Header menu link for other important links
X
A novel biocompatible conducting polyvinyl alcohol (PVA)-polyvinylpyrrolidone (PVP)-hydroxyapatite (HAP) composite scaffolds for probable biological application
Chaudhuri B, Mondal B, Ray S.K, Sarkar S.C.,
Published in Elsevier BV
2016
Volume: 143
   
Pages: 71 - 80
Abstract
We have prepared biocompatible composites of 80wt% polyvinyl alcohol (PVA)-(20wt%) polyvinylpyrrolidone (PVP) blend with different concentrations of bioactive nanohydroxyapatite, Ca10(PO4)6(HO)2 (HAP). The composite films demonstrated maximum effective conductivity (σ∼1.64×10(-4)S/m) and effective dielectric constant (ε∼290) at percolation threshold concentration (∼10wt% HAP) at room temperature. These values of σ and ε are much higher than those of PVA, PVP or HAP. Our preliminary observation indicated excellent biocompatibility of the electrospun fibrous meshes of two of these composites with different HAP contents (8.5 and 5wt% within percolation threshold concentration) using NIH 3T3 fibroblast cell line. Cells viability on the well characterized composite fibrous scaffolds was determined by MTT [3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay analysis. Enhancement of σ, due to HAP addition, was found to show increased biocompatibility of the fibrous scaffold. Enhanced σ value of the PVA/PVP-HAP composite provided supporting cues for the increased cell viability and biocompatibility of the composite fibrous meshes. Excellent biocompatibility these electrospun composite scaffolds made them to plausible potential candidates for tissue engineering or other biomedical applications.
About the journal
JournalData powered by TypesetColloids and Surfaces B: Biointerfaces
PublisherData powered by TypesetElsevier BV
ISSN0927-7765
Open Access0