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a b s t r a c t

Parkinson’s disease (PD) is a movement disorder that affects the patient’s nervous system and health-care

applications mostly uses wearable sensors to collect these data. Since these sensors generate time

stamped data, analyzing gait disturbances in PD becomes challenging task. The objective of this paper

is to develop an effective clinical decision-making system (CDMS) that aids the physician in diagnosing

the severity of gait disturbances in PD affected patients. This paper presents a Q-backpropagated time

delay neural network (Q-BTDNN) classifier that builds a temporal classification model, which performs

the task of classification and prediction in CDMS. The proposed Q-learning induced backpropagation

(Q-BP) training algorithm trains the Q-BTDNN by generating a reinforced error signal. The network’s

weights are adjusted through backpropagating the generated error signal. For experimentation, the pro-

posed work uses a PD gait database, which contains gait measures collected through wearable sensors

from three different PD research studies. The experimental result proves the efficiency of Q-BP in terms

of its improved classification accuracy of 91.49%, 92.19% and 90.91% with three datasets accordingly com-

pared to other neural network training algorithms.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Parkinson’s disease (PD) affects the nervous system of the

patients by destroying neurons in the brain that produce a chemi-

cal named dopamine. The dopamine is responsible for sending

messages to the brain for movement co-ordination [1–3]. Thus,

most of the PD affected patient’s exhibit movement disorders

resulting in the postural instability or walking disturbances [1,2].

The symptoms of PD include muscle stiffness, tremors, and

changes in speech and gait [2]. Many research studies provide

detailed investigations about the PD symptoms [3]. In general, a

gait cycle also referred as stride contains one stance phase and

one swing phase [1,2]. The stance phase represents the period at

which the foot strikes on the ground. The swing phase represents

the period at which the same foot lifts up the floor. A normal per-

son’s walking constitutes repetition of this gait cycle and a normal

human being approximately takes 60% of stance phase and 40% of

swing phase [4]. PD patients often show disturbances and varia-

tions in this gait cycle. This work analyses the gait disturbances

to identify its severity in PD.

In [5–8] the authors have presented an experimental study that

examines the associations between the walking speed and varia-

tions in the gait. The authors have observed that for PD patients,

there is a decrease in the stride length and average swing time

and an increase in the stride and swing time variations. The impact

of PD in terms of movement disabilities is measured using several

rating scales namely Unified Parkinson Disease (UPDRS), Hoehn

and Yahr Scale, modified UPDRS [9–11]. In [12] the authors have

evaluated the severity level of PD by characterizing the leg swift-

ness task. The authors have investigated an association between

the angular amplitude and speed of thigh motion with UPDRS

scores.

Though, there are several studies [5–14] done to analyze the

movement disorders in PD patients there are still many challeng-

ing areas of research in this domain due to the time stamped nat-

ure of PD data recorded through most of the wearable sensors.

1.1. Outline of the paper

This paper aims in developing a clinical decision-making

system (CDMS) that uses an effective classification model for diag-

nosing the severity of gait disturbances in PD. This work presents a

Q-backpropagated time delay neural network (Q-BTDNN) classifier

for building a classification model. Q-BTDNN is a dynamic feed
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forward time delay neural network (TDNN) in which the learning is

done using the proposed Q-learning induced backpropagation

(Q-BP) technique. The proposed work is experimented with time

stamped gait database acquired through wearable sensors. The

experimental result, prove the effectiveness of the presented clas-

sifier in terms of its improved classification accuracy and reduced

error rates.

2. Related works

In this section, few existing research work related to this paper

is reviewed. Cole et al. [15] have presented dynamic machine-

learning algorithms for monitoring the tremor severity and dyski-

nesia by analyzing signals collected from PD patients wearing

small numbers of hybrid sensors. The authors have designed

dynamic algorithms in pattern classification, neural networks, sup-

port vector machines and Hidden Markov Model (HMM). The

experimental data were collected from eight PD patients and four

healthy individuals through wearable sensors by allowing them to

do unplanned and unrestricted daily living activities. The experi-

mental results show that the performance of all the presented

dynamic algorithms is equally effective in reducing the error rates.

Wangr and Jiang [16] have presented an incremental learning

classification model based on fuzzy clustering algorithm and prob-

abilistic neural networks for sensor-based human activity recogni-

tion. The presented classifier has the ability to adapt and

incrementally learn from the training data. The system effectively

performs classification with incremental data and proves its effi-

ciency in terms of its learning ability and accuracy. Mazilu et al.

[17] have investigated the performance of feature learning process

for detecting freezing of gait (FOG) in PD patients. Three features

namely statistical features, time-domain and unsupervised based

on principal components analysis were considered. The experi-

ments were conducted with acceleration data acquired from ankle

of patients suffering with FOG. The experimental results prove that

the statistical and time-domain features outperform the unsuper-

vised feature extraction process.

Michael et al. [18] have presented an evolutionary algorithm,

namely sliding window genetic programming (SGP) and Artificial

biochemical networks (ABN) to classify the movement characteris-

tics of Parkinson disease patients. SGP is used to capture move-

ment patterns within a cycle. ABN is used to capture dynamical

patterns occurring during time scales. Two-thirds of the clinical

recordings are placed in a training set for fitness evaluation. The

other third of the data is used to evaluate the classifier. Though,

both the techniques effectively classify PD patients and control

patients the SGP classifier outperforms ABN. The advantage of

using evolutionary algorithms is to produce patterns that human

might not notice.

Ene [19] have presented an application of probabilistic neural

network (PNN) for classifying healthy and PD subjects. The PNN

model based on three searches namely incremental search (IS),

Monte Carlo search (MCS) and hybrid search (HS) were used in

the classification process. The experimental study was conducted

with biomedical voice measures data for twenty-five PD patients

and six normal person obtained through UCI repository. From the

experimental results, it can be inferred that there is no significant

differences between three searches, however; the use of hybrid

heuristic approach can improve the classification results.

Little et al. [20] have presented a classification technique named

Kernel based Support Vector machine to diagnose the PD by iden-

tifying dysphonia. For experimentation, the authors used sustained

phonations from 23 PD patients and 8-control person. It was

observed that the new dysphonia measure introduced such as

pitch period frequency along with another ten measures provides

improved classification accuracy, which is recommended in many

telemonitoring applications. Rigas et al. [21] have presented a

study to illustrate that a hidden Markov model (HMM) is well sui-

ted for identifying tremors since they mostly represents temporal

dependencies. They have experimented with ten patients and thir-

teen control subjects daily activity accelerometer data. Djuric-

Jovicic et al. [22] have presented a thresholding technique and a

neural network to classify PD patients based on their walking pat-

terns. This distinguishes the normal walk and shuffling steps. For

experimentation, the data were acquired using a set of six inertial

measurement units attached to the subjects’ legs (i.e. thigh and

shin) as well as their feet. The movements of four patients for

thirty minutes were collected and used to train a neural network.

The error rate of the training process obtained depends on the

choice of threshold.

Das [23] has presented a comparative study about various clas-

sification methods, namely Decision Tree, Neural Networks,

DMneural and Regression for diagnosing PD disease. For experi-

mentation, the authors have used biomedical voice measurements

from PD patients who are suffering from speech disorder. From the

experimental results, it was observed that neural network outper-

forms other classifiers in terms of its classification accuracy. Ahl-

richs and Lawo [3] have presented a detailed review that

discusses about various techniques used in diagnosing PD based

on motor symptoms from times series data. The authors have pro-

vided detail descriptions about the accuracies and error rates with

respect to the experimental data they have considered. Waibel [24]

has proposed a time delay neural network for identifying the tem-

poral relationships among the acoustic–phonetic features.

Comparing to the works discussed in the literature the proposed

work is different in following ways: This work proposes a reinforced

Q-learning backpropagation algorithm to train the TDNN in an

incremental way. During the training process, the network weights

are adjusted based on the reinforced backpropagated error signal.

The temporal ordering among the observed gait patterns of each

subjects are considered in diagnosing the severity conditions of

the gait disturbances in PD.

3. Materials and methods

This section describes the dataset and methods used in the pre-

sented temporal data mining framework.

3.1. Dataset description

For experimentation, this work uses the PD gait database [25]

that contains data collected in the Unit of the Tel-Aviv Sourasky

Medical Center at the Laboratory for Gait & Neurodynamics, Move-

ment Disorders. This database consists of three PD datasets used in

research studies [5–8]. Totally, this database stores 93 PD subjects

and 73 control subjects. Each person involved in the study is

referred as a subject. In the data acquisition, a computerized

force-sensitive wearable sensor from Ultraflex Computer Dyno

Graphy, Infotronic Inc. [25] measures the stride-to-stride varia-

tions and gait of a subject. The wearable sensor consists of a pair

of shoes each of which contains eight sensors that is placed in

the insole. The subjects were asked to wear those shoes and walk

using different styles such as treadmill walking, unassisted walk-

ing on a ground level, walking on a ground level using walker,

dual-task walking. The vertical ground reaction force (VGRF) from

each sensor measured in newtons is recorded in the attached

memory card.

These walking (gait) patterns of the PD subjects and normal

subjects were observed for 2 min. The sensor generates output

for every 0.01 s and for each subject 12,000 observations were
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considered. The detailed mode of the study and statistical analysis

were discussed in [5–8] which provide detail descriptions of the PD

data considered in this work. Table 1 describes an overview of the

data that were used by the authors in their study [6–8]. Table 2

provides the descriptions of the attributes in the datasets.

The time stamped data in Table 2 and few non time-stamped

data, such as the medical identity, gender, age, height (m), weight

(kg), Hoehn Yahr were considered in this work for experimentation.

3.2. Methods

The PD dataset used in this work is a time series data that

describes a temporal sequence of observations on each subject

walking pattern. To build a classification model for this time series

data, this work presents a Q-BTDNN classifier that is trained using

the proposed Q-BP algorithm. The trained classification model is

used in CDMS for predicting the gait disturbances in PD. The fol-

lowing sections provide a detail description about the presented

Q-BTDNN structure, the proposed Q-BP algorithm and its applica-

tion in predicting the severity of gait disturbances in PD.

3.2.1. Q-BTDNN structure and Q-BP learning algorithm

The traditional TDNN [24] is a biologically inspired neural net-

work that is used to model time-series data. TDNN interprets the

temporal sequence effectively by relating the inputs in different

time points. Q-BTDNN presented in this work is a feed forward

time delay neural network (TDNN) in which the training is done

using the proposed Q-learning induced backpropagation (Q-BP)

technique. Q-BP functions in an incremental way by combining

the relative advantages of both the reinforced Q-learning [26]

and backpropagation [27]. The network structure for Q-BTDNN

shown in Fig. 1 includes three layers, namely tapped delay input

layer, computational layer and reinforced feedback layer.

The tapped delay input layer feeds the inputs from a clinical

time-series data. The input (I1, . . ., Iy) refers to a clinical examina-

tion (or an attribute) that describes the medical test taken from a

person (subject) where I1 refers to first input attribute and ‘y’ refers

to the total number of attributes. Each input is observed succes-

sively at different time points (t, t � d, t � 2d, . . .), where ‘d’ refers

to the delay between each time point.

The computational layer comprises of hidden and output layers.

The configuration of this layer relies on the chosen application. The

presented work adopts the computational layer of two hidden

layer with 240 hidden nodes, 120 hidden nodes respectively and

an output layer with four nodes. The error tracker keeps track of

the weights for which minimum error is achieved. The reinforced

feedback layer generates a reinforced error signal using the Q-

learning technique, which is backpropagated on the network to

adjust the network’s weights.

The traditional backpropagation (BP) learning technique [27,28]

minimizes the classification error by adjusting the network’s

weights through backpropagating the error obtained for each

training input instance. This work presents a Q-BP learning algo-

rithm to train the Q-BTDNN. The difference between the traditional

BP and Q-BP lies in the mode of propagating the error and adjust-

ing the weights. In Q-BP instead of directly backpropagating the

error, we generate a reinforced error signal using Q-learning prin-

ciple and then backpropagate. The weight updations are done

based on this reinforced error signal. The proposed algorithm

Table 1

Dataset overview.

Dataset study Subjects Total subjects Female Male

Ga [6] PD 29 9 20

CO 18 8 10

Si [7] PD 35 13 22

CO 29 11 18

Ju [8] PD 29 13 16

CO 26 14 12

Table 2

Dataset description.

Column Description Units

1 Time Seconds

2–9 Measured Vertical ground reaction force (VGRF) from

each of eight sensors (L1–L8) in left leg

Newton

10–17 Measured Vertical ground reaction force (VGRF) from

each of eight sensors (R1–R8) in Right leg

Newton

18 Total force under the left leg Newton

19 Total force under the Right leg Newton
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Fig. 1. Q-BTDNN structure for predicting gait disturbances in PD.

Y. Nancy Jane et al. / Journal of Biomedical Informatics 60 (2016) 169–176 171



includes two major functionalities namely forward input propaga-

tion with delay, reinforced error backpropagation and weight

updation.

In forward input propagation with delay the inputs are fed for-

ward to the presented Q-BTDNN with the delay of ‘d’. The working

principles of Q-BP algorithm are illustrated in the steps 1–9. The

forward input propagation with delay includes the process

involved in forwarding the temporal inputs in the forward direc-

tion which is summarized in the steps 3–4. The process involved

in computing the reinforced error backpropagation and weight

updation is summarized in the steps 5–8.

The following are the steps used in Q-BP algorithm for training

the time delay neural network:

Step 1: Initialize the weights of the network randomly.

Step 2: Read the temporal sequence of each subject in TDNN

from 16 sensors with a delay of 0.01 s.

// Forward input propagation with delay

Step 3: For every node in the input layer its output equals the

inputs along with the time delay lines (TDL) given to it.

Step 4: For every node (j) in the hidden layer, compute its output

using the Eq. (1).

OjðtÞ ¼ u
X

m

i¼1

X

l

g¼0

RQwijxiðt � gÞ

 !

þ hj ð1Þ

where RQwij is the networks weight adjusted using Q-learning,

xiðt � gÞ inputs at the time ðt � gÞ for ith node in the input layer,

m refers to the number of nodes in the input layer, l refers to the

delay lag for each input sensor observation. hj is the bias and u
denotes the activation. For every node (k) in the output layer,

compute its output using the Eq. (2).

OkðtÞ ¼ u
X

h

j¼1

RQwikOjðtÞ

 !

þ hk ð2Þ

where RQwik is the networks weight adjusted using Q-learning,

OjðtÞ output from the jth hidden node, h refers to the number

of hidden nodes, hk is the bias and u denotes the activation.

// Reinforced Error backpropagation and Weight Updation

(Q-Learning induced Error propagation).

Step 5: For each node in the output layer compute its error

based on the three functions, namely Q-function, Reinforce-

ment function and weight updation using the step 6, 7 and 8

through Q-learning method.

Step 6: Q-function is computed when every subject’s observa-

tion is given to the network. The computed Q-value represents

the utility function for the current patient state and the result of

the action performed.

QW tþ1ðSt; atÞ ¼ QW tðSt; atÞ þ atðSt ; atÞ:ðRitþ1 þ cmax
a

QW tðSt ; atÞ

� QW tðSt; atÞ ð3Þ

where QW tðSt; atÞ is the old Q-value, St and at refers to state and

action, atðSt; atÞ is the learning rate, Ritþ1 is the reward value, c is

the discount factor, maxaQW tðSt ; atÞ is the estimate of optimal

value. In this work we refer three actions of adjusting weights

namely Q-dependent, target value dependent, gradient descent,

gradient descent with momentum. The estimate of optimal

weights is identified by finding best minimal errors returned

by taking any of these actions.

Step 7: The reinforcement signal (RiÞ, which represents the

reward or penalty, is generated from the outcome of the error

and is defined in the Eq. (4). A parameter named min_error-

tracker (MinE) is maintained to keep track of the weights for

which minimum error is achieved. Initially the min_error-

tracker is assigned with first error generated with initialized

random weights. As the network training process starts, it reas-

signs its value by tracking the latest local best optimal weight.

Ri ¼
1; CurrE < MinE

�1; CurrE > MinE

�

ð4Þ

The reinforcement signal assigns a reward (1) when it finds that

the current predicted Error (CurrE) is less than MinE otherwise it

sends a penalty signal (�1).

Step 8: Weight updations is done based on the generated rein-

forcement signal. If reward signal is activated then the network

weights are adjusted by adding Q-value to the all current

weights as defined in Eq. (5).

RQwij ¼ RQwij þ QW tþ1ðSt; atÞ ð5Þ

If the penalty is activated then the combination of Q-value and

propagated error is averaged and used in the weight updation

as defined in the Eq. (6).

RQwij ¼ RQwij þ ðQW tþ1ðSt ; atÞ þ CurrEÞ ð6Þ

Step 9: The network training stops when the terminating condi-

tions bounded with the iterations have reached.

3.2.2. Application of Q-BTDNN to diagnose gait disturbances in PD

The Q-BTDNN classifier is applied to diagnose the severity of

gait disturbances in PD. The gait data is acquired from three PD

studies [6–8]. The description of the data and its method of data

acquisition are discussed in the earlier Section 3.1. The proposed

work uses a network structure that includes one tapped delay

input layer and computational layer comprising of two hidden lay-

ers and one output layer. The tapped delay input layer feeds the

successive observation of each 16 input sensors (L1, L2, L3, L4,

L5, L6, L7, L8, R1, R2, R3, R4, R5, R6, R7, R8) recorded from the right

leg and left leg of the subjects at different time points (t, t � d,

t � 2d, . . .), where ‘d’ refers to the delay between each time point.

During the network training process, this works considers 12,000

time stamped observations from 16 sensors for each subject.

The computational layer comprises of two hidden layer with

240 hidden nodes and 120 hidden nodes respectively, and an out-

put layer with four nodes. The reinforced feedback layer generates

a reinforced error signal using the Q-learning technique, which is

backpropagated on the network to adjust the network’s weights.

The input layer of Q-BTDNN forms a 16 � 12,000 vector. The first

hidden layer consists of 240 nodes arranged in 2 � 120 vector.

The second hidden layer consists of 120 nodes arranged in 2 � 60

vector. The output layer consists of four nodes arranged in 1 � 4

vector. Each 100 frames in the input layer are mapped to one frame

in the first hidden layer. Every 2 frames in the first hidden layer are

mapped to a node in the second hidden layer. Each 15 frame in the

second hidden layer is connected to one frame in the output layer.

For each subject instance, the network computes an output.

In forward input propagation with delay, the data from 16 sen-

sors observed from the left and right legs of the subjects are fed

forward to the time delay network with the delay of 0.01 s. These

inputs are forwarded to the Q-BTDNN using steps 1–4. A reinforce-

ment based Q-learning approach is used to generate and backprop-

agate the error signal using steps 5–8.

4. Experimental settings

This section discusses the experimental settings and evaluation

criteria used to assess the effectiveness of the Q-BTDNN classifier

with three PD study dataset. Experiments were conducted with

93 PD subjects and 73 normal subjects, each observed data record

corresponds to the walking patterns observed in 2 min walk using
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wearable sensors. Fig. 2 shows the graphical plot that illustrates

the total force recorded for 15 s from the 8 sensors in the left leg

and 8 sensors from the right leg for a sample PD and normal sub-

ject. A stride measure refers to the period the foot strikes the

ground goes to swing and the foot in the same leg strikes the

ground. The Fig. 2 illustrates that when a person is in stance state

the force recorded will be higher compared to the moment he or

she is going to swing state. PD affected patients show a high

increase in the average number of strides within an observed dura-

tion compared to the normal control patients. The variations in

stance, swing and stride time of the PD patients show a high

impact in identifying the severity of the disease.

The input data from 16 sensors are propagated in the Q-BTDNN

with a delay of 0.01 s. The records were sampled at the rate of 100

samples per second that is observed for two minutes. The imple-

mentations and experimentationswere carried out using the neural

network tool box inMATLAB 2013 [29]. A 10-fold cross validation is

used for experimental evaluation. A 10-Cross-validation model

assessment technique randomly split the dataset into 10 subsets

of approximately equal size. The 9 subsets are used for training

and remaining one subset is used for testing. The entire process is

repeated for 10 times. To make the evaluation unbiased it is

required to make several runs of 10-fold cross validation. Thus, in

this work the classification model was assessed using 10-fold cross

validation repeated for 5 independent runs. To select the best fit

parameter values for Q-BTDNN training, a series of experiments

were conducted with different combinations of network parame-

ters. The parameter for which the network in its training process

gives aminimal RMSEwere selected. Based on the outcome of these

experiments the computational layer of Q-BTDNN is configured

with two hidden layer and an output layer for constructing a

trained classification model for PD gait database. The first hidden

layer has 240 hidden nodes arranged in 2 � 120, the second hidden

layer has 120 nodes arranged in 2 � 60 and an output layer with

four hidden nodes. The four output nodes represent the class label

minimal, mild, moderate and severe. These class labels in the train-

ing records describe the severity of gait disturbances in PD based on

the Hoehn and Yahr Scale [11]. The Hoehn and Yahr Scale represent

the PD stages in the scale of 1.5–2.5 based on the motor symptoms.

Accordingly, this works considers the class label minimal for

scale rating 1–1.5, mild for 1.5–2, moderate for 2–2.5 and severe

for more than 2.5. A learning rate of 0.01 and sigmoid activation

function was choosen for Q-BTDNN training. The network output

scales the value to be in the range of 0–1. The output in four nodes

is interpreted as 1000 for minimal, 0100 for mild, 0010 for moder-

ate and 0001 for severe. The realization of the presented classifier

tested with a few different set of hidden units is discussed in this

paper. The work was tested with one hidden layer with 240, 120,

80 hidden nodes. For the one hidden layer of 240 nodes a vector

space of 2 � 120 was considered. Each 100 frames in the input

layer were mapped to one frame in the hidden layer. Each 30 frame

in hidden layer is mapped to one node in the output layer. For the

one hidden layer of 120 nodes a vector space of 2 � 60 was consid-

ered. Each 200 frames in the input layer were mapped to one frame

in the hidden layer. Each 15 frame in hidden layer is mapped to one

node in the output layer. For the one hidden layer of 80 nodes a

vector space of 2 � 40 was considered. Each 300 frames in the

input layer were mapped to one frame in the hidden layer. Each

10 frame in hidden layer is mapped to one node in the output layer.

For two hidden layers of 240 and 120 nodes, the first hidden

layer forms 2 � 120 vector and Second hidden layer forms 2 � 60

vector. Each 100 frames in input layer were mapped to one frame

in the first hidden layer, each 2 frames in the first hidden layer is

mapped to one frame in second hidden layer, each 15 frame in

the second hidden layer is mapped to one node in output layer.

For two hidden layers of 120 and 60 nodes, the first hidden layer

forms 2 � 60 vector and Second hidden layer forms 2 � 30 vector.

Each 200 frames in input layer is mapped to one frame in the first

hidden layer, each 2 frames in first hidden layer is mapped to one

frame in second hidden layer, each 13 frame in second hidden layer

is mapped to one node in output layer. For two hidden layers of 80

and 40 nodes, the first hidden layer forms 2 � 40 vector and Sec-

ond hidden layer forms 2 � 20 vector. Each 300 frames in input

layer is mapped to one frame in first hidden layer, each 4 frames

in first hidden layer is mapped to one frame in second hidden layer,

each 5 frame in second hidden layer is mapped to one node in out-

put layer. The experiments were conducted on a personal com-

puter with Intel (R) Core (TM) i7-3770 processor with speed of

Fig. 2. (a and b) TF in left and right leg of PD patient and (c and d) TF in left and right leg of normal person.
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3.40 GHZ and 8 GB RAM. The programs were implemented using

MATLAB 2013 computing platform.

5. Results and discussion

This section briefly discusses the results and findings obtained

from the proposed Q-BTDNN classifier with the three PD study

dataset. To select the best fit values for the network parameters

in training process, a huge number of network architectures and

experimentations were implemented. Table 3 shows a few results

of this realization during the network construction and parameter

selection process. Since, there were many experimental trails con-

ducted to find the best fit values, results of few implementations

were shown in the table. The root mean square error (RMSE)

obtained at 100, 150 and 200 epochs was shown for the different

combinations of the number of nodes in the computational layer

of the network structure. The network stabilizes itself and RMSE

value reaches minimum at 200 epochs for the hepatitis and throm-

bosis dataset and hence the training was stopped.

A 10-fold-cross-validation repeated for 5 runs generates test

and training set for evaluating the classification model. The results

obtained from each fold is averaged and considered for compara-

tive analysis. Fig. 3 depicts the graphical plot for illustrating the

RMSE value obtained for various iterations during Q-BTDNN train-

ing for the three datasets [6–8]. It can be observed that at 200

epochs the networks RMSE value stabilizes.

The classification results were evaluated with the following

measures true positive rate (TPR), true negative rate (TNR), recog-

nition rate (RR), misclassification rate (MR) and precision [28]. TPR

refers to the proportion of subjects correctly classified as having

PD. TNR refers to the proportion of subjects correctly classified,

as not having PD. RR is the percentage of subjects correctly classi-

fied as PD or normal. MR is the percentage of subjects not correctly

classified as PD or normal. Precision is the measure of percentage

of records labeled as PD tuples are correctly as such. It is observed

from figure (Fig. 3) that the RMSE value reaches minimum at 200

iterations and in this work the training terminates at this point.

The performance of the proposed Q-BP algorithm for TDNN is com-

pared with other training algorithms, namely Levenberg–Mar-

Table 3

RMSE values vs epochs observed for varied combinations in network structure.

Data

set

Hidden

layers

Hidden

layer 1

nodes

Hidden

layer 2

nodes

RMSE (�10�1)

100

Epochs

150

Epochs

200

Epochs

Ga [6] 1 240 – 0.765 0.713 0.691

120 – 0.791 0.726 0.611

80 – 0.801 0.782 0.776

2 240 120 0.414 0.358 0.279

120 60 0.647 0.616 0.597

80 40 0.698 0.679 0.623

Si [7] 1 240 – 0.703 0.696 0.615

120 – 0.765 0.723 0.698

80 – 0.799 0.781 0.786

2 240 120 0.382 0.328 0.239

120 60 0.567 0.534 0.512

80 40 0.618 0.597 0.555

Ju [8] 1 240 – 0.798 0.711 0.701

120 – 0.801 0.785 0.713

80 – 0.823 0.811 0.791

2 240 120 0.433 0.378 0.299

120 60 0.667 0.613 0.612

80 40 0.638 0.653 0.703

Fig. 3. Q-BTDNN training iterations vs root mean square error (RMSE).

Table 4

Comparison of classification results.

Dataset Network learning techniques TPR TNR RR MR Precision

Ga [6] Q-BP (Proposed) 0.77 0.55 91.49 8.51 93.10

Levenberg–Marquardt [30] 0.69 0.48 80.85 19.15 82.76

Gradient descent [32] 0.60 0.41 70.12 29.79 72.41

Gradient descent with momentum [32] 0.66 0.45 76.60 23.40 79.31

Scaled Conjugate Gradient [31] 0.63 0.41 72.34 27.66 75.86

Si [7] Q-BP (Proposed) 0.943 0.897 92.19 7.81 91.67

Levenberg–Marquardt [30] 0.886 0.793 84.38 15.63 83.78

Gradient descent [32] 0.829 0.724 78.13 21.88 78.38

Gradient descent with momentum [32] 0.829 0.828 82.81 17.19 82.86

Scaled Conjugate Gradient [31] 0.800 0.724 76.56 23.44 80.00

Ju [8] Q-BP (Proposed) 0.74 0.83 90.91 9.09 89.66

Levenberg–Marquardt [30] 0.71 0.72 83.64 16.36 83.33

Gradient descent [32] 0.60 0.66 72.73 27.27 65.63

Gradient descent with momentum [32] 0.66 0.76 81.82 18.18 79.31

Scaled Conjugate Gradient [31] 0.60 0.69 74.55 25.45 70.00
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quardt (LM), Gradient descent (GD), Gradient descent with

momentum (GDM) and Scaled Conjugate Gradient (SCG) learning

algorithms [30–32]. Table 4 illustrates the classification results

obtained from the proposed Q-BP and the other related learning

algorithms.

The obtained classification accuracy of Q-BP with TDNN for the

data gathered in the study [6] is 91.49% and for LM, GD, GDM and

SCG are 80.85%, 70.12%, 76.6%, 72.34% respectively. For the data

gathered in the study [7] the obtained classification accuracy is

92.19% and for LM, GD, GDM and SCG are 84.38%, 78.13%,

84.38%, 76.56% respectively. For the data gathered in the study

[8] the obtained classification accuracy is 90.91% and for LM, GD,

GDM and SCG are 83.64%, 72.73%, 81.82%, 74.55% respectively.

From the classification results, it has been observed that TPR,

FPR, RR, MR and precision of Q-BP with TDNN outperforms other

TDNN training algorithms like LM, GD, GDM and SCG. In addition

to the traditional classification metrics a statistical hypothesis test-

ing was also carried out using paired t-test [33,34]. The test was

carried out with significant level of 0.05 to identify whether there

was any significant change in the error rates of Q-BP compared

with Levenberg–Marquardt (LM), Gradient descent (GD), Gradient

descent with momentum (GDM) and Scaled Conjugate Gradient

(SCG) learning algorithms. The q value of less than 0.05 is obtained,

which proves that there is a significant change in the error-rates of

Q-BP compared to Levenberg–Marquardt (LM), Gradient descent

(GD), Gradient descent with momentum (GDM) and Scaled Conju-

gate Gradient (SCG) learning algorithms. Thus, the evaluation

results show that there is a significant improvement in the classi-

fication accuracy. The graphical illustration of the results of statis-

tical assessment obtained for various significant level is shown in

Fig. 4.

The computational time in seconds for training PD data [6]

using Q-BP is 222, LM is 212, GD is 188, GDM is 179 and SCG learn-

ing is 175. The computational time in seconds for training PD data

[7] using Q-BP is 231, LM is 219, GD is 198 and GDM is 195 and SCG

learning is 193. The computational time in seconds for training PD

data [8] using Q-BP is 227, LM is 216, GD is 192, GDM is 184 and

Scaled Conjugate Gradient (SCG) learning is 197.

Fig. 5 shows a comparison with computational times of Q-BP,

LM, GD, GDM and SCG. Though, the computational time for the

proposed Q-BP is found to be a bit higher compared to LM, GD,

GDM and SCG; the high accuracy of Q-BP makes it effective in diag-

nosing the gait disturbances in PD.

This work has performed vast implementation of architectures

to select the best fit parameter values for neural network learning.

Hence, the computational cost of training the network is a bit

higher compared to other classical approaches. However, this cost

is associated only with the training process. The trained classifica-

tion model is effective in diagnosing the gait disturbances in PD

patients, which makes it recommended and applicable for practical

usage. Thus, the trained classification model can be used in devel-

oping a clinical decision making system for assisting the clinician

in diagnosing the severity of gait disturbances in PD affected

patients.

6. Conclusion

Gait data acquired through wearable sensors for detecting gait

disturbances in PD are time stamped and they characterize tempo-
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Fig. 4. Results of statistical paired t-test on classification accuracies (a) Dataset: Ga [6], (b) Dataset: Si [7] and (c) Dataset: Ju [8].
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ral related walking patterns. This work aims at presenting a

Q-BTDNN classifier that monitors and predicts the severity of gait

disturbances in PD affected patients by analyzing the instabilities

in the postures and walking patterns. A Q-backpropagated (Q-BP)

training algorithm is proposed to train the Time Delay Neural Net-

work for building a classification model that is used to develop a

clinical decision making system (CDMS). This CDMS is used to

assist the physician in diagnosing the severity of gait disturbances

in Parkinson’s disease affected patients. The presented Q-BTDNN

classifier is experimented with the Parkinson gait database col-

lected from physionet [25], which includes data from three PD

research studies. The experimental results shows, that the classifi-

cation accuracy of Q-BTDNN for the three study datasets is 91.49%,

92.19% and 90.91% accordingly.

The proposed work demonstrates its effectiveness on three PD

study data [6–8]. To prove the effectiveness and scalability, the

system was also evaluated using large-scale clinical data which is

not related to gait analysis. The experimental result showed

improved classification accuracy and has proven the extendibility

of the system with large-scale data. However, as a future work,

the authors are investigating studies on extending the Q-BP algo-

rithm to large-scale PD data analysis. There are still many challeng-

ing areas of research in handling the time stamped data for

improving the classification accuracy and reducing the computa-

tional cost.
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