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Abstract A singularly perturbed reaction-diffusion problem with a discontinuous source

term is considered. In Miller et al. (J Appl Numer Math 35(4):323–337, 2000) the authors

discussed problems that arises naturally in the context of models of simple semiconductor

devices. Due to the discontinuity, interior layers appear in the solution. The problem is solved

using a hybrid difference scheme on a Shishkin mesh. We prove that the method is second

order convergent in the maximum norm, independently of the diffusion parameter. Numerical

experiments support these theoretical results and indicate that the estimates are sharp.
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Introduction

Singularly perturbed differential equations (SPDEs) appear in several branches of applied

mathematics. Analytical and numerical treatment of these equations have drawn much atten-

tion of many researchers [1,2]. In general, classical numerical methods fail to produce good

approximations for these equations. Hence one has to go for non-classical methods. A good

number of articles have been appearing in the past three decades on non-classical methods

which cover mostly second order equations. Singularly perturbed second order problems

are classified on the basis that how the order of the original differential equation is affected
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if one sets ε = 0 [2]. Here ε is a small positive parameter multiplying the highest deriv-

ative of the differential equation. We say that a singular perturbation problem (SPP) is of

convection-diffusion type if the order of the differential equation is reduced by 1, whereas it

is called reaction-diffusion type if the order is reduced by 2. In this paper the second type is

considered. Various methods and applications are available in the literature in order to obtain

numerical solution to SPDE of (1) subject to boundary conditions when f (x) is discontin-

uous on Id [3–7]. In [8] the author examined singularly perturbed turning point problems

exhibiting two exponential boundary layers using appropriate piecewise uniform Shishkin

mesh and shown present method is layer resolving as well as parameter uniform convergent.

A singularly perturbed two-point boundary-value problems (BVPs) for second-order ordi-

nary differential equations (ODEs) arising in chemical reactor theory is proposed in [9] and

to develop a numerical solution, an asymptotic approximation is incorporated into a suitable

finite difference scheme. K. Mukherjee et al. [10] considered a singularly perturbed parabolic

convection-diffusion one-dimensional problem and the proposed numerical scheme consists

of classical backward-Euler method for the time discretization and a hybrid finite difference

scheme for the spatial discretization, which provided second-order spatial accurate. The same

author applied the similar technique to evaluate a class of singularly perturbed parabolic

convection-diffusion problems with discontinuous convection coefficients in [11]. S. Nate-

san et al. [12] proposed a shooting method on parallel architecture for singularly perturbed

two-point BVPs having less severe boundary layers. Two parameters singularly perturbed

second-order ordinary differential equation with a discontinuous source term is presented

in [13]. An appropriate piecewise uniform mesh is constructed to obtain parameter-uniform

error bounds for the numerical approximation. Farrell et al. [3] examined a second order

singularly perturbed reaction-diffusion equation in one dimension with discontinuity in the

non-homogenous term and author derived first order convergence using fitted mesh method

in shishkin mesh. In [4] the authors discussed parameter uniform schwartz method for the

same type of problem on a non-standard piecewise uniform fitted mesh generating first order

convergence in the maximum norm. Nevenka et al. [5] emphasized first order convergence

for the similar type of problem by using pseudo spectral technique. In [6] the author consid-

ered singularly perturbed boundary value problem (SPBVP) of reaction-diffusion type with

discontinuity at reaction co-efficient and non-homogenous term and obtained O(Ch +
√

ε)

using boundary value technique. In [14], the author used a hybrid finite difference scheme

for singularly perturbed convection-diffusion problem with discontinuous source term and

obtained improved results. In [7] the author used a Galerkin finite element method uses on

Shishkin and Bakhvalov-Shishkin-type of meshes is applied to a linear reaction-diffusion

equation with discontinuous source term and shown to be convergent, uniformly in the

perturbation parameter, of O((N−2 ln2 N )) for the Shishkin type mesh and O(N−2) for

the Bakhvalov-Shishkin type mesh. Motivated by [3,4,6,14] in the present paper we use

hybrid difference scheme to improve the order of convergence for a second order SPBVP

of reaction-diffusion type. The novel idea behind this problem is a jump at the interior layer

and discontinuity in reaction co-efficient occurs at the same point (d). This is well balanced

theory.

Through out this paper, C denotes a generic constant (sometime subscripted) that is inde-

pendent of the singular perturbation parameter ε and of N the dimension of the discrete

problem. Let us consider the singularly perturbed boundary value problem

Lε y(x) ≡ −εy′′(x) + b(x)y(x) = f (x), x ∈ Ω− ∪ Ω+ (1)

y(0) = y0, y(1) = y1, (2)
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where b(x) ≥ β > 0 is sufficiently smooth functions on Ω̄ satisfying the following con-

ditions, Ω− = (0, d), Ω+ = (d, 1), Ω = (0, 1) and ε is a small positive parameter. It is

assumed that f is sufficiently smooth on Ω \{d}. Further it is assumed that f (x) and its deriv-

atives have jump discontinuity at the point d ∈ Ω, the solution y of equations (1)–(2) does

not necessarily have a continuous second order derivative at the point d. Thus y �∈ C2(Ω).

But, y ∈ C1(Ω). It is convenient to introduce the notation for jump at d for any function y

as [y](d) = y(d+) − y(d−). These hypotheses guarantee the existence of a unique smooth

solution y of (1)–(2).

There is a vast literature dealing with numerical solution of reaction-diffusion problems

with sufficiently smooth functions b(x), f (x) see for instance [1,2]. So far, problems of

type (1)–(2) are considered in [2]. In [4] the authors analyzed parameter-uniform numeri-

cal methods for a singularly perturbed reaction-diffusion problem whose solution contain

strong interior layers caused by a discontinuity and proved that the convergence is of order

O(N−1 ln N ).

In this paper we will consider a hybrid difference scheme on a Shishkin mesh. The method

is shown to be second order convergent (O(N−1 ln N ))2. This method minimizes the error

compared to the existing method in literature for the considered problem. Numerical examples

are solved which coincides with the theoretical result.

Some Analytical Results

In this section, we derive a comparison principle for the following problem. Then using this

principle, a stability result for the same problem is derived.

Theorem 1 The problem (1)–(2) has a solution y ∈ C1(Ω) ∩ C2(Ω− ∪ Ω+).

Proof The proof is by construction. Let y1(x), y2(x) be particular solutions of the differ-

ential equations

−εy1
′′(x) + b(x)y1(x) = f (x), x ∈ Ω− and

−εy2
′′(x) + b(x)y2(x) = f (x), x ∈ Ω+.

Consider the function

y(x) =

{
y1(x) + (y(0) − y1(0))φ1(x) + Aφ2(x), x ∈ Ω−

y2(x) + Bφ1(x) + (y(1) − y2(1))φ2(x), x ∈ Ω+

where φ1(x), φ2(x) are the solutions of the boundary value problems

−εφ1
′′(x) + b(x)φ1(x) = 0, x ∈ Ω, φ1(0) = 1, φ1(1) = 0

−εφ2
′′(x) + b(x)φ2(x) = 0, x ∈ Ω, φ2(0) = 0, φ2(1) = 1

and A, B are constants to be chosen so that y ∈ C1(Ω). Note that on the open interval

(0, 1), 0 < φi < 1, i = 1, 2. Thus φ1, φ2 cannot have an internal maximum or minimum

and hence

φ1
′(x) < 0, φ2

′(x) > 0, x ∈ (0, 1).

We wish to choose the constants A, B so that y ∈ C1(Ω). That is we impose

y(d−) = y(d+) and y′(d−) = y′(d+).
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For the constants A, B to exist we require

∣∣∣∣
φ2(d) −φ1(d)

φ′
2(d) −φ1

′(d)

∣∣∣∣ �= 0

This follows from observing that φ2
′(d)φ1(d) − φ2(d)φ1

′(d) > 0. ⊓⊔

Then Lε satisfies the following maximum principle on Ω. Lε in (1)–(2) is solved by Shishkin

mesh in [1].

Theorem 2 (Maximum Principle) Suppose that a function y(x) ∈ C
0(Ω) ∩ C1(Ω) ∩

C2(Ω− ∪ Ω+) satisfies,

y(0) ≥ 0, y(1) ≥ 0,

Lε y(x) ≥ 0, ∀ x ∈ Ω− ∪ Ω+,

[y] (d) = 0,
[
y′] (d) ≤ 0,

T hen, y(x) ≥ 0, ∀ x ∈ Ω.

Proof Let p be any point at which y attains its maximum value in Ω̄ . If y(p) ≥ 0, there

is nothing to prove. Suppose that y(p) < 0, then the proof is completed by showing that

this leads to contradiction. With the above assumption on the boundary values, either p ∈
(Ω− ∪ Ω+) or p=d. In the first case y′′(p) ≥ 0 and so

Lε y(p) = −εy′′(p) + b(p)y(p) < 0

which is false. In the second case the argument depends on whether or not y is differentiable

at d. If y′(d) does not exist, then [y′](d) �= 0 and because y′(d−) ≤ 0, y′(d+) ≥ 0 it is

clear that [y′](d) > 0, which is a contradiction. On the other hand if y is differentiable at

d, then y′(d) = 0 and y ∈ C1(Ω). Recalling that y(d) < 0 it follows that there exists a

neighborhood Nh = (d − h, d) such that y(x) < 0 for all x ∈ Nh . Now choose a point

x1 �= d, x1 ∈ Nh such that y(x1) > y(d). It follows from the mean values theorem that, for

some x2 ∈ Nh ,

y′(x2) =
y(d) − y(x1)

d − x1
< 0

and also that for some x3 ∈ Nh ,

y′′(x3) =
y′(d) − y′(x2)

d − x2
=

−y′(x2)

d − x2
> 0

Note also that y(x3) < 0, since x3 ∈ Nh . Thus

Lε y(x3) = −εy′′(x3) + b(x3)y(x3) < 0

which is the required contradiction. Hence the proof of the theorem. ⊓⊔

An immediate consequence of the maximum principle is the following stability result.

Theorem 3 (Stability Result) Let y(x) be a solution (Pε), then

‖ y(x) ‖Ω ≤ max

{
| y(0) |, | y(1) |,

1

β
‖ f ‖Ω−∪Ω+

}

123



Int. J. Appl. Comput. Math (2015) 1:87–100 91

Proof Put Ψ±(x) = M ± y(x),

where M = max

{
| y(0) |, | y(1) |,

1

β
‖ f ‖Ω−∪Ω+

}
.

Then clearly Ψ±(0) ≥ 0, Ψ±(1) ≥ 0 and for each x ∈ (Ω− ∪ Ω+)

LεΨ±(x) = b(x)M ± Lε y(x) ≥ βM ± f (x) ≥ 0

Furthermore, since y in C1(Ω)

[Ψ±](d) = ±[y](d) = 0 and [Ψ ′
±](d) = ±[y′](d) = 0

It follows from the maximum principle that Ψ±(x) ≥ 0 for all x ∈ Ω , which leads at once

to the desired bound on y(x).

An immediate consequence of this result is that the solution y(x) of (Pε) is unique. To

establish the parameter-robust properties of the numerical methods involved in this paper,

the following decomposition of y(x) into smooth vε(x) and singular wε(x) components are

required. The smooth component vε(x) is defined as the solution of

Lεvε(x) = f (x) x ∈ (Ω− ∪ Ω+)

vε(0) =
f (0)

b(0)
, vε(d

−) =
f (d−)

b(d)
, vε(d

+) =
f (d+)

b(d)
, vε(1) =

f (1)

b(1)

and the singular component wε(x) is given by

Lεwε(x) = 0 x ∈ (Ω− ∪ Ω+)

[wε(d)] = −[vε(d)], [w′
ε(d)] = −[v′

ε(d)]
wε(0) = y(0) − vε(0), wε(1) = y(1) − vε(1)

As in Theorem 1, the singular component wε(x) is well defined and is given by

wε(x) =

{
wε(0)ψ1(x) + A1ψ2(x), x ∈ Ω−

B1ψ3(x) + wε(1)ψ4(x), x ∈ Ω+

where ψi (x), i = 1, 2, 3, 4 are the solutions of the boundary value problems

−εψ1
′′ + b(x)ψ1 = 0, x ∈ Ω−, ψ1(0) = 1, ψ1(d) = 0

−εψ2
′′ + b(x)ψ2 = 0, x ∈ Ω−, ψ2(0) = 0, ψ2(d) = 1

−εψ3
′′ + b(x)ψ3 = 0, x ∈ Ω+, ψ3(d) = 1, ψ3(1) = 0

−εψ4
′′ + b(x)ψ4 = 0, x ∈ Ω+, ψ4(d) = 0, ψ4(1) = 1

and A1, B1 are constants to be chosen so that the jump conditions at x = d are satisfied. One

can easily show that |A1|, |B1| ≤ C , where C is a constant independent of ε.

Using stability result, theorem 2 and the technique used in [3] the following theorem can

be proved.

Theorem 4 For each integer k, satisfies 0 ≤ k ≤ 4, the smooth vε and singular wε satisfy

the bounds.

| v(k)
ε (x) | ≤

{
C(1 + ε1−k/2e1(x)), x ∈ Ω−

C(1 + ε1−k/2e2(x)), x ∈ Ω+
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| w(k)
ε (x) | ≤

{
C(ε−k/2e1(x)), x ∈ Ω−

C(ε−k/2e2(x)), x ∈ Ω+

where C is a constant independent of ε and

e1(x) = e−x
√

(β/ε) + e−(d−x)
√

(β/ε), e2(x) = e−(x−d)
√

(β/ε) + e−(1−x)
√

(β/ε)

⊓⊔

Note that vε, wε /∈ C0(Ω), but y = vε + wε ∈ C1(Ω)

Mesh and Scheme

On Ω a piecewise uniform mesh of N mesh intervals is constructed as follows. The domain

Ω− is subdivided into the three subintervals. [0, τ1], [τ1, d − τ1] and [d − τ1, d] for some

τ1 that satisfies 0 < τ1 ≤
d

4
. On [0, τ1] and [d − τ1, d] an uniform mesh with

N

8
mesh

intervals is placed, while on [τ1, d − τ1] has a uniform mesh with
N

4
mesh intervals. The

subintervals [d, d + τ2], [d + τ2, 1 − τ2], [1 − τ2, 1] of Ω+ are treated analogously for

some τ2 satisfying 0 < τ2 ≤
1 − d

4
. The interior points of the mesh are denoted by

Ω N
ǫ =

{
xi : 1 ≤ i ≤

N

2
− 1

}
∪

{
xi :

N

2
+ 1 ≤ i ≤ N − 1

}
.

Clearly xN/2 = d and Ω
N

ε = {xi }N
0 . Note that this mesh is a uniform mesh when τ1 =

d

4
and τ2 = 1−d

4
. It is fitted to the SPP (1)–(2) by choosing τ1 and τ2 to be the following

functions of N and ε

τ1 = min

{
d

4
, 2

√
ε/β ln N

}

and

τ2 = min

{
1 − d

4
, 2

√
ε/β ln N

}
.

On the piecewise-uniform mesh Ω
N

ε a standard centered finite difference operator is used.

Then the fitted mesh method for (1)–(2) is

L N
c yi ≡ −εδ2 yi + b(xi )yi = f (xi ), ∀ xi ∈ Ω N

ε \ {d}, (3)

y(0) = y0, y(1) = yN , (4)

where

δ2 yi =
(

yi+1 − yi

xi+1 − xi

−
yi − yi−1

xi − xi−1

)
2

xi+1 − xi−1
,

At the point xN/2 = d we shall use the hybrid difference operator L N
t ;

L N
t yN/2 =

−yN/2+2 + 4yN/2+1 − 3yN/2

2h
−

yN/2−2 − 4yN/2−1 + 3yN/2

2h
= 0

123



Int. J. Appl. Comput. Math (2015) 1:87–100 93

L N yi =

{
L N

c yi , i �= N/2

L N
t yi , i = N/2,

(5)

y(0) = y0, y(1) = yN . (6)

Analysis of the Method

The matrix associated with (5)–(6) is not an M-matrix. We transform the equation so that the

new equation do have a monotonicity property. From equation (3)–(4) we can get

yN/2−2 =
(

fN/2−1 − bN/2−1 yN/2−1 −
ε

h

yN/2 − yN/2−1

h
+

ε

h2
yN/2−1

)h2

ε

yN/2+2 =
(

fN/2+1 − bN/2+1 yN/2+1 +
ε

h

yN/2+1 − yN/2

h
+

ε

h2
yN/2+1

)h2

ε

Inserting the expressions for yN/2+2 and yN/2−2 in L N
t gives

L N
T yN/2 =

(
(2 +

h2

ε
bN/2+1)yN/2+1 − 4yN/2 + (2 +

h2

ε
bN/2−1)yN/2−1

) 1

2h

=
(

fN/2+1 + fN/2−1

) h

2ε

Now clearly we have a system of equations

L N
H yi =

{
L N

c yi for i �= N/2

L N
T yi for i = N/2,

(7)

y0 = y(0), yN = y(1) (8)

As in this case of continuous problem, it is easy to prove the discrete maximum principle

and discrete stability result for the discrete problem of (7)–(8).

To bound the nodal error |y(xi ) − yi |, our method is similar to that of [15]. We define

smooth v̄i and singular w̄L ,i , w̄R,i components as follows.

v̄i =

{
vL ,i i = N/8, . . . , d − N/8,

vR,i i = d + N/8, . . . , 1 − N/8,

which approximate v(xi ) respectively to the left and to the right of the point of discontinuity

x=d. The singular component w̄L ,i and w̄R,i such that,

w̄L ,i =

{
wL ,1, f or i = 0, . . . , N/8

wL ,2, f or i = d − N/8, . . . , d − 1
and

w̄R,i =

{
wR,1, f or i = d + 1, . . . , d + N/8

wR,2, f or i = 1 − N/8, . . . , 1.

Then we construct mesh function w̄L ,i and w̄R,i (to approximate w(xi ) on either side of

x = d) so that the amplitude of the jump w̄R,i (d) − w̄L ,i (d) is determined by the size of the

jump |[v](d)|. Also w̄L ,i and w̄R,i are sufficiently small away from the interior layer region.

Using these mesh functions the nodal error |y(xi ) − yi | is then bounded separately outside

and inside the layer. Define the mesh function wL ,1, wL ,2, wR,1and wR,2 to the solutions of

the following system of finite difference equations
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L N
H w̄L ,i = 0, f or i = 0, . . . , N/8, and f or i = d − N/8, . . . , d − 1

L N
H w̄R,i = 0, f or i = d + 1, . . . , d + N/8, and f or i = 1 − N/8, . . . , 1,

vL ,N/2 + w̄L ,N/2 = vR,N/2 + w̄R,N/2,

L N
t vL ,N/2 + L N

t w̄L ,N/2 = L N
t vR,N/2 + L N

t w̄R,N/2.

Note that we can define yi to be

yi =

⎧
⎪⎨
⎪⎩

vL ,i + w̄L ,i , f or i = 0, . . . , N/8, and i = d − N/8, . . . , d − 1

vL ,i + w̄L ,i = vR,i + w̄R,i , f or i = d,

vR,i + w̄R,i , f or i = d + 1, . . . , d + N/8, and i = 1 − N/8, . . . , 1,

For smooth function based on the [2,16] we can obtain the result as |v(xi ) − vi | ≤ C N−2.

For the singular component using the arguments in [2]

|w(xi ) − w̄L ,i | ≤ C(N−1 ln N )2, i = 0, 1, . . . , N/8,

|w(xi ) − w̄R,i | ≤ C(N−1 ln N )2, i = 1 − N/8, . . . , N .

Based on the arguments [2,16] from the arguments in [2] we can prove the following result

except at x =d

|y(xi ) − yi | ≤ C(N−1 ln N )2, ∀ xi ∈ Ω \ {d} (9)

At the mesh point xN/2 = d

| L N
H yN/2 − Lε yN/2 | = | L N

H yN/2 −
(

fN/2+1 + fN/2−1

) h

2ε
|

= | L N
Υ yN/2 −

(
fN/2+1 + fN/2−1

) h

2ε
|

≤ |
yN/2−2 − 4yN/2−1 + 3yN/2

2h
|

+ |
−yN/2+2 + 4yN/2+1 − 3yN/2

2h
|

+ C | LyN/2−1 − L N
c yN

N/2−1 | +C | LyN/2+1 − L N
c yN

N/2+1 |

| L N
H yN/2 − Lε yN/2 | ≤

Ch2

ε3/2
= C

τ 2

ε3/2 N 2
.

Error Analysis

Theorem 5 Let y(xi ) be the solution of problem (Pε) and yi the solution of (P N
ε ). Then, for

N sufficiently large.

max
xi ∈Ω

N
ε

| y(xi ) − yi |≤ C(N−1 ln N )2

where C is a constant independent of ε and N.

Proof Consider the discrete barrier function Φd defined by

−εδ2Φd(xi ) + αΦd(xi ) = 0 ∀ xi ∈ Ω N
ε ,

Φd(0) = 0, Φd(d) = 1, Φd(1) = 0.
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From the discrete minimum principle on the separate intervals [0,d] and [d,1], one easily

derives that

0 ≤ Φd ≤ 1

and also

L N
ε Φd(xi ) = (a(xi ) − α)Φd(xi ) ≥ 0, ∀ xi ∈ Ω N

ε .

Define the ancillary continuous functions u1, u2 by

−εu1
′′ + αu1 = 0, u1(0) = 0, u1(d) = 1

−εu2
′′ + αu2 = 0, u2(d) = 1, u2(1) = 0.

Note that

u1(x) =
sinh(

√
αx/

√
ε)

sinh(
√

αd/
√

ε)
, u2(x) =

sinh(
√

α(1 − x)/
√

ε)

sinh(
√

α(1 − d)/
√

ε)

Define

ũ =

{
u1(x), x ∈ (0, d)

u2(x), x ∈ (d, 1)

Hence

L N
t ũ =

sinh

(√
α(d − 2h−)

√
ε

)
− 4sinh

(√
α(d − h−)

√
ε

)

2h−sinh

(√
αd

√
ε

) +
3

2h−

−
−sinh

(√
α(d − 2h+)

√
ε

)
+ 4sinh

(√
α(d − h+)

√
ε

)

2h+sinh

(√
αd

√
ε

) +
3

2h+

Based on [3] and the result, ρ =
√

αh
√

ε
, since

1 − e−x

x
is a decreasing function of x and

ρ ≤ 16(N−1lnN ). Here, h = h+ = h−.

We can obtain,

L N
t ũ ≤ −

C
√

ε
.

Note that by applying the results from [3] on the intervals [0,d] and [d,1] separately, if follows

that

| Φd(xi ) − u1(xi ) | ≤ C(N−1lnN )2, i ≤ N/2

| Φd(xi ) − u2(xi ) | ≤ C(N−1lnN )2, i ≥ N/2.

For i=N/2,

L N
t Φd(d) =

−Φd(d + 2h+) + 4Φd(d + h+) − 3

2h+ −
Φd(d − 2h−) − 4Φd(d − h−) + 3

2h−

= L N
t ũ ±

Ch2

ε3/2
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Table 1 Maximum point-wise errors E N
ε for various N and ε for the Problem 1

ε Number of mesh points

26 27 28 29 210 211 212

20 9.4457E-06 2.3496E-06 5.8596E-07 1.4631E-07 3.6555E-08 9.1372E-09 2.2836E-09

2−1 1.6971E-05 4.2045E-06 1.0464E-06 2.6102E-07 6.5181E-08 1.6286E-08 4.0694E-09

2−2 2.8416E-05 6.9985E-06 1.7368E-06 4.3260E-07 1.0795E-07 2.6963E-08 6.7394E-09

2−3 4.4001E-05 1.0782E-05 2.6690E-06 6.6403E-07 1.6561E-07 4.1352E-08 1.0331E-08

2−4 6.5088E-05 1.5996E-05 3.9676E-06 9.8817E-07 2.4659E-07 6.1591E-08 1.5390E-08

2−5 1.0164E-04 2.5466E-05 6.3757E-06 1.5955E-06 3.9909E-07 9.9802E-08 2.4967E-08

2−6 1.8221E-04 4.6322E-05 1.1684E-05 2.9348E-06 7.3549E-07 1.8410E-07 4.6062E-08

2−7 3.3434E-04 8.5744E-05 2.1692E-05 5.4587E-06 1.3691E-06 3.4284E-07 8.5778E-08

2−8 6.1044E-04 1.5637E-04 3.9591E-05 9.9695E-06 2.5010E-06 6.2635E-07 1.5673E-07

Table 2 Order of convergence for various N and ε for the problem 1

ε Number of mesh points

26 27 28 29 210 211

20 2.0072E+00 2.0036E+00 2.0018E+00 2.0009E+00 2.0002E+00 2.0004E+00

2−1 2.0131E+00 2.0065E+00 2.0032E+00 2.0016E+00 2.0008E+00 2.0008E+00

2−2 2.0216E+00 2.0107E+00 2.0053E+00 2.0026E+00 2.0014E+00 2.0003E+00

2−3 2.0290E+00 2.0142E+00 2.0070E+00 2.0035E+00 2.0017E+00 2.0010E+00

2−4 2.0247E+00 2.0114E+00 2.0054E+00 2.0027E+00 2.0013E+00 2.0007E+00

2−5 1.9969E+00 1.9979E+00 1.9986E+00 1.9992E+00 1.9996E+00 1.9991E+00

2−6 1.9758E+00 1.9871E+00 1.9932E+00 1.9965E+00 1.9982E+00 1.9988E+00

2−7 1.9632E+00 1.9828E+00 1.9906E+00 1.9953E+00 1.9976E+00 1.9988E+00

2−8 1.9649E+00 1.9817E+00 1.9896E+00 1.9950E+00 1.9975E+00 1.9987E+00

=
C
√

ε
+

C(N−1lnN )2

√
ε

L N
t Φd(d) ≤ −

C1√
ε

For N sufficiently large, consider the mesh function

W (xi ) = C2(N−1lnN )2 +
C3h2

ε
Φd(xi ) ± e(xi )

where C2 and C3 are suitably large constants. Hence for i �= N/2

L N
c W (xi ) = C2a(xi )(N−1lnN )2 + C3

h2

ε
(a(xi ) − α)Φd(xi ) ± L N

c e(xi ) ≥ 0

Hence for suitably large C2, C3, for i = N/2

L N
t W (d) ≤ 0.
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Fig. 1 Numerical Solution for N = 128 and ε = 10−3 for Example 1
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Fig. 2 Error graph for N = 128 and ε = 10−3 for Example 1

Thus, for N sufficiently large,

| y(xi ) − yi |≤ C(N−1lnN )2

which complete the proof. ⊓⊔
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Table 3 Maximum point-wise errors E N
ε for various N and ε for the Problem 2

ε Number of mesh points

26 27 28 29 210 211 212

20 4.5631E-05 1.1940E-05 3.0533E-06 7.7197E-07 1.9408E-07 4.8650E-08 1.2184E-08

2−1 4.9531E-05 1.3297E-05 3.4459E-06 8.7724E-07 2.2132E-07 5.5591E-08 1.3937E-08

2−2 6.5102E-05 1.6987E-05 4.3412E-06 1.0975E-06 2.7591E-07 6.9173E-08 1.7323E-08

2−3 1.0374E-04 2.6330E-05 6.6332E-06 1.6647E-06 4.1699E-07 1.0435E-07 2.6107E-08

2−4 1.6197E-04 4.0565E-05 1.0149E-05 2.5378E-06 6.3454E-07 1.5864E-07 3.9663E-08

2−5 3.0402E-04 7.6141E-05 1.9044E-05 4.7615E-06 1.1904E-06 2.9761E-07 7.4403E-08

2−6 6.2219E-04 1.5620E-04 3.9091E-05 9.7769E-06 2.4445E-06 6.1114E-07 1.5279E-07

2−7 1.2805E-03 3.2302E-04 8.0985E-05 2.0272E-05 5.0687E-06 1.2673E-06 3.1682E-07

2−8 2.6028E-03 6.6314E-04 1.6659E-04 4.1697E-05 1.0427E-05 2.6070E-06 6.5178E-07

Table 4 Order of convergence for various N and ε for the problem 2

ε Number of mesh points

26 27 28 29 210 211

20 1.9342E+00 1.9674E+00 1.9838E+00 1.9919E+00 1.9961E+00 1.9974E+00

2−1 1.8973E+00 1.9481E+00 1.9738E+00 1.9869E+00 1.9932E+00 1.9960E+00

2−2 1.9382E+00 1.9683E+00 1.9839E+00 1.9919E+00 1.9959E+00 1.9975E+00

2−3 1.9783E+00 1.9889E+00 1.9944E+00 1.9972E+00 1.9986E+00 1.9989E+00

2−4 1.9974E+00 1.9989E+00 1.9996E+00 1.9998E+00 1.9999E+00 1.9999E+00

2−5 1.9974E+00 1.9993E+00 1.9998E+00 2.0000E+00 2.0000E+00 2.0000E+00

2−6 1.9939E+00 1.9985E+00 1.9994E+00 1.9998E+00 2.0000E+00 2.0000E+00

2−7 1.9870E+00 1.9959E+00 1.9982E+00 1.9998E+00 1.9999E+00 2.0000E+00

2−8 1.9727E+00 1.9931E+00 1.9983E+00 1.9996E+00 1.9999E+00 2.0000E+00

Numerical Experiments

In this section we experimentally verify our theoretical results proved in the previous section.

Example 1 We consider the problem (1)–(2) with

b(x) = 1.0, f (x) =

{
0.7, x ≤ 0.5,

−0.6, x > 0.5,
and y(0) = 1, y(1) = 0.

Example 2 Consider the problem (1)–(2) with

b(x) =

{
(2x + 1), x ≤ 0.5,

(3 − 2x), x > 0.5,
f (x) =

{
−0.5, x ≤ 0.5,

0.5, x > 0.5,
and y(0) = y(1) = f (0)
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Fig. 3 Numerical Solution for N = 128 and ε = 10−3 for Example 2
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Fig. 4 Error graph for N = 128 and ε = 10−3for Example 2

The nodal errors and order of convergence are estimated using the double mesh principle

[17]. Define the double mesh difference to be

DN
ε = max

xi ∈Ω
N
ε

| yN
ε (xi ) − y2N

ε (xi ) |
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The rates of convergence ρN are computed from

ρN = log2

(
DN

ε

D2N
ε

)
,

In Tables 1 and 2, we present values of DN
ε and ρN for the Example 1 respectively (Figs. 1, 2).

Similarly in Tables 3 and 4, we present values of DN
ε and ρN for the Example 2 respectively

(Figs. 3, 4).
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