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A B S T R A C T   

A numerical model of an amperometric-enzymatic uric acid biosensor for a non-relentless condition has been 
developed. This model depends on the arrangement of nonlinear reaction diffusion equations for Michaelis- 
Menten formalism that depicts the concentrations of substrate and product. The new rough scientific articula-
tions for the concentration of substrate (uricase enzyme) and product and the corresponding current response 
have been derived for all estimations of parameters utilizing the new perturbation technique. The non- 
dimensional numerical model of the amperometric biosensor can be effectively used to examine the re-
sponses. Moreover, the relative impact of these parameters is chosen by the Damkohler number and the impact of 
current density on this number likewise contemplated. All the analytical results are compared with simulation 
results using MATLAB program and the numerical outcomes concur with fitting hypotheses. Notwithstanding, 
strikingly the model likewise proposed that the choice of substrate and product for uric acid biosensor for the 
application of kidney disease and GOUT arthritis diseases.   

1. Introduction 

A biosensor is a logical gadget which utilizes a living being or natural 
particles, particularly proteins or antibodies, to recognize the presence 
of chemicals. Enzymes are the most widely recognized bio-recognition 
parts of biosensors. Numerous impediments still lie in the method for 
the boundless commercialization of biosensor framework. Endeavours 
have been made to get around the issue with enzyme-based framework 
[1]. An amperometric biosensor is a kind of bio-sensor that might be 
utilized to discover the concentration of some components of the ana-
lyte. These sensors measure the electrical capability of an electrode 
when no voltage is present. These kinds of biosensors have been 
generally utilized as a part of natural, restorative, modern, environ-
mental, medical and industrial applications [2]. For a long time, sig-
nificant exertion has been given to the innovative work of biosensors for 
the utilization of GOUT joint pain and kidney diseases. Alongside the 
preparation and the acknowledgment of the real sensor, the advance-
ment and investigation of a scientific model that guides in the compre-
hension of the conduct of the sensor is additionally critical [3–7]. 

As of late, amperometric electrochemical biosensors are exceedingly 
utilized for quick and precise identification [8]. The operations of 

electrochemical sensors are extremely straightforward and never influ-
ence the host material [9,10]. These biosensors, produces the output 
current in view of the detecting materials on the working electrode go 
about as an impetus and catalyse the redox response. Amid estimation, 
the electrode potential is kept constant while the current is observed. 
Improvement of biosensor is a tedious procedure, for which scientific 
and mathematical demonstration is utilized to decrease the streamlining 
time, cost and upgrade the logical qualities of a genuine biosensor [11]. 

The theoretical demonstration of biosensors includes unravelling the 
arrangement of linear/non-linear reaction-diffusion equations for sub-
strate and product with a term containing a rate of bio-catalytical 
change of substrate. The intricacies of modelling emerge because of 
settling the partially differential equations with non-linear reaction term 
and with complex starting and boundary conditions. The modelling of 
biosensor is broken down by numerical [12] and analytical methods of 
partial differential equation with various boundary conditions. As of 
late, a hypothetical model of a pH-based potentiometric biosensor was 
derived [13]. A few scientists exhibited the arrangement of relentless 
state substrate concentration in the action of biosensor response with 
blended enzyme kinetics under a Michalis-Menten conspire [14] and the 
scientific answers for the unfaltering state current at a micro disk 
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chemical sensor [15]. As of late, the concentration profile of the product 
of the enzyme reaction and the electrode current for all estimations of 
Michalis-Menten constant using the Homotopy perturbation method 
was determined [16]. 

Numerical simulations were produced for modelling the reaction and 
diffusion processes that emerge in the functional enzyme membranes of 
such systems. These simulations represent some sort of virtual exami-
nations and they enabled it to get understanding into the concentration 
profiles and fluxes of substrate and product species and attributes to the 
final response characteristics of enzyme-based sensors and reactors 
[17–21]. In this paper, we set forward the rough analytical expressions 
for the amperometric biosensor prepared by RF sputtering technique on 
a Pt electrode adjusted with NiO film with urease as an immobilized 
enzyme which is taken as a product and substrate [22]. 

Dissimilar to past numerical models, this work meant to mathemat-
ically demonstrate the influence of uric acid on the performance of an 
uricase enzyme-based amperometric bio-biosensor. As far as anyone is 
concerned, no general and broad articulations/expressions for the con-
centration of substrate, product and dimensionless current for the 
diffusion parameters have been accounted for. The motivation behind 
this article is to derive a systematic/analytical expression for substrate, 
product concentrations and current using non-linear equations and 
analysis of substrate concentration with current was done by utilizing 
kinetics of enzymatic reactions which is more influenced by Damkohler 
number. This kind of model is much reasonable for the determination of 
substrate and other parameters for the advancement of enzyme based 
uric acid biosensor for the application of GOUT arthritis (joint inflam-
mation) and kidney diseases. 

2. Mathematical formation of the problem 

In this present work, we contemplate indicative structure in 
perspective of an enzyme-containing mass film of thickness T that con-
tains a uniform aggregate concentration of the enzyme TCe which is 
touched on one side with an aqueous solution of the substrate ??a. 

During electrochemical transformation, the product is produced at 
the electrode. The rate of the product formation at the electrode is 
corresponding to the rate of conversion of the substrate. At the point, 
when the substrate is well-stirred outside the membrane, then at that 
point thickness of the diffusion layer stays steady [23]. 

The substrate molecules diffuse into the film stage where they react 
according to the Michaelis-Menten write catalyst catalyzed response to 

Fig. 1. Plot between dimensionless concentration (u) and distance for α ¼ 0.01.  

Fig. 2. Plot between dimensionless concentration (u) and distance for α ¼ 1.  

Fig. 3. Plot between dimensionless concentration (v) and distance for α ¼ 0.01.  
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yield an electro dynamic product ?? By considering non-linear time 
dependent reaction diffusion equation for menten’s constant, the 
equation is derived as follows [24], 

TCe þ Sa ⇔
K1;K2

TCeSa→
K3

Prωep (1)  

Km ¼
K2 þ K3

K1
(2)  

where TCeSa is the interposed enzyme-substrate complex, ω is the 
number of product species obtained per substrate molecule, ??1, ??2, 
and??3 are the rate constants of the individual partial reactions, and ??m 
is the Michaelis constant characterized in (equation (2)). The impact on 
reaction and diffusion processes for the species Sa and ep in the enzyme 
membrane are accompanied by the following nonlinear governing 
equation, 

∂½Sa�em

∂t
¼Ms

∂2
½Sa�em

∂x2 � K3½TCe� �
½Sa�em

½Sa�em
þ Km

(3)  

∂
�
ep
�

em

∂t
¼Mp

∂2�ep
�

em

∂x2 þ ωK3½TCe� �
½Sa�em

½Sa�em
þ Km

(4)  

where ½Sa�em 
and ½ep�em 

are the concentration of the species in the enzyme 
layer, Ms and Mp are the corresponding diffusion coefficients, ω is the 
number of product species obtained per substrate molecule, and K3 is the 
rate constant for the irreversible step of product formation [18,19]. 

Presently, (3) are solved by assuming the zero fluxes at ?? ¼ 0 and of 
equilibrium distribution at x ¼ q and the underlying state is given by the 
zero concentration (in the reference19, 20) 

Fig. 4. Plot between dimensionless concentration (v) and distance for α ¼ 1.  

Fig. 5. Plot between dimensionless concentrations (u and v) and distance (X).  Fig. 6. Plot between dimensionless concentration current (¥) and dimension-
less time for the various values of γ and fixed value of α (α ¼ 0.01). 
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∂½Sa�em

∂t
¼ 0;

∂
�
ep
�

em

∂t
¼ 0 where x ¼ 0

½Sa�em
¼ Rs½Sa�aq

;
�
ep
�

em
¼ Rp

�
ep
�

aq
where x ¼ q

½Sa�em
¼ 0; ½Sa�em

¼ 0 when t ¼ 0

9
>>>>>>=

>>>>>>;

(5)  

The flux of the product species at x ¼ q is described by the following 
equation, 

Fp ¼ � Mp
∂
�
ep
�

em

∂x
(6)  

Again by considering the condition (equation) 1 by joining the enzyme- 
catalyzed reaction in the enzyme layer with the one-dimensional-in- 
space diffusion (by Fick’s law), the equation is derived as follows, 

∂TCe

∂x
¼Ms

∂2TCe

∂x2 þ
Vmaxep

Km þ ep
; o < x < d (7)  

∂ep

∂x
¼Mp

∂2ep

∂x2 þ
Vmaxep

Km þ ep
; o < x < d (8)  

Where x and d represents space and the thickness of the enzyme layer 
respectively, Ms and Mp are the diffusion coefficients of the substrate 
and product respectively. Electrode surface is represented by x ¼ 0 plane 
and x ¼ d represents the bulk solution (mass arrangement)/membrane 
interface. 

TCeðx; 0Þ¼ 0; TCeðd; 0Þ ¼ TCe0; 0 � x < d (9)  

epðx; 0Þ¼ 0; 0 � x � d (10)  

Where TCe0 is the concentration of substrate in the bulk solution. 
Therefore, the concentration of substrate as well as the product over 

the enzyme surface (bulk solution/membrane interface) stays steady 
while the biosensor interacts with the solution of substrate. This is uti-
lized as part of boundary conditions o < t < T given by: 

Mp¼
∂ep

∂xx¼0
¼ � Ms

∂TCe

∂xx¼0
(11) 

The current is estimated as a response of the biosensor and the 
density I (T) can be acquired unequivocally from Faraday’s law and 
Fick’s law utilizing the flux of the concentration S at the surface of the 
electrode: 

IðTÞ ¼ neFMs
∂TCe

∂xx¼0
(12)  

2.1. Non-dimensional form for equation (6) 

The Non dimensional Form of the Problem (for equation (6)) can be 
formulated by utilizing and formulate the partial differential equations 
(equation (3)) in dimensionless form by defining the following 
parameters: 

u¼
½TCe�em

Ks½½TCe�aq

i; v ¼
�
ep
�

em

Ks½½TCe�aq

i;X ¼
x
d
;∝ ¼

Ks½TCe�aq

Km
; β ¼

Kp
�
ep
�

aq

Km
; γ

¼

ffiffiffiffiffiffiffiffi

Kd2

Ms

s

(13)  

Where ?? and V represents the dimensionless concentration of substrate 
and product, ?? and ?? are saturation parameters, and ?? is the reaction 
diffusion parameter (like in Thiele modulus). Presently, the boundary 
conditions (limit conditions) might be displayed as takes after (from 
Ref. [19]) 

∂u
∂X
¼ 0;

∂v
∂X
¼ 0 when X ¼ 0 (14)  

u¼ 1; v ¼
β
∝

when X ¼ 1 (15)  

From the above equation (condition), the standardized flux becomes 

ϕ ¼
Fpd

DKs½TCe�aq
(16)  

Analytical Expressions for substrate and product Concentrations and 
Current for all Values of Parameters are formulated by utilizing Laplace 
transform technique and new Homotopy perturbation method (See 
Appendix A in reference 20), 

uðx; τÞ¼ cosh
ffiffiffiffiffi
ax
p

cosh
ffiffiffi
a
p �

X∞

m¼0

πð� 1Þm 2mþ 1Þ
fm

e� ðfmτÞ cos
ð2mþ 1ÞπX

2
(17)  

vðx; τÞ ¼
�β

αþ γ
�

0

B
B
B
@

1 �
4
π
X∞

m¼0

2

6
6
6
4

�
� 1m

2mþ 1

�

e
�

 

π2 ð2mþ1Þ2
4

!

τ

� cos
ð2mþ 1ÞπX

2

3

7
7
7
5

1

C
C
C
A

(18) 

The expression for the dimensionless current (flux) is given by 

ϕ¼
�β

αþ v
�

2

6
6
6
4

X∞

m¼0
2ð� 1Þme

ð� π2 ð2m� 1Þ2Þτ
4

3

7
7
7
5
� γ

"
ffiffiffi
a
p

tanh
ffiffiffi
a
p

þ
X∞

m¼0

2π2ð2mþ 1Þ2eð� fmÞτ

π2ð2mþ 1Þ2 þ 4a

#

(19)  

2.2. Non-dimensional form for equation (12) 

The accompanying parameters are utilized to convert the above 
Equations (7) and (8) into normalized (standardized) form. 

Fig. 7. Plot between substrate concentration (μm) and current (mA).  

P. Parthasarathy and S. Vivekanandan                                                                                                                                                                                                    



Informatics in Medicine Unlocked xxx (xxxx) xxx

5

TCe¼
TCe

Km
; ep ¼

ep

Km
; x ¼

x
d
; t ¼

Mst
d2 ; R ¼

Mp

Ms
(20) 

Using the above normalizing parameters, the equation for depletion 
rate of substrate can be composed as: 

dTCe

dt
¼

d2TCe

dx2 þ ε2
�

ep

1þ ep

�

(22)  

ε2 ¼
vmaxd2

MsKm
(23)  

Where ε2 is the Damkohler number. 
Damkohler number is additionally named as diffusion modulus 

which is utilized to compare the rate of enzyme reaction 
�

vmax
Km

�

with the 

rate of diffusion through the enzymatic layer 
�

Ms
d2

�

. In this entire strat-

egy, if Damkohler number is under 1 then the enzyme kinetics controls 
the biosensor response. Furthermore, if the Damkohler number is more 
noteworthy than 1 then the diffusion rate controls the biosensor 
response. 

The dimensionless form of Equation (12) is standardized I0 ¼ Fvmaxd 
to give: 

I*ðT*Þ¼
IðTÞ

I0
¼

neMsKm

vmaxd2 �
∂TC*

e

∂x*
x*¼0

(24)  

3. Results and discussion 

Equations (17) and (18) represents the analytical equation for the 
concentrations of all parameters and equation (19) represents the 
dimensionless current expression. 

Fig. 1 and Fig. 2 demonstrates the plot between the substrate con-
centration u and dimensionless distance in the amperometric bio-sensor 
for the different estimation of parameters like α and γ. The diffusion 
reaction parameter γ is the marker between the reaction and diffusion. 
At the point when ?? is small, the kinetics dominates and the uptake of 
the substrate is kinetically controlled. Form Fig. 1, we notice that, when 
we expand the diffusion parameter γ it commonly increments the sub-
strate concentration values u, similarly when there is increment in γ, the 
concentration of the substrate u decreases despite the fact that the value 
of α in increases. Now from Figs. 3 and 4, concentration of the product 
decreases, when there is a decrease in the γ value for the constant 
α ¼ 0.01. Despite in fact that there is an increase in α value from 0.01 to 
1, the concentration v decreases for the all values of γ. This reveals that 
the parameters γ and α has high influence on diffusion. 

Fig. 5 demonstrates the plot between the dimensionless concentra-
tion of the substrate and product for the approximate values of the pa-
rameters (α and γ) and dimensionless distance. From which we can 
comprehend that, at time ?? ¼ 0, the film surface at X has come in 
contact with a substrate sample and the substrate molecules at that point 
begin to diffuse into the enzyme layer. 

Fig. 6 demonstrates the diagram between the dimensionless current 
and dimensionless time for various values of the diffusion-reaction pa-
rameters ?? (γ ¼ 1.2, 1.3, 1.4) and for some ?? (α ¼ 0.01) and the 
figure reveals that the value of the current increments as ?? increments. 
For the similar examination of substrate and product concentration we 
used the Michaelis-Menten constant and non-linear diffusion equations 
(equations (20) and (21)). The positive impact of these parameters is 
based on the non-dimensional number called Damkohler number, which 
is the proportion of diffusion and enzymatic rate and it’s furthermore 
noticed that in Fig. 7, current density increases with decrease in Dam-
kohler number and the other way around. 

4. Conclusion 

The dimensionless numerical examination of an amperometric 
biosensor and its current concentration behaviour depending on the 
Damkohler number was studied. The nonlinear diffusion-reaction 
equations have been unraveled numerically. Also we have procured 
the analytical expressions for the substrate, product concentrations and 
current. The analytical results will be utilized for deciding the kinetic 
characteristics of the biosensor. The hypothetical model displayed here 
can be used for the plan improvement of the biosensor. Moreover, in 
light of the result of this work, there is a possibility of stretching out the 
method to locate the inexact measure of substrate concentration, prod-
uct concentrations and current for the diffusion process. It has been 
discovered that the current density increments with the decline in 
Damkohler number and the other way around. 
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