PEEK
3. 30 wt.% GF-PEEK
4. 30 wt.% CF-PEEK

Pin-on-disc

According to the pin-on-ring sliding test, PEEK has a
higher wear resistance than other thermoplastics.
Carbon fibers outperformed glass fibers in terms of

wear resistance.

[32]

Al-7Si alloy reinforced with the following:
1. 0 wt.%
2. 5 wt.%
3. 10 wt.% TiB2

Pin-on-disc
+e wear rate decreased with an increase in TiB2

content in the alloy.
[33]

1. Mg-9Al
2. Mg-9Al with SiC-reinforced composite

Pin-on-disc
Due to high load-bearing capacity, the composite

displayed significant wear resistance.
[34]

Brushes made of copper and graphite
Wear test with a
pin-on-slip ring

Under 30 kPa BSP, arc erosion wear was the dominant
wear process; abrasion wear was dominant above

120 kPa BSP.
[35]

18 polymers were examined Pin-on-disc

PA 66-PTFE, POM-PTFE, PETP-PTFE, and PEEK-
PTFE may be used in dry air.

PA 66, PA 66-PTFE, and POM are the best materials for
use in water.

[36]

Table 2: Comparison of materials with the block-on-ring wear test and the results observed.

Materials used
Tests

performed
Results observed Ref.

In one experiment, the NiCrBSi castellan PE 3309 alloy was
flame sprayed onto prism-shaped grey cast iron, and in
another, the alloy was laser remelted.

Block-on-
ring test

+e laser remelted coating wore out faster. +e most
common wear mechanism discovered is adhesion.

[42]

+e substrate is grey cast iron, and the coating material is
NiCrBSi alloy powder.

Block-on-
ring test

Sliding speed had little to no effect on the wear rate as
observed during the sliding test.

Adhesive wear was observed at the highest loads.
[43]

Al coated with a polyetheretherketone (PEEK) composite
and Al coated with a polyetheretherketone/SiC (PEEK/SiC)
composite

Block-on-
ring test

Compared to aluminum substrates, both polymer
coatings showed a substantial improvement in wear
resistance. In most sliding conditions, the addition of
SiC to polymer coatings improved wear resistance even

further.

[44]

WC-Co cemented carbides
Block-on-
ring test

As the binder content of the WC-Co alloys increased,
the wear rate caused by slipping increased.

[45]

Table 3: Comparison of materials with abrasive wear tests and the results observed.

Materials used Tests performed Results observed Ref.

By compressing commercially available jute with the
polypropylene thermoplastic matrix, composites
were produced. Half of the composites were
incorporated with maleic anhydride-grafted
polypropylene, dissolved in toluene solution. +e
other half was left untreated.

Abrasion experiments were
carried out using an SUGA

abrasion tester.

Compared to the treated jute fiber, the
untreated jute fiber showed more substantial

volume loss.
[46]

1. Cold-formed steel, hot rolled
2. Wear-resistant steel with a low carbon content
that has been hot rolled
3. Cold-rolled martensitic wear-resistant steel
4. Wear-resistant martensitic steel that has been
tempered and quenched
5. Wear-resistant steel, bainitic, hot rolled

Impact/abrasion tester with
impeller tumbler

+e most weight was lost in hot-rolled cold-
formed steel, then by tempered and quenched

wear-resistant steel.
[47]

1. Commercially pure aluminum
2. Aluminum-magnesium alloys

1. Sliding wear tests
2. Abrasive wear tests

+e Mg content in the matrix increased as
metal-metal wear resistance and metal-abrasive

wear resistance increased.
[48]

Grey cast iron plate Abrasion test
Wear resistance is improved with hard-facing
electrodes that contain more chromium and

carbon.
[49]
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Table 3: Continued.

Materials used Tests performed Results observed Ref.

WC-Co powders used were as follows:
1. 17 wt.% Co and 83 wt.% WC
2. 15 wt.% Co and 85 wt.% WC

Abrasion test
Traditional powder-sprayed coating has a lower
wear rate than HVOF-sprayed WC-Co coating.

[50]

Composites used were as follows:
1. Carbon/epoxy
2. Glass/epoxy
3. Aramid/epoxy
4. Aramid/polyetheretherketone
5. Carbon/polyetheretherketone

Abrasion test

A polyetheretherketone matrix is reinforced by
oriented aramid and carbon fibers parallel to the

surface.
+e composite was stated as a low-wear

composite material.

[51]

+ree plasma-sprayed coatings:
1. Al2O3
2. Al2O3-13% TiO2
3. Cr2O3 (with NiCoCrAlY bond coat)
Two HVOF-sprayed cermet coatings:
1. WC-17% Co
2. WC-10% Co-4% Cr

1. Dry sliding experiments
with a ball on a disc

2. Test on a dry sand-steel
wheel

Plasma-sprayed ceramics displayed better
results than HVOF coatings in dry particle

abrasion conditions.
+e plasma-sprayed Cr2O3 and HVOF-coated
ceramics displayed the best results in the pin-

on-disc test.

[52]

Table 4: Comparison of materials with the corrosion wear test and the results observed.

Materials used Tests performed Results observed Ref.

1. AISI 1045 steel with HVOF cermet
coating
2. AISI 1045 steel with a hard
chromium coating

Tribocorrosion
tests

HVOF-coated materials outperformed hard chromium-coated steel in
terms of wear resistance.

[37]

Table 5: Comparison of materials with other types of wear tests and the results observed.

Materials used Tests performed Results observed Ref.

Epoxy resin
Carbon nanotubes

Ball-on-prism tribometer Wear resistance was improved when CNTs were combined with an EPmatrix. [38]

Cemented carbide tools Disc turning test
+e most prevalent wear mechanisms observed were built-up edge, adherent

layer, and diffusion.
[39]

Nylon gears and acetal
gears

Back-to-back test
configuration

+e wear characteristics of nylon gears vary significantly from those of acetal
gears.

[40]

Ni-SiC composites Ring-on-disc test
With the increase in the percentage of SiC, the wear resistance of the

deposited layer increases.
[41]

Artificial intelligenceUnsupervised Reinforcement

superviseddeep learning
classical Machine 

Learning

RF

SVM

PNN

LMNN

K-NN

DT

NB

CNN

RNN

DBN

DNN

Figure 6: AI models: taxonomy.
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Table 6: Algorithms used for evaluation of wear behavior in different metals.

Algorithm used AI model taxonomy
Depth, layer sizes,
training time, testing

time
Dataset

Framework, core
language,
interface

Ref.

+e backpropagation algorithm
trains the weights of feedforward
NNs consisting of multiple layers
to predict the mass loss quantities
of A390 aluminum alloy.

Supervised learning

An NN has a first layer
containing three neurons
and a second layer

containing two neurons;
overall, a two-hidden-
layer network was used.

Data were normalized in
the middle of [0, 1].

No data [53]

An NN containing two hidden
layers was used. +e standard
load, environment, and time are
the three input variables. +e
amount of wear loss and
microhardness are the two output
variables. +e LMA was used to
train the ANN along with BP.

Supervised learning
method: BP

+ree layers, 3-2-2
topology

No data No data [54]

trainlm (network training
function) was used to train a
multilayer ANN. Two outputs
were recorded. +e LMA was
applicable in adjusting the biases
and weights.

Feedforward NN
with BP

+e ANN with three
inputs and two hidden
layers has the first layer
containing 20 and 30

neurons.
+e data used for

training were 70% and
15% each for validation

and testing.

No data

MATLAB 2016a
for the ANN
Minitab 16 for
visualizing the
linear regression

model

[55]

+e NNs were diversified and
tested to discover the most
acceptable results possible.+rust,
cutting speed, and force were the
inputs, and tool wear was the
output.
In contrast, the second is for
predicting the surface roughness.

Feedforward NN
using BP

NN topologies 3-5-1 and
3-4-1 were tested for tool
wear, and 4-6-1 and 4-6-
4-1 were tested for
predicting surface
roughness.

Laboratoire Génie de
Production, ENIT Tarbes,

France
No data [56]

SVR (support vector regression)
was applied to solve the regression
problem, and here the least square
error is also used; therefore, it is
known as LSSVM.

LSSVM
+e kernel chosen was
the radial basis function.

No data MATLAB 2013 [57]

A model having a three-layer
Taguchi coupled ANN was
proposed. +e input nodes were
sliding distance, load, sliding
velocity, and weight percentage.
+e hidden layer had seven
neurons, whereas the output layer
had a single neuron.+e LMAwas
used to train this model.

Supervised learning 3-7-1 architecture ANN No data MATLAB 2013 [58]

+e network consists of three
layers and four PCA-declared
input nodes, whereas the hidden
layer has three nodes, and the
output layer having a single node
was best out of all the networks.
+e first two layers used the neural
transfer function tansig, whereas
the last layer used purelin.

Supervised learning
4-3-1 architecture with

the three-layer
feedforward ANN

No data
A commercial
Neural Network

Toolbox
[59]
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Table 6: Continued.

Algorithm used AI model taxonomy
Depth, layer sizes,
training time, testing

time
Dataset

Framework, core
language,
interface

Ref.

Adaptive neuro-fuzzy inference
system combines the
“Takagi–Sugeno fuzzy inference
system” and the principles of
ANN.

Supervised learning Five layers in ANFIS No data MATLAB [60]

Taguchi technique has been used
here. A weight-loss model to make
predictions was made using
regression. Nonlinear regression
was used to correlate control
factors and weight loss.

Supervised learning No data No data Minitab 15.1 [61]

+e AI algorithms used here are
random forests, regression trees,
MLP, and RBF.

Supervised learning:
MLP, RBF, and
random forests

RBF has one layer, and
MLP has one hidden

layer.

+e experimental data were
collected to provide a broad
number of wear conditions
and processing times while
acquiring data on the
power drive for a fixed
machining process—the
face milling of carbon-
quality structural steel 45.

No data [62]

“Kohonen’s self-organizing map”
was used to evaluate the tool’s
working status. Also, a triangular
membership function applied
neuro-fuzzy and fuzzy logic. +e
“centroid method of
defuzzification” was used to
obtain the flank wear.

Supervised learning:
backpropagation NN

2-3-1 architecture

+e training data for the
networks were collected
through experimental

studies.

No data [63]

One neuron represents each input
parameter distinctively related to
the coefficient of friction.
+e input variables include
applied load, sliding velocity,
sliding distance, and material
type, whereas the output is the
coefficient of friction. It has 4-6-4-
1 architecture. AnMLPmodel was
applied here because of its
feedforward nature.

Supervised learning:
MLP

4-6-4-1 architecture No data No data [64]

For evaluating the tool wear, a
developed configuration system
was applied. Also, using an expert
system at different wear states
helped clarify the output values of
ANN.

Unsupervised
learning: ART2

Number of input
neurons in SOM: 15, and
number of neurons in an

SOM layer: 36

No data No data [65]

+e network used in this study
was a generalized feedforward
network. Input parameters were
sliding time, sliding speed, load,
and Al-Si%, whereas the output
parameter was specific wear rate.
+e network consisted of three
hidden layers with 16, 8, and 5
neurons.
+e first two layers used the
TanhAxon function, whereas the
last layer applied the BiasAxon
function.

Supervised learning

4-11-5-1 architecture
and two hidden layers
with four inputs and one
output layer were

applied.

No data No data [66]
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Table 6: Continued.

Algorithm used AI model taxonomy
Depth, layer sizes,
training time, testing

time
Dataset

Framework, core
language,
interface

Ref.

+e LMA along with BP was
applied in this study. Load and
speed are the two nodes of the
input layer, whereas the friction
and mass loss coefficient are the
two nodes of the output layer. +e
minimal fault was observed in the
output due to ten neurons in the
hidden layer.

Supervised learning
Two output and ten
hidden neurons

No data MATLAB [67]

+e proposed reduction model
here is a combination of POD and
RBF.

Supervised learning

+e network consists of
two layers, one with RBF
neurons and the other
with output neurons.

No data MATLAB [68]

+e ANN was trained with the
Levenberg–Marquardt algorithm
(LMA), Bayesian regulation (BR),
resilient backpropagation (RP),
scaled conjugate gradient (SCG),
and gradient descent (GD).

Supervised learning

Five distinct training
algorithms were used,
along with eighteen
different architectures.
+e Bayesian algorithm
trained in a two-layered
neural network has

reached the best results
(26 10 5 1).

Training data were
obtained by 360 randomly
distributed data collected
from testing of four friction

materials.
Training data were

acquired by testing eight
different friction materials,
only predicting fade
performance.

No data [69]

+e ANN and Sugeno FIS have
been applied, and BP having 4-3-1
architecture and LMA is adopted
here.

Supervised learning:
backpropagation

+e network has 4-3-1
architecture and one

hidden layer.
No data

MATLAB
R2015a using
NN Toolbox

[70]

FZM and ANN, along with a
neuro-fuzzy ANFIS, are adopted
here.

Supervised learning:
backpropagation for

ANN
Unsupervised

learning for fuzzy c-
means clustering

+e ANN having 4-3-1
architecture and ninety-

cluster C-mean
clustering gave the best

performance.

No data No data [71]

+e Elman-inspired RNN was
applied. +e sensor uses the
relationship between the variables
to be measured and the power
consumption.

Bayesian
regularization

+e best model HU55
implies five hidden units

and a delay of 5.

A Training and Test Data
Set (TTDS) is generated
with a specific combination
of the grinding experiments

collected.

MATLAB [72]

RF, MLP, RBF, etc., were used in
this study to predict surface
roughness and mass loss.

Supervised learning:
regression trees,

MLP BP

A network having a
three-layer architecture
and a hidden layer
consisting of RBF was

used.

No data No data [73]

Output, i.e., tool wear, is predicted
with the help of residual errors as
the basis of decision-making.

Supervised learning:
MLP

MLP has 6-12-1
architecture, and one
hidden layer was used

here.

No data MATLAB [74]

Volume loss is predicted using LR,
SVM, ANN, and other extreme
learning methods.

Supervised learning:
ANN, SVR, and LR

+e ANN has a 3-4-1
architecture and a

quadratic function as the
SVR kernel, whereas
ELM used here is a

feedforward NN having a
single hidden layer.

Experimentally obtained
data

MATLAB [75]
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Table 6: Continued.

Algorithm used AI model taxonomy
Depth, layer sizes,
training time, testing

time
Dataset

Framework, core
language,
interface

Ref.

Supervised learning methods such
as SVR, RF regression, decision
tree regression, GBR, GPR, MLP,
and KNN are used.

Supervised learning

SVR uses an RBF for the
kernel.

MLP having five hidden
layers and ten neurons in
each layer with ReLU
activation was used here.

Collected from 13
references of 316L SS parts

processed by SLM

Python
TensorFlow,
scikit-learn,
Google Colab

[76]

+e ANN with BP is applied along
with ANOVA to decide the
potential parameters to predict
the specific wear rate reduction.

Supervised learning
+e ANN has the 2 : 5:1
architecture with
sigmoid activation.

No data
Python, Minitab

19
[77]

Analysis of the erosion process is
done using the ANN model along
with LMA.

Supervised learning
+e network having
three layers and 2-6-3
architecture is used here.

No data
MATLAB 2017a
Neural Network

Toolbox
[78]

ANN and RSM models were
compared based on their
predictive capacity of wear
behavior of fabricated composites.

Supervised learning
+ree inputs, ten hidden
layers, and two outputs

No data MATLAB [79]

Table 7: Advantages and disadvantages of the above-discussed algorithms (Table 6) used to evaluate wear behavior in different metals.

Advantages Disadvantages Ref.

NNs are quite endurable as the parameter (weight) values are
changed according to the performance. +e modifications are
made according to an ML algorithm called gradient descent
(GD).

Other algorithms like SVM in [56] could be implemented and
compared for better performance and results. For example, the
LMA (Levenberg–Marquardt algorithm) could improve the model

instead of GD.

[53]

+e model was concluded to be excellent and fast because of
the little prediction time, and the results of the ANN model,
along with the experimental study, indicated the same. Also,
the LMA was faster than GD or GN.

+e LMA gives us only the local optimum instead of the global
optimum.

Because the derivatives of the flat functions do not exist after a
certain point in time, the algorithm might be a failure.

[54]

+e experiment helped perceive the most influential factors
affecting the friction coefficient and the wear rate. +erefore,
the ANN is very much capable of predicting the same.

+e LMAmight not be a potential choice if the beginning point does
not have the right quality, i.e., distant from the actual required

values.
[55]

NNs can take in linear and nonlinear relationships, generating
and performing well to show good results.

Sigmoid (the activation function) was not zero-centered that could
give undesired results and implications during the implementation
of GD. An alternative for it could be tanh, and where priority is

speed, ReLU would be suitable.

[56]

LSSVM could eliminate local minima. Also, comparing the
relative error of RSM and LSSVM, the graph depicts LSSVM as
a suitable model since it has fewer relative errors.

SVM underperforms if the number of characteristics for a data point
exceeds the number of training data samples. +erefore, a
considerable amount of data are required to be enforced.

[57]

To obtain an optimal value of the input parameter and achieve
an output value with the minor target, Taguchi coupled ANN
was applied.

+e effects of a parameter on the resultant value were not precise.
Also, the method did not provide any absolute results; therefore, it

was stated unsuitable for a constantly changing process.
[58]

+e ANN was better than a statistical approach since it has
three times lower relative mean error and higher stability for all
studied conditions.

A model without units makes the equations incomprehensible
physically; therefore, it is necessary to include units to make sense in

the world.
[59]

+e aim behind ANFIS is to connect inputs and outputs
accurately. It could help set up a model with uncertainties and
composite data distribution.

+e limitations of ANFIS are the computational expense, and it is
hard to compute large input values. +erefore, it cannot be used in a

big data paradigm.
[60]

To determine parameters having minimum variations, Taguchi
methods were helpful. Also, ANOVA was used to check the
quality of features affected by design parameters.

+e effects of a parameter on the resultant value were not precise.
Also, the method did not provide any absolute results; therefore, it

was stated unsuitable for a constantly changing process.
[61]

RF showed the highest precision. Due to its ability to get tuned
and give visual information, RF can be directly used by product
engineers.

+e RF creates many trees and needs a lot of computational power
and colossal training time.

Overfitting of noisy data may lead to unfavorable outputs.
[62]

To improve user-friendliness, linguistic rules were applied.
Also, for fuzzy logic, they act as an advantage.

To achieve a stable mapping with the help of Kohonen’s SOM, the
nearby data point needs to behave similarly.

[63]
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(1) ANNs typically have three main layers. Input layer:
+e layer to which input data and patterns are fed is
always a single input layer.

(2) Hidden layers: +ere could be several of these layers.
Behind the scenes, processing occurs, and the output
is calculated based on “weights,” which determine
the significance of a specific characteristic. +ese
layers also remove inessential data from the input
data before sending them to the hidden layer, next in
line for processing.

(3) +e endmost hidden layer is linked to the output
layer, which provides the final output value(s).

+e center of NNs is backpropagation. It is an algorithm
through which the neural network corrects itself with each
iteration that relies on weights.

6. Summary and Conclusions

+e research works discussed briefly in this review propose
various systems for supervising the machining process, tool
wear monitoring, determination of wear state for a tool, and
many more. Significant research has been done involving
ANNs with the LVM (as shown in Tables 6 and 7) algorithm
training the models, resulting in highly generalized and
fault-tolerant models; however, LVM can only provide a
local optimum and may not respond to flat functions,
producing unwanted results, and the starting point is way far
from the optimal.

Some studies consider the ANFIS, adaptive neuro-fuzzy
interface system, method that combines ANN and fluidic
logic, specifically the “Takagi–Sugeno fuzzy interference
system,” which can capture neural networks fumigating logic

Table 7: Continued.

Advantages Disadvantages Ref.

+e ANN aids in estimating the coefficient of friction for
parameter values more significant than those included in POD
experiments.

Increasing the total number of parameters in an MLP might lead to
more time. It is inefficient as such high dimensions might be

redundant.
[64]

An ANN and expert systems were used to find the worn-out
tools. A blend of inference results and complex sensor outputs
helped achieve a positive result.

Expert systems collapse without a proper output from the ANN;
therefore, they will face issues classifying the tool’s wear.

[65]

GFs usually take in more compound, nonlinear, and
unpredictable relationships since their connections can skip
several layers.

A network of this kind could overfit due to its inability to deduce the
latest data when applied to simple tasks.

[66]

ANN’s characteristics like adaptability and fault tolerance are
beneficial here.

+e beginning point is far off the desired value; the LMA might not
perform well here.

[67]

+e unknown parameters can be found through this technique
if the outputs are already known.

Massive space for inputs is required when using RBF though it is not
favorable to waste inputs while having other essential tasks.

[68]

Less period is required for training the Bayes, and its
application is effortless.

+e nature of the attributes is presumed to be mutually independent
in the Bayesian algorithm, but that seems impossible as the

predictors cannot be fully independent.
[69]

Results were in order with the experimental values; therefore,
the neuro-fuzzy approach is good.

Sugeno FIS provided no output membership function, and chances
of loss of interpretability are high.

[70]

A framework based on the Takagi–Sugeno neuro-fuzzy
network has proven to be the best of both worlds.

Massive inputs and computational expenses are some of the
limitations of ANFIS. +erefore, it is not applicable for a “big data

paradigm.”
[71]

+e RNN canmimic the dynamic nature of the problem here as
the old network values are reused, in turn, giving the ANN
memory.

+ere can be problems with the gradient not converging. It is a
complex task while working with tanh or ReLU activation functions.

[72]

RF is concluded to be best for industry purposes as no
parameter tuning was required for it. Also, its predictions are
equally good as MLPs.

+e RF creates several trees; therefore, it requires more
computational power and more training time.

Chances of noisy overfitting data having unfavorable outputs as
results are there.

[73]

+is model practices a high-powered working nature, whereas
a supervision system cannot.

A neuro-FIS might be applicable in such a dynamic environment. [74]

An R2 error value of 0.989 was obtained using the ELM
method, and a reduced number of tests, testing time, and cost
were also observed here.

More training cases could lead to the loss of the essence of the
problem as the ELM consists of only one hidden layer. +is was not

observed here since the number of cases is only 40.
[75]

GBR was concluded as the best out of the seven ML algorithms
compared here since it resulted in the slightest standard
deviation and good accuracy.

KNN, STR, and GPR will not be recommended as they are
considered the worst-performing algorithms here.

[76]

Minimum error artificial data were generated for processing,
and the method used here is flexible and considered best for
evaluating the tribo-parameters.

+e work is limited to the general behavior of distinct reinforcement
particles due to the variable metallurgical properties.

[77]

+e ANN investigated the impact on the APS process
parameters well.

Future work includes the optimum coating properties dependent on
the APS process parameters.

[78]

A regression coefficient value of 0.99996 using the ANN was
the best of all the other proposed models.

Different algorithms could be used for training the ANN along with
GBR and SVR, and it can be used to compare the results.

[79]
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in one. However, this model may not perform well for many
inputs, i.e., this model fails in a big data paradigm. +e surface
roughness and wear were predicted using RNNs, i.e., ANNs
having memory; hence, they are more suitable for a constantly
developing environment of suchwear behavior of tools. Surface
wear was detected using random forests and multilayer per-
ceptrons based on surface isotropy levels. Random forests are
superior because MLPs require parameter tuning, and their
output is nearly identical to that of RFs. +ese methods for
various processes are also discussed in some research that
encompasses most of the approaches [80–92].

6.1. Accuracies Achieved in Recent Research Works. Using a
two-hidden-layer neural network, Kumar and Singh [53]
obtained a normalized standard error of 0.00085. At the
same time, Çetinel et al. [54], who also used a two-hidden-
layer network but with the addition of the Lev-
enberg–Marquardt algorithm, found an average error of
2.461% for wear (in micrometers) and 0.245% error for
microhardness (in HV). A least square support vector
machine to predict wear behavior in [56] yielded an average
of 1.2 percent better results on 52 runs than the RSMmodel.
Kolodziejczyk [58] used PCA preprocessing and the LVM
algorithm to achieve a mean relative error of 1.8 percent,
three times lower than that in previous studies. A multilayer
perceptronmodel was used in [64], which yielded 0.0186 and
0.0180 training and testing residual errors, respectively. +e
SOM model had a higher correlation coefficient than the
ART2 model in [65], with 0.964 and 0.946 for the training
and test sets. +e ANN was combined with the Taguchi
method in [55], and a 99.5 percent confidence level was
observed between predicted and actual wear rates and co-
efficients of friction. In [93], the ANN with one hidden layer
had a more significant sum of squares error (SSE) of 0.025
and 0.25 for training and testing, respectively, whereas the
ANN with two hidden layers had 0.008 and 0.46 SSEs for
training and testing. As a result of the lower SSE, the two-
hidden-layer networks were chosen, with an RMSE of 2.64
percent on average. +e ANFIS models—sigmoidal, trian-
gular, Gaussian, and bell-shaped MFs—were used [59]. +e
most accurate model was sigmoidal MF, which had a re-
gression coefficient of 0.96775. RFs and MLPs were used in
[62], with RFs having a better accuracy of 33 to 44 percent
and an error of 0.2457micrometers than the MLP’s 0.4139.
An ANFIS was used for various membership functions [70].
+e RMSE was in the order of E-11, which was 0.557 for the
ANN. +e Sugeno-type ANFIS model had the best corre-
lation coefficient of 97.74 percent with gbellmf membership.
Nagaraj and Gopalakrishnan [66] reported anMSE of 0.0904
and an MAE of 0.1257. In [73], various ML techniques
model various parameters, with MLPs better in 3/4 of them
and RFs taking one of the parameters. MLPs were found to
have a 52 percent accuracy rate. +e ANFISs appear to have
the least amount of error.

6.2. Open Issues. Multiple systems have been proposed in
recent research to address the supervision process in ma-
chining, tool wear monitoring, tool wear detection, and so

on. More researchers use ANNs with the LVM algorithm to
train fault-tolerant and well-generalized models, but the
LVM only provides a local optimum and may not work for
flat functions. If the starting point is too far from the op-
timal, it may also produce undesirable results. +e ANFIS,
adaptive neuro-fuzzy interface system, is a combination of
ANN and fuzzy logic used in a few papers, specifically the
Takagi–Sugeno fuzzy interference system, which can capture
the essence of both neural nets and fuzzy logic in one
[94–102]. However, this model may not work well for many
inputs, i.e., this model fails in a big data paradigm. RNNs,
which are technically ANNs with memory and thus more
suited for such ever-changing dynamic environments as tool
wear, were also used to predict wear and surface roughness
[103–106]. Surface wear was also predicted using random
forests and multilayer perceptrons and surface isotropy
levels. MLPs require parameter tuning, and their output is
nearly identical to that of RFs, so random forests are
preferable. +ese various processes are also discussed in
[107], which encompasses most approaches.

6.3. Future Directions. Wear analysis using artificial intel-
ligence is a relatively new concept. Formal result: Accord-
ingly, it was discovered that there is less work on AI than
aluminum (e.g., FGP grey-coated or NiCrBSi-coated alu-
minum) writable composites (e.g., polymer-reinforced
glass), which indicates that it is to be expected since less work
has been done on AI (e.g., plastic/FGP-NiCr alloyed glass) to
grasp fully [80, 108].Further study is required to understand
the full capabilities of using AI. +is state-of-the-art tech-
nology for analyzing artificial neural networks is now being
utilized for efficient and economical wear-resistant mate-
rials. Tool wear is one of the most common aspects of the
machining process that needs to be analyzed. Research can
be done on the tool metal’s wear behavior in the future, and
the metal can be modified and tested for wear. New research
opportunities can be found to find an ideal metal for ma-
chining processes. Artificial neural networks for wear
analysis can help identify the most efficient coating materials
for various substrates to increase the substrate’s wear re-
sistance with accurate predictions, which is inefficient and
time-consuming when identified using traditional methods.
Artificial intelligence is currently limited to analyzing wear
for various materials used in manufacturing and production.
Still, the main benefit of using AI is studying a wide range of
data and making accurate predictions. More experimenta-
tion is needed to make the most of this technology, which
will allow industries to predict the time and type of wear that
will occur on a material ahead of time, allowing them to
continue operating without interruption [108–114].

Abbreviation

ANN: Artificial neural network
NN: Neural network
ML: Machine learning
GD: Gradient descent
LMA: Levenberg–Marquardt algorithm
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BP: Backpropagation
GN: Gaussian network
SVR: Support vector regression
LSSVM: Least square support vector machine
RSM: Response surface methodology
RBF: Radial basis function
MLP: Multilayer perceptron
SOM: Self-organizing map
GF: Generalized feedforward
POD: Proper orthogonal decomposition
BR: Bayesian regulation
RP: Resilient backpropagation
SCG: Scaled conjugate gradient
FIS: Fuzzy inference system
FZM: Fuzzy clustering method
LR: Linear regression
ELM: Extreme learning method
RF: Random forest
GBR: Gradient boosting regression
GPR: Gaussian process regression.
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J. Skerlić, “Experimental optimisation of the tribological
behaviour of Al/SiC/Gr hybrid composites based on Tagu-
chi’s method and artificial neural network,” Journal of the
Brazilian Society of Mechanical Sciences and Engineering,
vol. 40, no. 6, 2018.

[56] S. B. Mishra, R. Pattnaik, and S. S. Mahapatra, “Parametric
analysis of wear behaviour on fused deposition modelling
build parts,” International Journal of Productivity and
Quality Management, vol. 21, no. 3, pp. 375–391, 2017.

[57] V. Kavimani and K. S. Prakash, “Tribological behaviour
predictions of r-GO reinforced Mg composite using ANN
coupled Taguchi approach,” Journal of Physics and Chemistry
of Solids, vol. 110, pp. 409–419, 2017.

[58] T. Kolodziejczyk, R. Toscano, S. Fouvry, and G. E. Morales,
“Artificial intelligence as efficient technique for ball bearing
fretting wear damage prediction,” Wear, vol. 268, no. 1-2,
pp. 309–315, 2010.

[59] M. Marani, M. Zeinali, J. Kouam, V. Songmene, and
C. K. Mechefske, “Prediction of cutting tool wear during a
turning process using artificial intelligence techniques,”

Advances in Materials Science and Engineering 15



International Journal of Advanced Manufacturing Technol-
ogy, vol. 111, no. 1-2, pp. 505–515, 2020.

[60] L. Monostori, “AI and machine learning techniques for
managing complexity, changes and uncertainties in
manufacturing,” Engineering Applications of Artificial In-
telligence, vol. 16, no. 4, pp. 277–291, 2003.

[61] P. Padmanabhan, A. Arulbrittoraj, R. Srinivasan, and
G. Ebenezer, “Study the influence of case hardening and
sliding wear parameters on carburised AISI 1211 steel,”
International Journal of Surface Science and Engineering,
vol. 10, no. 5, p. 415, 2016.

[62] D. Y. Pimenov, A. Bustillo, and T. Mikolajczyk, “Artificial
intelligence for automatic prediction of required surface
roughness by monitoring wear on face mill teeth,” Journal of
Intelligent Manufacturing, vol. 29, no. 5, pp. 1045–1061, 2017.

[63] C. S. Rao and R. R. Srikant, “Tool wear monitoring-an in-
telligent approach,” Proceedings of the Institution of Me-
chanical Engineers - Part B: Journal of Engineering
Manufacture, vol. 218, no. 8, pp. 905–912, 2004.

[64] T. Sahraoui, S. Guessasma, N. E. Fenineche, G. Montavon,
and C. Coddet, “Friction and wear behaviour prediction of
HVOF coatings and electroplated hard chromium using
neural computation,” Materials Letters, vol. 58, no. 5,
pp. 654–660, 2004.

[65] R. G. Silva, S. J. Wilcox, and R. L. Reuben, “Development of a
system for monitoring tool wear using artificial intelligence
techniques,” Proceedings of the Institution of Mechanical
Engineers - Part B: Journal of Engineering Manufacture,
vol. 220, no. 8, pp. 1333–1346, 2006.

[66] A. Nagaraj and S. Gopalakrishnan, “Modelling wear behavior
of aluminium-silicon alloys using generalized feed forward
neural network,” Tierärztliche Praxis, vol. 40, 2020.

[67] D. Vijay and T. K. Kandavel, “Application of artificial neural
network on wear properties of sinter-forged Fe-C-Mo low
alloy steel,” International Journal of Advanced Intelligence
Paradigms, vol. 7, no. 3/4, 2015.

[68] S. Wang, S. Khatir, and M. Abdel Wahab, “Proper Or-
thogonal Decomposition for the prediction of fretting wear
characteristics,” Tribology International, vol. 152, Article ID
106545, 2020.
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