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Abstract: The innovation in science and technical knowledge has prompted an enormous amount of

information for the agrarian sector. Machine learning has risen with massive processing techniques

to perceive new contingencies in agricultural development. Machine learning is a novel onset for the

investigation and determination of unpredictable agrarian issues. Machine learning models actualize

the need for scaling the learning model’s performance. Feature selection can impact a machine

learning model’s performance by defining a significant feature subset for increasing the performance

and identifying the variability. This paper explains a novel hybrid feature extraction procedure,

which is an aggregation of the correlation-based filter (CFS) and random forest recursive feature

elimination (RFRFE) wrapper framework. The proposed feature extraction approach aims to identify

an optimal subclass of features from a collection of climate, soil, and groundwater characteristics

for constructing a crop-yield forecasting machine learning model with better performance and

accuracy. The model’s precision and effectiveness are estimated (i) with all the features in the dataset,

(ii) with essential features obtained using the learning algorithm’s inbuilt ‘feature_importances’

method, and (iii) with the significant features obtained through the proposed hybrid feature extraction

technique. The validation of the hybrid CFS and RFRFE feature extraction approach in terms of

evaluation metrics, predictive accuracies, and diagnostic plot performance analysis in comparison

with random forest, decision tree, and gradient boosting machine learning algorithms are found to be

profoundly satisfying.

Keywords: correlation filter; crop yield prediction; hybrid feature extraction; machine learning;

recursive feature elimination wrapper; precision agriculture

1. Introduction

The advancement in science and machine learning has accounted for a colossal amount of

information in the agrarian field subjecting to examination and incorporating procedures such as crop

yield forecasting, investigation of plant diseases, enhancement of crops, etc. Machine learning has

ascended with enormous processing strategies to conceive new opportunities in multi-disciplinary

agrarian innovations. Though machine learning strategies handle immense sums and variations of

information, accomplishing a superior performing model is a pivotal plan that needs to be focused.

Further, this actualizes the need for scaling the learning model’s performance. Feature extraction is

a technique for determining a significant subgroup of features utilizing various statistical measures
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for model construction [1]. It can impact a machine learning model’s performance by enlisting a

substantial feature subset for boosting the performance and categorizing the variability. The most

prevailing feature selection measures are the filter methods, which are generally faster, and the wrapper

methods that are more reliable but computationally expensive.

Together with colossal data advances and improved measure reinforcement, machine learning

has risen to determine, assess, and envision intensive information techniques in an agriculture

operative environment. Exuberant upgrades in machine learning have tremendous potential results.

Many researchers and authorities in present agribusiness are looking at their speculation at an

increasingly prevalent scale, helping to accomplish progressively exact and steady forecasts. Precision

agriculture is also known as “site-specific agriculture”, an approach to deal with farm management

utilizing information technology. Precision agriculture assures that the crops and soil receive precisely

what they require for optimum health and profitability [2]. Present-day agrarian frameworks can

discover significantly more machine learning methods to use enhancements more efficiently and adjust

to different natural changes [3–5]. The objective of precision agriculture is to guarantee productivity,

manageability, and conservation of the environment [6]. Machine learning in precision agriculture

endows a crop management system that assists in yield forecasting in crops, crop disease management,

distinguishing the crop weeds, acknowledging crop assortments, forecasting of agricultural climate,

and many others. In the machine learning procedure, insignificant features in preparing a dataset will

decline the forecasting efficiency [7]. Due to the extensive increase in the data amount, a pre-processing

strategy such as feature selection grows into an essential and demanding step when using a machine

learning technique [8,9].

1.1. Background

Feature selection is characterized as the way towards removing the excessive and unessential

features using statistical measures from a dataset, to embellish the learning algorithm. It is an active

explorative area in artificial intelligence applications. The predominant aim of feature extraction is

to achieve an appropriate subgroup of features for defining and delineating a dataset. In machine

learning, feature selection strategy gives us a method for lowering calculation time [10], enhancing

forecasting results, and improving perception of the data. In other words, feature selection is an

extensively used pre-processing procedure for higher-dimensional data. It incorporates the following

objectives:

• Enhancing forecasting precision

• Lowering the dimensions

• Removing superfluous or insignificant features

• Improving the data interpretability

• Enhancing the model interpretability

• Decreasing the volume of the required information.

The feature extraction processes can be classified based on various standards, as depicted in

Figure 1. Depending on the training data employed, they are grouped as supervised, unsupervised,

and semi-supervised. Based on their inter-relationship with the learning models, they are classified as

a filter, wrapper, and hybrid models. Depending on the search strategies, it is organized as a forward

increase, backward deletion, and random models [11]. Additionally, considering the output type,

they are classified as feature ranking and subset selection models. For higher-dimensional features,

this issue cannot be resolved by consolidating all potential outcomes.

Filter techniques can recognize and eliminate insignificant features, but they cannot expel repetitive

features because they do not consider conceivable dependencies between features [12]. The filter method

evaluates the significance of a feature subgroup entirely depending on the intrinsic characteristics

of data such as correlation, variance, F measure, entropy, the ratio of information gain, and mutual

information [13,14].
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Figure 1. Overview of feature selection methods for machine learning algorithms.

The wrapper-based feature selection method [15] encompasses a feature selection algorithm over

an induction algorithm. The wrapper approach is mainly helpful in solving issues such as generating a

fitness function when it cannot be efficiently expressed with an accurate analytical equation. Various

search algorithms such as forward and backward elimination passes, best-first search, recursive feature

elimination [16] can be utilized to discover a subset of features by means of augmenting or limiting the

corresponding objective function. Wrapper techniques are usually identified by the immense caliber of

the selected features; however, they have a higher computational cost.

Another intermittently investigated methodology for feature selection is hybrid methods.

They involve strategies endeavored to have an acceptable compromise between the computational

effort and efficiency [17–19]. These methods encompass those techniques that integrate both filter and

wrapper methods. It accomplishes the balance of precision and computing time.

1.2. Literature Review

It has been analyzed that the agriculturist’s income rises or falls depending on the outcomes

they acquire from their harvests. In an interest to enhance and support the process of determination

and resolution, it is vital to perceive the definite prevailing association between the crop yield and

numerous factors impacting it [20]. The factors are present in a higher level of intricacy in time

and space, and the decisions are to be perceived considering the effects of soil [21], climate [22],

water availability [23], landscapes, and several others that are concerned in assisting the crop yield [24].

Generally, a considerable part of agribusiness-based frameworks cannot be delineated by the essential

stage-wise condition or by a definite equation, particularly at the stage when the dataset is convoluted,

strident, deficient, or assorted. Structuring of these frameworks is complicated and imminent but has

exceptional importance for analysts for forecasting and simulation.

Feature selection methods have been enforced in prediction and classification problems to choose

a reduced list of features, which makes the algorithm to perform faster and produce precise results.

Some specific issues are continuously handled with an extraordinary number of features. In the

literature, some hybrid feature selection methods for agrarian frameworks combing both the filter

and wrapper approaches are proposed. Muhammed et al. have proposed the identification and
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categorization of citrus diseases in the plant [25] depending on the improved accentuated segmentation

and feature extraction. The procedure encompasses two phases: (1) detection of lesion spots in plants

and (2) classification of citrus disease. The optimal features are defined by enforcing a hybrid feature

extraction process, which includes the principal component analysis score, entropy, and skewed

covariance vector. Yu et al. explored a new procedure of “reduced redundancy improved relevance”

framework-based feature selection to choose an efficient wavelength spectrum for the hyperspectral

images of cotton plants, enabling the categorization of foreign substances in cotton plants [26].

Prediction of moisture content between wood chips using the least square Support Vector Machine

(SVM) kernel feature selection method has been endorsed by Hela et al. [27].

Wenbin et al. defined an efficient mutual information-based feature selection algorithm integrating

information theory and rough sets [28]. The evaluation function can choose candidate features that

comprise of high pertinence concerning the class and low redundancy among the selected characteristic

features, in such a way that the redundancy is removed. Hosein et al. introduced a new feature

extraction method, which is the combination of an advanced ant colony optimization algorithm (ACO)

with an adaptive fuzzy inference system (ANFIS) [29]. It enabled them to choose the best subgroup of

features from the various observed soil characteristics that leverage the soil cation exchange capacity

(CEC), which is a valuable property representing the soil fertility status. Feature selection is highly

essential for dimensionality reduction in the case of hyperspectral images. Ashis et al. endorsed a

supervised hybrid feature extraction procedure combining the Self-adaptive differential evolution

(SADE) algorithm with a fuzzy K-neighbor classifier wrapper [30] for the hyperspectral remote sensed

images of agricultural data over Indiana, Kennedy Space Center of Florida, and Botswana. Somayeh et

al. proposed a hybrid Genetic Algorithm—Artificial Neural Network feature extraction method to

identify the significant features for the pistachio endocarp lesion problem [31]. Pistachio endocarp

lesion (PEL) is one of the most significant causes of the damage of the pistachio plant. The study was

framed to identify the biotic and abiotic agents that impact the existence of PEL.

The works discussed until now attempts to consider the advantages of the filter and wrapper

methods and associate them appropriately. In addition, each proposed strategy utilizes its own selection

procedures and assessment measures. As observed, the hybrid-based feature extraction procedures

have been examined limited for agrarian datasets, and the current processes involve constraints

either in their assessment measures or the number of characteristic features processed. Concerning

the reasons as mentioned above, a new hybrid-based feature extraction process, unlike the other

hybrid measures, is proposed, which uses a correlation-based filter stage—CFS and the random forest

recursive feature elimination wrapper stage—RF-RFE. CFS can effectively screen redundant, noisy,

and irrelevant features. CFS also enhances performance and reduces the size of improved knowledge

structures efficiently than other filter measures. It is also computationally inexpensive, which provides

a better feature subset to ease the performance of wrapper, which is usually computationally expensive.

RF-RFE based wrapper, though computationally expensive, gives high-quality feature outputs. Since in

the proposed approach, the RF-RFE wrapper is combined with the filter approach, the computational

time is reduced. Another advantage of RF-RFE is that it does not demand any reconciliation to develop

competing results.

1.3. Aim of the Paper

In this paper, a new hybrid-based feature extraction procedure combining correlation type filter

CFS and a recursive feature elimination-based wrapper RF-RFE is developed. The proposed technique

is applied to the paddy crop dataset to determine a prime collection of features for forecasting crop

yield. Until now, the hybrid feature selection combination of CFS filter and RF-RFE wrapper has not

been enforced to recognize the significant subset of features for yield prediction in crop development.

The empirical results determine that the proposed method selects significant features amongst other

algorithms by removing those that do not contribute to enhanced prediction results. The remainder of

the paper is systemized as follows. Section 2 explains the methodology for the proposed hybrid feature
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abstraction method depending on the CFS RF-RFE wrapper, the data considered for the study along

with the significant agrarian parameters and the details about the various machine learning models

experimented and the evaluation metrics used. Section 3 demonstrates the experimental framework

and outcomes of the developed hybrid feature extraction process on the agricultural dataset with

various machine learning methods. Section 4 presents a discussion of results and future works. Finally,

Section 5 winds up with the conclusion of the proposed work.

2. Materials and Methods

2.1. Proposed Hybrid Feature Selection Methodology

The two predominant feature extraction processes in machine learning are filter and wrapper

methods. Wrappers frequently give better outcomes than filter processes, as feature extraction is

advanced for the specific learning algorithm that is utilized [32]. Due to this, wrappers are very

expensive to run and can be obstinate for substantial databases comprising numerous features.

Moreover, as the feature selection process is tightly connected with the learning algorithm, wrappers

are less frequently used than filters. In general, filters execute rapidly than the wrapper; as a result,

filters portray a vastly improved possibility of scaling to databases with a substantial number of

features. Filters can afford the same benefit as wrappers. When an enhanced precision for a specific

learning algorithm is recommended, a filter can provide a smart beginning feature subset for a wrapper.

In other words, the wrapper will be provided with a reduced feature set by the filter, thus helping

the wrapper to scale efficiently for bigger datasets. The hybrid approach, which is an association of

wrapper and filter methods, utilizes the ranking information from the filter method.

Further, this enhances the search in the optimization algorithm, which is used by the wrapper

methods. This method exploits the advantage of both the wrappers and the filters. By connecting

these two methods, we can enhance the predictive efficiency of pure filter methods and curtail the

execution duration of pure wrapper methods. In this section, the proposed feature extraction procedure

is explained, which conforms to the hybrid CFS filter—RF-RFE wrapper approach. A framework

representing the proposed approach is explained in Figure 2.

Figure 2. A framework of the proposed hybrid feature selection approach.
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Generally, the hybrid filter-wrapper feature selection method comprises typically of two phases:

• The initial phase utilizes the filter method to minimize the size of the feature set by discarding the

noisy insignificant features.

• The final phase utilizes the wrapper method to identify the ideal characteristic feature subgroup

from the reserved feature set.

In the first step during the filter stage, the features are arranged depending on a correlation-based

heuristic evaluation function. This process objective is to distinguish the characteristic features

that are persistent with the information framework. The features are categorized based on their

significance. With the purpose of confining the exploration into the space of all conceivable feature

subgroups, this process permits a decent estimate of features as a beginning for the next step. In the

second phase, i.e., the wrapper phase, the objective is to assess the features examining them as a

subgroup rather than in the explicit case. Then, they are enforced to random forest-based recursive

feature elimination selection process. Figure 3 explains the proposed hybrid feature selection system

architecture. The following subsections delineate each phase of the proposed strategy.

Figure 3. Architecture diagram of proposed hybrid CFS and RF-RFE feature selection approach.

2.1.1. Filter Stage—Correlation Based Feature Selector (CFS)

A filtering process assesses the quality of feature subsets depending on statistical measurements

as evaluation criteria. In machine learning, one of the processes of selecting features for forecasting

results can be attained based on the correlation among the features, and that such a feature selection

strategy can be useful to regular machine learning algorithms. A feature is beneficial if it is conforming

to a class or predicts the class [32]. A characteristic feature (Xi) is observed to be pertinent if and only if

there prevail some probability (P) xi and y such that P(Xi = xi) > 0 as in Equation (1),

P(Y = y
∣

∣

∣Xi = xi) , P(Y = y) (1)

Experimental proof from the feature selection literature demonstrates that in addition to the

insignificant features, superfluous features need to be removed as well. A feature is recognized as

superfluous if it is exceedingly associated with one or more other features.

Moreover, this resulted in a hypothesis for feature extraction, which is a useful, acceptable

characteristic feature subgroup that incorporates features that are significantly associated with class but

dissociated with one other. In this scenario, the features are specific tests that measure characteristics

identified with the variable of importance. For instance, a precise forecast of an individual’s achievement

in a subject can be obtained from a composite of various tests estimating a wide assortment of qualities

rather than an individual test, which estimates a restricted set of qualities. In a given feature set if the

association among the individual feature and an extrinsic variable is recognized, and the inter-relation
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among every other pair of the features is given, then the association among the complicated test

comprising of the total features and the extrinsic variable can be determined from Equation (2),

r =

∑n
i=1(xi − x)(yi − y)

√

∑n
i=1(xi − x)2

√

∑n
i=1(yi − y)2

(2)

The above equation defines the Pearson’s correlation coefficient. Where xi and x defines the

observed and average values of the features considered. yi and y defines the observed and average

values of the dataset class. If a group of n features has just been chosen, the correlation coefficient can

be utilized to assess the connection between the group and the class, incorporating inter-correlation

among the features. The significance of the feature group increases with the correlation between the

features and classes. Additionally, it diminishes with an increasing inter-correlation. These thoughts

have been examined in the literature on decision making and aggregate estimation [33]. Defining the

aggregated correlation coefficient among the features and output variables as rny = p(Xn, Y) and the

aggregate among varying features as rnn = p(Xn, Xn). The group correlation coefficient calculating the

relevance of the feature subset is given as follows in Equation (3),

J(Xn, Y) =
nrny

√

n + (n− 1)rnn

(3)

This shows that the association between a group and an external feature is an operation of the

total number of individual characteristic features in the group. The formula from [34] is obtained

from the Pearson’s correlation coefficient by standardizing all the variables. It has been utilized in the

correlation-based feature selection algorithm enabling the addition or deletion of one feature at a time.

The following pseudo-code in Algorithm 1 explains the selection procedure using CFS filter.

Algorithm 1 CFS filter-based feature selection method

SELECT FEATURES

INPUT:

Dtrain—Training dataset

P—The predictor

n—Number of features to select

OUTPUT:

Fx—Selected feature set

BEGIN:

F0 = Ø

x = 1

while |Fx| < n do

if |Fx| < n− 1 then

Fx = CFS (Fx−1, Dtrain, P)

else

Add the best-ranked feature f′ to Fx−1

end if

x = x + 1

end while

END

Predicting the feature importance based on correlation-based filters defines the following

conclusions:

• The higher the correlation among the individual and the extrinsic variable, the higher is the

correlation among the combination and external variables.
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• The lower the inter-correlation among the individual and the extrinsic variable, the lower is the

correlation among the combination and extrinsic variable.

For efficient prediction, it is obvious to remove the redundant features from the dataset. If another

feature manages an existing feature’s forecasting ability, then it can be removed safely. Further,

to improvise the forecasting performance of the system, the reduced feature set obtained is passed on

the next step of wrapper-based feature selection.

2.1.2. Wrapper Stage—Random Forest Recursive Feature Elimination (RF-RFE)

Wrapper methods use forecasting accuracy to validate the feature subset. Wrappers use the

learning machine as a black box in scoring the feature subsets depending on their forecasting ability.

Recursive feature elimination [34] is fundamentally a recursive process that ranks features based on a

significance measure. RFE is a feature ranking procedure depending on a greedy algorithm. As per

the standard of feature ranking, in all iterations, RFE will start eliminating from the full feature set

the least significant features one after the other to obtain the most significant features. The recursion

is required since, for a few processes, the pertinent significance of specific characteristic features can

vary considerably on assessing beyond an alternate subgroup of features in the course of step-wise

elimination. This is concerned primarily with profoundly correlated features. Depending on the order

in which the features are discarded, the final feature set is constructed. The feature selection procedure

itself comprises just acquiring the initial n features from this ranking.

Random forest falls under the ensemble-based prediction or categorization process. Substantially

it grows several distinct prediction trees and utilizes them together as a combined predictor. The final

prediction of a given dataset is determined by implementing an absolute rule among the choices

of the respective predictors. Further, to create unassociated and distinctive insights, every tree is

developed utilizing just a smaller dataset of the preparation set. Besides, to maximize the dissimilarity

among the trees, the algorithm includes random contingency in the pursuit of optimal splits [35].

The wrapper stage of the proposed hybrid approach depends on the extent of the significance of the

variable provided by the random forest. For each individual tree in the random forest, there exists a

subgroup of the feature set which is not utilized at the time of training since every tree is developed on

a bootstrap sample. These subgroups are generally termed as out-of-bag, which gives the unbiased

measure of predicting the errors.

Random forest evaluates the significance of characteristic features infiltrating the framework

as follows:

• In all iterations, each feature is shuffled, and over this shuffled data set, an out-of-bag estimation

of the forecasting error is made.

• Naturally, when trying to alter this way, the insignificant features will not change the prediction

error, inverse to the significant features.

• The corresponding loss in efficiency among the actual and the shuffled datasets is accordingly

associated with the efficiency of the shuffled features.

The following pseudo-code in Algorithm 2 explains the feature selection using RF-RFE.

In the RF-RFE approach, the proportion of characteristic feature significance is connected with the

recursive feature elimination algorithm. RF-RFE wrapper model is developed based on the perception

of building a model (here the model is random forest) frequently and select either the best or worst

operating feature. Removing the feature aside and recurring the process with the remaining features.

This operation is carried out until all the features in the dataset are consumed. The features are then

ranked depending on the order in which they are eliminated. In other words, this performs a greedy

optimization search to determine the best performing feature subset. The following section describes

the dataset and various agronomical factors impacting crop yield.
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Algorithm 2 RF-RFE wrapper-based feature selection method

INPUT:

D0 = [d1, d2, . . . , dn,]—Training dataset

F = [ f1, . . . , fn]—Set of n features

Ranking Method M(D, F)

S = [1, 2 . . . m]—Subset of features

OUTPUT:

Final ordered feature set Fs

BEGIN:

S = [1, 2 . . . m]

Fs = []

while S , [] do

Repeat for x in {1 : n}

Ranking feature set utilizing M(D, F)

S(f∗)← F’s last ranked feature

Fs(n − x + 1)← S(f∗)

S (Fs)← S (Fs) − S(f∗)

end while

END

2.2. Significant Agrarian Parameters and Dataset Description

Machine learning has surged collectively with enormous intelligence progress and better methods

to create unique contingencies to determine, assess, and appreciate information pervasive techniques

for agrarian frameworks. Machine learning algorithms need an appropriate amount of data for efficient

processing. Data with befitting attributes simplifies the effort of examining uniformity by eliminating

the features that are superfluous or excess concerning the learning objective. This section explains in

detail the various agrarian factors to be considered for yield prediction along with the study area and

dataset description.

2.2.1. Agronomical Variables Impacting Yield of Crops

There are a variety of factors identified for crop yield and the vulnerabilities required for their

development. The most crucial factors that affect crop yield are the climate, soil productiveness,

and groundwater characteristics. These factors can epitomize an enormous risk to farmers when they

are not checked and supervised precisely. Moreover, considering the ultimate objective to maximize

the yield of the crop and curtail the hazard, it is vital to see explicitly the factors that affect crop yield.

The following factors play a crucial role in crop enhancement.

Climate

A preeminent and the most overlooked variable that affects crop yield is climate. Climatic

conditions extend past just wet and dry. While rainfall is the indispensable segment of the atmosphere,

there exist few other distinct perspectives to recognize such as wind speed, humidity, temperature,

and the widespread prevalence of pests during certain climatic conditions [36]. Conflicting patterns

in climate lead to an excessive risk to crop and may prompt favorable conditions for specific weeds

to grow.

Soil Productivity

There exist several nutrient supplements such as nitrogen, potassium, phosphorus that constitutes

plant macronutrients and magnesium, zinc, calcium, iron, sulfur, etc. that constitutes plant

micronutrients [37]. Every one of them is proportionally fundamental to the crop yield, regardless

of the way that they are required in differing amounts. The accountability of nutrients for crop



Agriculture 2020, 10, 400 10 of 27

yield is indispensable for crop growth enhancement, protein formation, photosynthesis, and so forth.

The unavailability of these nutrients can reduce the crop yield by conversely impacting the relevant

growth factors.

Groundwater Characteristics and Availability

Water receptivity specifically influences the crop yield, and yield efficiency can change

comprehensively given the varying precipitation pattern, utilizing both amount and time span.

Almost no measure of rainfall can result in crop death; at the same time, ample precipitation can cause

adverse effects [38]. The essential and synthetic parameters of groundwater perform an essential role

in surveying the quality of water. The hydrochemical analysis uncovers the nature of water that is

appropriate for irrigation, agriculture, industrial use, and drinking purposes.

2.2.2. Crop Dataset and Study Area Description

The crop data required for the proposed study is obtained from the various village blocks including

Arcot, Sholinghur, Ponnai, Ammur, Kalavai, and Thimiri of the Vellore district of Tamil Nadu in

India. The crop considered for the study is paddy. This district lies between 12◦15′ to 13◦15′ north

latitude and 78◦20′ to 79◦50′ east longitude. Paddy is one of the significant economic crops grown

in this district, and hence this district is examined for analysis. Unlike the regular soil and climatic

parameters, the dataset comprises of distinctive climatic, soil, groundwater characteristics together

with the fertilizer amount absorbed by the plants of the experimented region. Table 1 explains, in brief,

the various parameters used for the experimental study. The data is observed for a time span of

20 years. The dataset contains paddy yield utilizing the region cultivated (in hectares), production of

paddy (in tonnes), and crop yield obtained (kilogram/hectare). The data relevant to environmental

aspects such as precipitation, air temperature, potential evapotranspiration, evapotranspiration of

reference crop, and exceptional climatic features such as frost frequency of ground, diurnal temperature

range, wind speed, humidity has been used which is obtained from the Indian water portal metadata

tool. The data of soil and groundwater properties comprises of soil pH, topsoil density, amount

of macronutrients existing in the soil, and the distinct groundwater characteristics such as type of

aquifer, transmissivity, rock layer permeability, water conductivity, and the number of micronutrients

existing in the groundwater before and after the monsoon period. Unlike the standard parameter set,

the proposed work includes considering all the parameters from various aspects, including climate,

hydrochemical properties of groundwater, soil, and fertilizer amount, to construct an efficient feature

subset enhancing the prediction of crop yield achieving better precision than the traditional approach.
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Table 1. List of dataset parameters and their description.

S. No Parameter Name Description Units

1 Net cropped area The total geographic area on which the crop has been planted at least once during a year Integer (hectare)
2 Gross cropped area Total area planted to crops during all growing seasons of the year Integer (hectare)
3 Net irrigated area The total geographic area that has acquired irrigation throughout the year Integer (hectare)
4 Gross irrigated area The total area under crops that have received irrigation during all the growing seasons of the year. Integer (hectare)
5 Area rice Total area in which the rice crop is planted Integer (hectare)
6 Quantity rice Total rice production in the study area Integer (ton)
7 Yield rice The total quantity of rice acquired Integer (ton)

8 Soil type
Type of the soil in the study area considered

Integer1—Medium black soil type
2—Red soil type

9 Land slope A rise or fall of the land surface Integer (meters)
10 Soil pH Acidity and alkalinity measure in the soil. Integer
11 Topsoil depth The outermost soil layer rich in microorganisms and organic matter Integer (meters)
12 N soil The nitrogen amount present in the soil Integer (kilogram/hectare)
13 P soil The phosphorus amount present in the soil Integer (kilogram/hectare)
14 K soil The potassium amount present in the soil Integer (kilogram/hectare)
15 QNitro Amount of nitrogen fertilizers utilized Integer (kilogram)
16 QP2O5 Amount of phosphorus fertilizers utilized Integer (kilogram)
17 QK2O Amount of potassium fertilizers utilized Integer (kilogram)
18 Precipitation Rain or water vapor condensation from the atmosphere Integer (millimeter)
19 Potential evapotranspiration Quantity of evaporation occurring in an area in the presence of a sufficient water source Integer (millimeter/day)

20
Reference crop

evapotranspiration
The evapotranspiration rate from a crop reference surface that is not short of water Integer (millimeter/day)

21 Ground frost frequency Number of days referring to the condition when the upper layer soil temperature falls below the water freezing point Integer (number of days)
22 Diurnal temperature range Difference between the daily maximum and minimum temperature Integer (◦C)
23 Wet day frequency The number of days in which a quantity of 0.2 mm or more of rain is observed. Integer (number of days)
24 Vapor pressure The pressure administered by water vapor with its condensed phase in thermodynamic equilibrium Integer (hectopascal)
25 Maximum temperature The highest temperature of air recorded Integer (◦C)
26 Minimum temperature The lowest temperature of air recorded Integer (◦C)
27 Average temperature The average temperature of air recorded Integer (◦C)
28 Humidity The quantity of water vapor in the atmosphere Integer (percentage)
29 Wind speed The rate at which the air blows Integer (miles/hour)
30 Aquifer area percentage Percentage of an area enclosed by a body of permeable rock that can transmit or contain groundwater. Integer (percentage)
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Table 1. Cont.

S. No Parameter Name Description Units

31 Aquifer well yield Amount of water pumped from a well in an aquifer area Integer (liters/minute)

32 Aquifer transmissivity The water quantity that can be disseminated horizontally by a full saturated thickness of the aquifer Integer (meter2/day)
33 Aquifer permeability A measure of the rock property, which defines how fluids can flow through it. Integer (meter/day)
34 Pre–electrical conductivity Average pre-monsoon electrical conductivity of groundwater Integer (siemens/meter)
35 Post-electrical conductivity Average post-monsoon electrical conductivity of groundwater Integer (siemens/meter)
36 Groundwater pre-calcium Average pre-monsoon calcium level in groundwater Integer (milligram/Liters)
37 Groundwater post-calcium Average post-monsoon calcium level in groundwater Integer (milligram/Liters)
38 Groundwater pre-magnesium Average pre-monsoon magnesium level in groundwater Integer (milligram/Liters)
39 Groundwater post-magnesium Average post-monsoon magnesium level in groundwater Integer (milligram/Liters)
40 Groundwater pre-sodium Average pre-monsoon sodium level in groundwater Integer (milligram/Liters)
41 Groundwater post-sodium Average post-monsoon sodium level in groundwater Integer (milligram/Liters)
42 Groundwater pre-potassium Average pre-monsoon potassium level in groundwater Integer (milligram/Liters)
43 Groundwater post-potassium Average post-monsoon potassium level in groundwater Integer (milligram/Liters)
44 Groundwater pre-chloride Average pre-monsoon chloride level in groundwater Integer (milligram/Liters)
45 Groundwater post-chloride Average post-monsoon chloride level in groundwater Integer (milligram/Liters)

S. No—Serial Number.
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The following section describes the various machine learning models and evaluation metrics used

for the assessment of the proposed feature selection method.

2.3. Machine Learning Models and Evaluation Metrics

The proposed CFS filter RF-RFE wrapper hybrid statistical feature selection algorithm is tested by

implementing it with the following machine learning algorithms, namely:

• Random forest

• Decision tree

• Gradient boosting.

2.3.1. Machine Learning

Decision trees are an information-based supervised machine learning algorithm [39]. They are a

tree structure similar to a flow diagram, where every interior node indicates an analysis performed

on the attributes, branch depicts the output of the test, and the label of a class is defined by every

terminal node [40]. The significant objective of the decision tree is to identify the distinct features that

represent the essential data concerning the target element, and then the dataset is split along these

features such that the sub dataset’s target value is as pure as possible. For evaluating the proposed

hybrid feature selection method, a decision tree regressor with a maximum depth of four and best

splitter value is constructed. Random forest is an ensemble-based [41] supervised machine learning

algorithm, which combines several decision trees. The random forest algorithm is not biased, as there

are several trees, and each is prepared on a subgroup of data. For evaluating the proposed hybrid

feature selection with random forest, the regressor model is instantiated with 550 estimator decision

trees and 40 random states. Boosting algorithms are a subclass of ensemble algorithms and one of

the most widely used algorithms in data science [42], converting weak learners to strong learners.

Gradient boosting [43] sequentially trains several models, and every new model consistently reduces

the loss function of the entire procedure utilizing the gradient descendant process. The principal

objective of this algorithm is to build a new base learner, which is maximally correlated with the loss

function’s negative gradient, which is related to the entire ensemble.

The algorithm’s predictive performance with the crop data set is observed using the proposed

hybrid feature selection method. A machine learning model’s efficiency is defined by assessing a

model against various performance metrics or using various measures of evaluation. The various

performance metrics examined for the assessment of the developed work are:

• Mean Square Error (MSE),

• Mean Absolute Error (MAE),

• Root Mean Squared Error (RMSE),

• Determination Coefficient (R2),

• Mean Absolute Percentage Error (MAPE).

2.3.2. Metrics of Evaluation

Evaluation metrics define the performance of the model. A significant aspect of the evaluation

measure is their capability to differentiate among the results of various learning models. The various

performance metrics used for evaluation for this study are explained in this subsection.

Mean absolute error: Given an array of predictions, mean absolute error calculates the average

importance of the errors [44]. It is the arithmetical mean of the absolute variation between the actual

observation and the forecasted observation and is defined as follows in Equation (4).

MAE =
1

n

∑n

j=1

∣

∣

∣

∣

y j − y′j

∣

∣

∣

∣

(4)



Agriculture 2020, 10, 400 14 of 27

Here n is defined as the size of the sample, y j depicts the original target measure and y′
j

defines

the forecasted target measure.

Mean Squared Error: Mean squared error is a significant criterion to determine the estimator’s

performance. Further, this defines how close a regressor line is to the dataset points [45]. The formula

for calculating mean squared error is defined as follows in Equation (5).

MSE =
1

n

∑n

j=1

(

y j − y′j

)2
(5)

Root mean square error: It is an estimation of the residuals or forecasted error’s standard

deviation [46]. To be more precise, it explains how well the information is concentrated on the best fit

line. The formula for calculating the root mean squared error is defined as follows in Equation (6).

RMSE =

√

∑n

j=1

(y j − y′
j
)2

n
(6)

Determination Coefficient: The statistical measure R-squared or determination coefficient is

utilized to determine the accuracy of the fit of the regression framework [47]. To be more defined

determination coefficient defines how the developed framework is superior to the baseline framework.

It is defined in Equation (7) as follows:

R2 =













n(
∑

xy) − (
∑

x)(
∑

y)
√

[n
∑

x2 − (
∑

x)2][n
∑

y2 − (
∑

y)2]













2

(7)

Mean Absolute Percentage Error: This represents how far the model’s prediction deviates from

its corresponding output. It is the average of the percentage errors. It is the sum of the individual

absolute errors divided by each period individually. It is defined in Equation (8) as follows:

MAPE =
1

n

∑n

j=1

y j − y′
j

y j
(8)

2.3.3. Cross-Validation

During the development of the deep learning models, the dataset is subjectively split into training

and test set, where the maximum amount of information is taken as a training set. Despite the fact the

test dataset is small, there exists a possibility of leaving out some critical data that may have upgraded

the model. In addition, there exists a concern for significant data variance. To deal with this issue,

k-fold cross-validation is utilized. It is a process that is utilized to evaluate the deep learning models by

re-sampling the training data for upgrading the performance. Arbitrarily splitting a time series data

for cross-validation may results in a temporal dependency problem, as there is a specific dependence

on past observation, and also data leakage from response to the lag variable will undoubtedly occur.

In such cases, forward-chaining cross-validation is performed for time series data. It performs by

beginning with a small subset of information originally for training, predict for the following data,

and deciding the precision of the predicted data. The same predicted data points are encased as a

part of the subsequent training data subset, and the respective data points are predicted. For the

proposed approach, five-fold forward chaining cross-validation is implemented. The cross-validation

is implemented using python’s Sklearn machine learning library. The results of cross-validation are

tabulated in Table 2.

The dataset is normalized using min-max scaling. The training and the test sets are split using

the train_test_split function of Sklearn. The size of the training and the test dataset is determined

by the test_size parameter, which is set as 0.3 for the experiment, indicating that 70% of the data is

reserved for training, and 30% of the data is fixed for testing. The best value of “K” for cross-validation
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is determined using the cross_val_score function. K defines the number of groups the given data is to

be split into. The dataset is split into five subsets. The error metric determined is the R2 score, which is

affixed in every iteration and attains the optimal value determining the overall model accuracy.

Table 2. Dataset testing with 5-fold forward chaining cross-validation.

Model Data
Subset

Training Data
(In Years)

Test Data
(In Years)

Correlation
Measure Value

R2 Score

1 1996–2000 2001–2003 0.77 0.82
2 1996–2003 2004–2006 0.84 0.86
3 1996–2006 2007–2009 0.61 0.70
4 1996–2009 2010–2012 0.76 0.84
5 1996–2012 2013–2016 0.86 0.89

The following section illustrates in detail the experimental framework of the CFS and RF-RFE

based hybrid feature selection method for various machine learning frameworks such as gradient

boosting, random forest, and decision tree.

3. Results

This section briefs about the experimental results obtained utilizing the proposed hybrid statistical

feature extraction procedure over the existing machine learning algorithms. Feature selection is an

automated process of choosing the most relevant attributes or significant features from a dataset

that enhances a predictive model’s performance. The proposed CFS filter RF-RFE wrapper hybrid

statistical feature selection algorithm is tested by implementing it with the following machine learning

algorithms, namely:

• Random forest

• Decision tree

• Gradient boosting.

Some of the machine learning algorithms comprise of a beneficial inbuilt method termed as

feature importance. These methods are generally utilized for forecasting, for observing the most useful

variables on the model. This information can be used to engineer new features, eliminate the noisy

feature data, or to continue with the existing models. This measure is used as one of the reference

values for evaluating the developed hybrid feature extraction framework. The evaluation of the model

is done in three phases.

• In the first phase, the models are constructed using all the features or variables in the dataset,

and the prediction results are validated using various statistical evaluation measures.

• In the second phase, models are constructed using the algorithm inbuilt ‘feature_importances’

methods, where only significant features alone are selected, and the prediction results are evaluated.

• In the third phase, the models are built utilizing the developed hybrid feature extraction method.

The most significant features as per the proposed approach are selected, and the prediction results

are evaluated.

3.1. Machine Learning Algorithms Performance Estimation in Terms of Evaluation Metrics

For validating the proposed hybrid feature selection method, a gradient boosting tree with 500

regression estimators, and a learning rate of 0.01 is constructed. The efficiency and accuracy measures

for all the experimented models are determined with:

• All the features,

• Selective features obtained through inbuilt feature importance method and

• Features obtained through proposed hybrid feature selection methods.
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The evaluation metrics are used to define the executing model’s performance. The residuals

which are obtained during the experiments are the variations between the predicted and actual values.

By observing the residual spread magnitude, the efficiency and the precision of the model are defined.

The evaluation measures obtained through the developed hybrid feature extraction process is found to

be better than the other experimented methods, which are depicted in Tables 3–5.

Table 3. Performance metric evaluation of machine learning models with all the dataset features.

Algorithm Name
The Performance Measure with All Features in the Dataset

MAE MSE RMSE R2 MAPE (%)

Random Forest 0.203 0.082 0.286 0.53 21.3
Decision Tree 0.481 0.378 0.614 0.48 48

Gradient Boosting 0.334 0.208 0.456 0.41 33

Table 4. Performance metric evaluation of machine learning models with algorithm inbuilt feature

importance method.

Algorithm Name

The Performance Measure with Algorithm Inbuilt Feature
Importance Method

MAE MSE RMSE R2 MAPE (%)

Random Forest 0.202 0.08 0.284 0.59 20
Decision Tree 0.356 0.225 0.474 0.50 35

Gradient Boosting 0.323 0.196 0.443 0.45 31

Table 5. Performance metric evaluation of machine learning models with the proposed hybrid feature

selection algorithm.

Algorithm Name

Performance Measure with CFS Filter and RF-RFE Wrapper
Feature Selection Method

MAE MSE RMSE R2 MAPE (%)

Random Forest 0.194 0.07 0.265 0.67 19
Decision Tree 0.341 0.182 0.426 0.55 33

Gradient Boosting 0.306 0.187 0.433 0.48 29

3.2. ML Algorithms Performance Estimation in Terms of Accuracy

Assessment of the model’s efficiency is a significant model enhancement procedure. It empowers

in analyzing the ideal framework for representing the information and executing the information for

fore coming iterations. Accuracy measure analyses the relativity of the forecasted value to the original

value. It is the rate of accurately predicted model predictions. Table 6 represents the experimented

model accuracy measures with all the features in the dataset, with particular features obtained

through the algorithm in-built feature_importance method and with the features obtained through

the proposed hybrid feature extraction procedure. The outcomes delineate the fact that the models

perform with better accuracy when tested with the proposed hybrid CFS-filter RF-RFE wrapper feature

selection algorithm.

Figure 4 graphically defines the performance metric results of the machine learning models with

all the features, with selective features obtained through algorithm inbuilt feature_importance method

and with the features obtained through the proposed hybrid feature selection method.

Figures 5–7 graphically represent the machine learning models’ accuracy using all the features in

the dataset for the specific features obtained through the feature importance method and the features

obtained through the proposed hybrid feature selection method. Figure 5a depicts the accuracy

measure of the gradient boosting algorithm using the features obtained by implementing the proposed

CFS RF-RFE feature selection method, which is 85.41%. Figure 5b defines the 84.4% accuracy measure
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attained using the gradient boosting algorithm’s inbuilt feature selection method. Figure 5c describes

the accuracy measure attained by the gradient boosting algorithm using all the features of the dataset,

which is 83.71%.

Table 6. Machine Learning Model Accuracy with the proposed hybrid feature selection algorithm.

Algorithm Name
Model Accuracy with

All Features in the
Dataset (%)

Model Accuracy with
Algorithm Inbuilt

Feature Importance
Method (%)

Model Accuracy with
CFS Filter and RF-RFE

Wrapper Feature
Selection Method (%)

Random Forest 90.84 90.94 91.23
Decision Tree 77.05 80.75 82.58

Gradient Boosting 83.71 84.4 85.41

Figure 4. Performance metric results of the machine learning models with (a) all dataset features,

(b) selective features through algorithm in-built feature importance method, (c) features obtained

through the proposed hybrid feature selection method.
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Figure 5. Gradient boosting model accuracy measure using: (a) proposed CFS RF-RFE feature selection

method, (b) algorithm in-built feature importance method, (c) all the features in the dataset.

Figure 6. Random forest model accuracy measure using: (a) proposed CFS RF-RFE feature selection

method, (b) algorithm in-built feature importance method, (c) all the features in the dataset.
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Figure 7. Decision-tree model accuracy measure using: (a) proposed CFS RF-RFE feature selection

method, (b) algorithm in-built feature importance method, (c) all the features in the dataset.

Figure 6a depicts the accuracy measure of the random forest algorithm using the features obtained

by implementing the proposed CFS RF-RFE feature selection method, which is 91.23%. Figure 6b

defines the 90.94% accuracy measure attained using the random forest algorithm’s inbuilt feature

selection method. Figure 6c describes the accuracy measure attained by the random forest algorithm

using all the features of the dataset, which is 90.84%.

Figure 7a depicts the accuracy measure of the decision tree algorithm using the features obtained by

implementing the proposed CFS RF-RFE feature selection method, which is 82.58%. Figure 7b defines

the 80.75% accuracy measure attained using the decision tree algorithm’s inbuilt feature_selection

method. Figure 7c describes the accuracy measure attained by the decision tree algorithm using all the

features of the dataset, which is 77.05.

3.3. Regression Performance Analyses—Diagnostic Plots

Concerning validation of the regression results of the machine learning models, using the

features from the developed hybrid feature extraction process, the regression diagnostic plots [48]

are constructed. Regression diagnostic plots enhance the exploratory performance of the regression

model through a set of accessible procedures to evaluate the legitimacy of the model. This assessment

might be an investigation of the model’s hidden statistical hypothesis or evaluation of model structure

by considering plans that have less or diverse illustrative factors. They also assist in investigating

subgroups of perceptions, searching for samples that are either ineffectively represented by the model,

such as the outliers or those having a comparatively massive impact on the regression model forecasts.

Residuals are generally leftovers of the resultant variable after fitting a model to data. However,
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residuals could indicate how ineffectively a model represents the data. They also uncover unexplained

patterns in the information by the experimented model. Utilizing these statistics, we can review if the

regression hypotheses are met and also enhance the model in an explorative manner. The diagnostic

plots represent residuals in four different ways, which are presented in Figure 8. This section compiles

the results obtained from the various machine learning models using the proposed hybrid CFS filter

and RF-RFE wrapper feature selection method and also evaluated the forecasting models against

various error measures. The following section discusses the results and future scope.

Figure 8. Residual diagnostic plots for regression analysis: (a) residuals vs. fitted plot, (b) normal Q–Q

plot, (c) scale-location plot, (d) residuals vs. leverage plot.

4. Discussion

As a point, this section discusses the results obtained from the proposed model and also it briefs

the future scope of the current study.

The residuals vs. fitted graph facilitates to observe the non-linear residual patterns. There can be

a non-linear relation among the actual and the predictor variable, and such patterns could appear in

these plots in case if the model does not catch them initially. The evenly distributed residuals about the

horizontal line without any definite patterns demonstrate non-linear relationships. Figure 8a shows

that the model data has met the linear regression assumptions well. There exists no distinctive data

pattern referring to the linear spread of data.

The Q–Q plot analyses if the residuals follow a normal distribution with minimum deviation.

It is better if the residuals interlined well on the straight line with minimum deviation. If the residual

tends to possess a higher magnitude than expected from a normal distribution, then the p-values and

confidence intervals fail to sufficiently account for complete data variability. Figure 8b depicts that
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the residuals are almost carefully plotted to the diagonal line indicating the normal distribution of

the residual. The scale location plot observes if residuals are dispersed evenly within the range of

the predictor. It enables us to verify the hypothesis of equal variance, i.e., homoscedasticity [49]. It is

better to have a horizontal line with arbitrarily distributed points. Figure 8c indicates that the residuals

are spread randomly. The residuals vs. leverage points enable to identify the most influential data.

All the outliers cannot be influential i.e., they may or may not create much importance to the regression

line. Cook’s distance enables to create a margin. The outliers with the highest Cook’s distance score

or those occurring outside the cooks’ distance are the influential outliers. Figure 8d delineates that

there exist no influential outliers. Thus, the regression diagnostic plots define the enhanced model

performance with the developed hybrid feature extraction process. A final reduced set of parameters

after the proposed hybrid feature extraction process is listed in Table 7.

In addition to the feature extraction methods, an exploratory data analysis process, namely

factor analysis is carried out to identify the influential variables or latent variables. It assists in data

interpretation by decreasing the number of variables. Factor analysis is a linear statistical model that

explains the variance among the observed variables, and the unobserved variables are called factors.

Factors are associated with multiple observed variables comprising of similar response patterns. It is a

process of investigating whether the variables of interest x1, x2 . . . xn are linearly related to the minimal

number of factors f1, f2 . . . fn. The primary objective of factor analysis is to minimize the observed

variables and identify the unobserved variables. Moreover, this can be achieved by utilizing the factor

extraction or factor rotation. Further, the proposed work factor analysis is implemented in python

using the factor_analyzer package. Before implementing the factor analysis, it is necessary to assess

the factorability of the dataset. Besides, this is determined using the Kaiser–Meyer–Olkin (KMO) test,

which measures the data suitability for factor analysis. It defines the adequacy for the entire model

and every observed variable. The KMO value varies from 0 to 1, where less than 0.1 is considered

inadequate. The overall KMO for the crop dataset is observed to be 0.82, indicating its effectiveness

in proceeding for factor analysis. The number of factors is defined based on the scree plot using

the eigenvalues. The scree plot process defines a straight line for every factor and its eigenvalue.

The variables whose eigenvalues are greater than one are considered as factors.

From the scree plot in Figure 9, it is observed that there are 32 factors whose eigenvalues are greater

than 1. These factors define a cumulative variance of 57%. Factor analysis explores massive datasets

and determines underlying associations, defining the group of inter-related variables. However,

more than one interpretation can be made from the same data factors. This method generates 32

decisive factors that are close to the number of features determined by our proposed feature extraction

method. The overall performance and the comparative results represent the fact that the proposed

feature extraction process produces enhanced performance results than the other feature extraction

process. Hence improves the predictive capability of the frameworks and their efficiency with lower

error measures of MAE, MSE, and RMSE and higher value of determination coefficient. The diagnostic

plots also result in delineating the enhanced exploratory performance of the models.
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Table 7. List of dataset parameters after the proposed hybrid feature selection algorithm.

S. No Final Set of Parameters Description
Normal

Acceptable Level
Units

1 QK2O Amount of potassium fertilizers utilized 15–20 Integer (kilogram/hectare)
2 Quantity rice Total production of rice in the study area 2.37–2.5 Integer (ton/hectare)
3 QNitro Amount of nitrogen fertilizers utilized 15–20 Integer (kilogram/hectare)
4 QP2O5 Amount of phosphorus fertilizers utilized 2–3 Integer (kilogram/hectare)
5 Vapor pressure The pressure administered by water vapor with its condensed phase in thermodynamic equilibrium 23.8–41.2 Integer (hectopascal)
6 Gross cropped area Total area planted to crops during all growing seasons of the year 195–220 Integer (hectare)
7 Net irrigated area Total geographic area that has acquired irrigation throughout the year 80–110 Integer (hectare)

8 Ground frost frequency
Number of days referring to the condition when the upper layer soil temperature falls below the water

freezing point
5–7 Integer (number of days)

9 Diurnal temperature range Difference between the daily maximum and minimum temperature 90–130 Integer (◦C)
10 Net cropped area Total geographic area on which the crop has been planted at least once during a year 175–200 Integer (hectare)
11 Precipitation Rain or water vapor condensation from the atmosphere 1400–1800 Integer (millimeter/year)
12 Gross irrigated area Total area under crops that have received irrigation during all the growing seasons of the year. 90–116 Integer (hectare)
13 Average temperature The average air temperature recorded in a particular location 21–25 Integer (◦C)
14 Wet day frequency The number of days in which a quantity of 0.2 mm or more of rain is observed. 45–55 Integer (number of days)
15 Area rice Total area planted for rice crop 35–40 Integer (hectare)
16 Potential evapotranspiration Quantity of evaporation occurring in an area in the presence of a sufficient water source 27–35 Integer (millimeter/day)

17
Reference crop

Evapotranspiration
The evapotranspiration rate from a crop reference surface that is not short of water 25–30 Integer (millimeter/day)

18 Maximum temperature The highest temperature of air recorded 21–37 Integer (◦C)
19 Humidity The quantity of water vapor in the atmosphere 60–80 Integer (percentage)
20 Wind speed The rate at which the air blows 40–50 Integer (miles/hour)
21 Minimum temperature The lowest temperature of air recorded 16–20 Integer (◦C)
22 K soil The potassium amount present in the soil ≥42 Integer (ton/hectare)
23 N soil The nitrogen amount present in the soil ≥48 Integer (kilogram/hectare)
24 P soil The phosphorus amount present in the soil ≥30 Integer (kilogram/hectare)

25 Aquifer area percentage
Percentage of the area covered by the aquifer. An aquifer is a body of permeable rock that can contain

or transmit groundwater.
55–60 Integer (percentage)
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Table 7. Cont.

S. No Final Set of Parameters Description
Normal

Acceptable Level
Units

26 Aquifer permeability
A measure of the rock property which determines how easily water and other fluids can flow through

it. Permeability depends on the extent to which pores are interconnected.
25–30 Integer (meter/day)

27 Pre–electrical conductivity Average pre-monsoon electrical conductivity of groundwater 55–60 Integer (siemens/meter)
28 Post-electrical conductivity Average post-monsoon electrical conductivity of groundwater 65–70 Integer (siemens/meter)
29 Groundwater pre-magnesium Average pre-monsoon magnesium level in groundwater 68–73 Integer (milligram/litres)
30 Groundwater post-magnesium Average post-monsoon magnesium level in groundwater 60–65 Integer (milligram/litres)
31 Groundwater pre-sodium The average pre-monsoon sodium level in groundwater 150–170 Integer (milligram/litres)
32 Groundwater Post-Sodium Average post-monsoon sodium level in groundwater 190–200 Integer (milligram/litres)
33 Groundwater pre-potassium Average pre-monsoon potassium level in groundwater 15–20 Integer (milligram/litres)
34 Groundwater post-potassium Average post-monsoon potassium level in groundwater 20–25 Integer (milligram/litres)
35 Groundwater pre-chloride Average pre-monsoon chloride level in groundwater 320–325 Integer (milligram/litres)
36 Groundwater post-chloride Average post-monsoon chloride level in groundwater 330–340 Integer (milligram/litres)
37 Yield rice The total quantity of rice acquired 2.0–2.5 Integer (ton)
38 Soil PH Acidity and alkalinity measure in the soil. 6–7 Integer
39 Topsoil depth The outermost soil layer rich in microorganisms and organic matter 0.5–0.75 Integer (meters)

S. No—Serial Number.
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Figure 9. Scree plot defining the number of factors for factor analysis.

Future Scope

However, in this study, we have considered a varied set of parameters, including climatic, soil,

and groundwater factors for forecasting crop yield. In the future, we can consider more extrinsic

variables related to pesticides and weed infestations. Further improvement of the statistical filter-based

selection using the adaptive prototype-based selection for improved performance can be considered.

A more defined hybrid feature selection measure with the combination of deep learning wrappers with

less complexity can be considered as an exciting area of research. As a part of the future work, we can

consider building an ensemble feature selection model by combining the CFS Filter approach with the

artificial neural network (ANN) based wrapper approach for agricultural applications. In another future

work, we can also consider building a stacked generalization model-based crop yield forecasting model,

using the features extracted through this proposed approach. Further, this stacked generalization

model can be built by using ANN as the meta-learner. The following section concludes the paper.

5. Conclusions

Agriculture is a predominant sector among the most arduous departments incorporating the

outcome of the analytical evaluation. Undoubtedly within an explicit sector, circumstances are

consistently varying, starting with one sector to another. There exists unstable weather, diverse soil

characteristics, persisting crop diseases, and pest infestations that influence crop yield and precision

agriculture. There is an overwhelming capacity for machine learning to reform agribusiness by

integrating various factors to forecast yield. Machine learning models secure a high degree to analyze

the factual information, translate the data achieved, giving more in-depth knowledge into the process.

To streamline the predictive model’s learning process and for the efficient representation of the dataset,

feature selection using various statistical measures is a crucial and significant stage. In this paper,

a hybrid feature extraction process to address the feature extraction problem in machine learning

models is proposed. A real-time dataset of soil, water, and climatic parameters from the Indian

water portal and directorate of rice development Patna is used for the current study. The models are

constructed in predicting the paddy crop yield for the interesting study area based on the climate,

soil, and hydrochemical properties of groundwater. A list of 45 features was considered for model

construction. Out of them, the most significant features for foreseeing the yield of crops in an interesting

study area is determined using a hybrid feature extraction strategy. The proposed hybrid statistical

feature extraction method is a mixture of CFS and RF-RFE wrapper, respectively. The filter method

is initially implemented using correlation measures to eliminate the superfluous and non-essential

features, which results in a reduced subgroup of features. These essential features obtained can be

subjected to the construction of an intelligent agrarian model for the crop prediction procedure.
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The advantage of the CFS filter among the other filter methods is the significantly shorter

computation time. A wrapper method is then enforced on the reduced subgroup of features to find the

feature set with high predictive accuracy. One of the essential highlights of the RF-RFE wrapper is

that it does not need any fine-tuning to obtain competing results. Experimental results also confirm

that the developed hybrid feature extraction method is superior to the other existing inbuilt feature

selector methods. In addition, the efficiency of the results with fewer error measures shows improved

prediction accuracy of the machine learning models.
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