Header menu link for other important links
X
A Low Power Multiplier using a 24-Transistor Latch Adder
Published in Indian Society for Education and Environment
2015
Volume: 8
   
Issue: 19
Abstract
Background: Multiplication forms one of the most power hungry operations in a digital system. It is used extensively in the digital signal processing applications and in any general purpose processors. Hence, the efficient hardware realization of the multiplier is crucial in ensuring that the processors operate within the power limits and without getting overheated. Method: In order to make the multipliers more power efficient, ways have been found to curtail the spurious glitching in the internal nodes of the multiplier. Latch adder with the delay lines is used in the multiplier to equalize the delay of the partial products. Findings: In this paper, a novel 24 transistor Latch Adder (LA) is proposed. It is validated using the Wallace tree multiplier as a bench marking circuit. Wallace tree multiplier is implemented using the proposed latch adder and delay lines in the internal nodes. Comparison is made with the multipliers constructed using various full adder configurations available in the literature. Conclusion: It is proved that the proposed multiplier circuit achieves the power reduction of 20% compared to the multiplier using 16T full adder. The multiplier is simulated using the industry standard Cadence® Virtuoso tool in 180nm technology library files and the simulation results confirm the low power operation of the multiplier.
About the journal
JournalIndian Journal of Science and Technology
PublisherIndian Society for Education and Environment
ISSN0974-6846
Open AccessNo