

78:2 (2016) 73–81 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

A SOFTWARE FRAMEWORK FOR CODE

SECURITY USING M-COT-METRICS BASED

CODE OBFUSCATION TECHNIQUE

R. Senthilkumar*, Arunkumar Thangavelu

School of Computing Science and Engineering, Vellore Institute of

Technology, Vellore, India

Article history

Received

14 July 2015

Received in revised form

28 August 2015

Accepted

15 January 2016

*Corresponding author

rsenthilkumar@vit.ac.in

Abstract

Programming security is a paramount concern in IT industry because of its immense monetary misfortunes. Programming is

inclined to different security assaults, for example, Software piracy. In this proposal, program security assurance through code

Obfuscation, a technique which opposes reverse engineering attacks. In this paper, different sets of criteria are depicted to

gauge viability of code obfuscation, for example, intensity: trouble for human to comprehend code, imperviousness to

computerized piracy. A large portion of the current obscurity procedures and plans fulfil just a couple of these criteria. In this

paper, it shows that the novel code obfuscation plan created for securing exclusive code. A software framework for

providing software security using Metric based Code Obfuscation Techniques named as M-COT is designed to propose which

will maximize the objectives. The essential thought is to change unique code to obfuscated codes which will concede more

state space. This is attained by developing obfuscated non inconsequential code clones for intelligent code parts exhibit in

unique code. These code clones that are connected utilizing element predicate variables to present legitimate control flows.

The performance of the system is observed by experimentation on a couple of projects (for example, scientific calculator

code, searching) to assess our plan. The demonstration made that product unpredictability nature of obfuscated code is

higher than that of unique code and comparing to single execution Despite of the fact that the proposal builds the

improvement of obfuscated code (because of development of non-inconsequential code clones for legitimate code parts).

Keywords: Piracy, Obfuscation, M-COT, Cyclomatic Complexity, Reverse Engineering

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Securing the licensed innovation contained in

programming against unapproved access has been

a focal issue in System security. The malevolent host

issue is an exceptional instance of this general issue. In

a malevolent host issue, customer code is sent to and

executed in a vindictive host. So such a host can

pirate the customer codes each way it can and there

is nothing the manager of customer code can do to

stop such an assault. Conceivable pirate incorporate

programming theft, noxious figuring out piracy and

altering piracy [15]. In a programming theft, a pirate

makes unlawful duplicates of customer code and

after that exchanges them. Pirates can likewise figure

out the customer code to acquire some mystery data

contained in the code which has a place with the

manager of code just [12]. For instance, the customer

code may contain a calculation that will provide for

its manager edge over his rivals and subsequently is a

prized formula. His rivals can uncover this mystery by

means of figuring out piracy. Altering piracy alludes to

an assault in which an assailant concentrates, adjusts,

or something else mess with the mystery data

contained in the customer code. In this paper, we will

focus on the best way to secure customer code

against the second kind of piracy, to be specific the

figuring out assault. As specified above, customer

code is dispatched to and executed in pernicious

hosts. So the holder of customer code does not have

any control over what the end host can do with its

code. Luckily, in spite of the fact that we are not ready

to stop those piracies, there are approaches to make

it troublesome enough for those assaults to attain the

wanted achievement. Code obfuscation has been

the real security instrument against figuring out

assaults [1]. To perceive how code obscurity can be

valuable, It should be first see how figuring out

74 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

functions. A figuring out piracy is fundamentally a

process that inverts a bit of programming in its

executable double structure go into the source code

that it is composed in the code. It inescapably

includes examining the control stream and

information stream of the project. This data can be

procured through static examination of program.

"Static investigation alludes to procedures intended to

concentrate data from a static picture of a system

program." There are different approaches to gain

program data, through dynamic examination for

instance [12].

Figure1 Propose Block diagram – M-COT (Metrics based Code Obfuscation Techniques)

In this paper, It will limit ourselves to propose M-COT

(Metrics based Obfuscation Techniques) to manage

figuring out the attacks focused around static

examination. The flow diagram of M-COT is

demonstrated in the Figure 1. M-COT is an iterative

system which will apply the Code obfuscation

techniques till the complexity level of the obfuscated

code is accepted by the developer. Subsequently

rendering the changed project confused for a

machine mechanized static analyser however

practically equal to the first program. Obfuscation

changes can be classified as lexical change, control

change and information changes.

2.0 LITERATURE REVIEW

The substance of the writing overview into the

accompanying subsections. The initially subsection

gives writing on key programming security strategies.

In the second subsection, it is examine the code

muddling strategies and plans. The third subsection

presents writing on criteria used to quantify adequacy

of code obscurity and writing on de-obfuscation

strategies.

2.1 Programming Protection Techniques

Collberg et al. present procedures for securing

programming, in particular obfuscation,

watermarking and tampering for guarding

programming against converse building,

programming robbery and altering assaults

separately. The paper incorporates subjects, for

example, program investigation, static and element

code obfuscation, obfuscated hypothesis, software

tampering, static and element programming

watermarking etc. The system presents scientific

classification of code obfuscation systems (for

instance, design obfuscated) alongside samples of

each one sort of obscurity systems. This paper gives

point by point plan for control obfuscation by utilizing

opaque predicates. This paper says that in code

obfuscation, security can be attained by changing

unique code to obfuscated code, such that space of

conceivable changes is substantial. This is like security

gave by cryptography, that is, security quality relies on

upon key-estimate (that is, conceivable encryption

decisions). This paper additionally portrays other

programming insurance strategies, for example,

programming assorted qualities. In software

differences, assurance is attained by making different

renditions of programming which are practically

equal.

75 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

2.2 Code Obfuscation Techniques

This paper is discussing on code obfuscation strategies

and plans. The main subsection presents methods

particular to identifier renaming (a kind of format

muddling). The second subsection concentrates on

systems particular to control obfuscation.

a) Identifier Renaming Obfuscation

In identifier renaming (or scrambling identifiers)

method unique serious names are supplanted with

arbitrary negligible names. It is restricted change (as

unique significant names can't be recuperated by

assailant) without any expense overhead. It is

generally backed by business. Experimentation was

performed on some sample code. The identifier

renaming, assailant's endeavors are expanded to

perform effective assault. This paper likewise

demonstrates that actually for experienced assailant,

it requires at any rate twofold time to complete

assault. , if the obfuscated byte code is decompiled,

the created code can't be recompiled because of

the slips presented.

b) Control Flow Obfuscation

This subsection presents a study on code obfuscation

methods focused around change of control

obfuscation of a system. Less concentrates on control

obfuscation procedure for programming assurance.

Control obfuscation changes shroud calculations

utilized as a part of projects by presenting new fake

control obfuscation and by making gimmicks (for

instance, unstructured control obfuscation diagram)

at item level

c) Obfuscation Schemes Using Inserting Dead Code

This subsection presents obfuscation which created

utilizing blend of existing obfuscation systems and

dead code components, for example, utilization of

progress toward oneself, time delicate codes and

utilization of disseminated framework. A system is

ensured by a technique containing numerous time

touchy codes which are overwritten by dead codes

utilizing changing toward oneself component. In the

event that execution time of a watchman code

square is inside foreordained extent, time delicate

code gets to be unique one. On the off chance that

execution time is out of extent, dead code. This

methodology opposes element reverse engineering

assaults however it obliges exact profiling data, (for

example, estimation of time taken by dead code) of

unique code before obfuscation it.

2.3 Measuring Effectiveness of Code Obfuscation and

De-obscurity Procedures

Collberg et al. depict measures, for example, intensity,

strength and expense to assess nature of code

obfuscated changes. These measures are focused

around programming intricacy measurements, (for

example, cyclomatic unpredictability, Mccabe). The

proposed a sensible assault model where assailant

can investigate each guideline and information

esteem at each project point. In this battering

approach, dynamic system is utilized to follow

execution of unique system and instrumentation data

is assembled for assaulting programming. They accept

this methodology through a case ponder on

programming watermarking calculation. To assess the

control obfuscation changes on four programming

intricacy measurements: control, control stream,

information and information stream. They assess three

changes: control stream straightening, static

dismantling upsetting and changes focused around

opaque predicates. For instance, they demonstrate

that control stream straightening expands cyclomatic

number (a product many-sided quality metric) as

every essential piece is considered for straightening.

Investigative measurements are produced to

evaluate execution of code obfuscation. For sample,

obfuscated measure is capacity of metric

parameters: intensity, versatility and taken a toll. This

paper additionally observationally assesses different

business obfuscator’s research utilization of

programming obfuscated in building guaranteeing

toward one versatile specialist. This paper infers that

there is no common obfuscated problem and

creators accept that all robotized muddling is simply

imitating. They infer that product obfuscated is

valuable just in the event that obfuscating official

applies an arrangement of change to obfuscated

code in which change reliance diagram

(demonstrated as limited state automata) is

developed.

3.0 OBFUSCATION SCHEMES

In this paper, outline of novel code confusion plan is

introduced. Obfuscated code developed by

applying our plan fulfils the criteria and furthermore

opposes figuring out assaults utilized for measuring

viability of code confusion. The fundamental thought

is to change unique code to obfuscated code having

blasted state space. State space of obfuscated code

is stretched by embedding’s non trifling code clones

developed for legitimate code fragments display in

unique code. These non-insignificant code fragments

are connected utilizing element predicate variables.

An identifier renaming strategy is connected to

expand assailant's push to comprehend obfuscated

code. Comparing to single way present in unique

code, exponential number of legitimate ways is

presented in obfuscated code. Any execution way is

haphazardly chosen to perform processing, for

example, permit checking system. Aggressor needs to

execute programming with obfuscated code

numerous times to produce execution follows to

comprehend usefulness of programming. In this

segment, a novel code obfuscation plan is exhibited

with a sample of information preparing code. The

76 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

obfuscation plan comprises of the accompanying

four steps.

3.1 Step-1: Construction of Logical Code Fragments

In the first step, code executing mystery calculation is

isolated into coherent code pieces. Every legitimate

section executes particular usefulness which known to

software developer.. Yet aggressor does not know

particular usefulness of these legitimate code parts (as

calculation or code is not freely accessible). There are

two conceivable decisions for making legitimate

code parts. They are as per the following:

a) Utilization of Basic Block

Basic segments are a grouping of code guidelines

having single section and passageway focuses. It

can't contain control flow directions, for example,

restrictive proclamations.

b) Utilization of Methods (or Subroutines)

Methods / subroutine are larger amount

representation of code. Techniques have rich

processing structure which is spoken to utilizing Control

Flow Graph (CFG). In the code obfuscation of

essential fragments as a code section is portrayed.

Essential pieces can't contain dialect builds, for

example, circles or restrictive articulations.

Consequently, if consistent code discontinuity is

completed at fundamental piece level, restricted

system usefulness can be actualized. The obfuscation

plan proposes production of coherent code sections

at larger amount program representation, for

example, techniques (or subroutines). This rich

reckoning structure permits designer to develop code

parts actualizing particular usefulness. Sensible code

sections are developed in such a route, to the point

that they are executed in a succession to perform

processing.

3.2 Step-2: Construction of Non trifling Code Clones for

Fragments

For each one code part, non-insignificant code

clones are developed. Non trifling code clones are

characterized as a situated of code parts which

perform same calculation however they have diverse

code structure, for example, Abstract Syntax Tree

(AST). This is demonstrated in the Figure 2 with a

sample of variable swap usefulness which is actualized

utilizing memory and XOR operation.

Swapping using memory

swap(in a, in y)

in temp;

temp = a

a= y

y=temp

Swapping using XOR

swap(in a, in y)

in temp

temp = a ^ y

a= temp ^ a

y = temp ^ y

Figure 2 Non trifling code clones for variable Swap operation

Because of presentation of code clones,

programming intricacy of obfuscated code is

expanded. The cloning technique is portrayed as a

system to build reverse engineering endeavours. The

paper likewise depicts code clone identification

methods, for example, matching Abstract Syntax Tree.

These can be utilized to catch and uproot code

clones, with the goal that figuring out endeavours by

aggressor are decreased. There are two conceivable

decisions for making code clones to muddle code.

They are as takes after:

a) Insignificant Code Clones

Insignificant code clones can be made utilizing

identifier renaming obscurity strategy. For instance, set

of pseudo code guidelines have same code structure,

for example, Abstract Syntax Tree (AST), however they

have distinctive variable names.

 Swap1: int x, y, t; t = x; x = y; y = t;

 Swap2: int a, b, u; u = an; a = b; b = u;

Dead code clones perform same processing

however they have diverse code structure, (for

example, AST) as indicated in the dead code clones

may be distinguished utilizing procedures, for

example, matching Abstract Syntax Tree (AST) .

However dead code clones can't be discovered

utilizing existing code clone recognition methods as

code structure, (for example, AST) is diverse for

distinctive clones. The accompanying Figure 3

demonstrates the framework in the wake of building

dead code clones for sort and inquiry coherent code

pieces. For purpose of understanding, diverse

calculations are indicated for diverse code clones, in

spite of the fact that engineer can build distinctive

non inconsequential code clones utilizing same

calculation.

Note that rectangular pieces are utilized to speak

to a wrapper structure for legitimate code sections (for

sort and pursuit usefulness) in the middle venture amid

application of the muddling plan. Engineer needs to

connection these non-unimportant code clone

fragments

77 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

3.3 Step-3: Linking Code Clone Fragments utilizing

Dynamic Predicate Variables

In this step, non-insignificant code clone parts are

connected utilizing predicate variables. Predicate

variables are situated of outflows that are assessed to

Boolean esteem (either genuine alternately false

esteem). There are two conceivable decisions for

connecting code clone sections.

a) Utilization of Static Hazy Predicate Variables

Static hazy predicate variables are portrayed by

Collberg et al. and others. A sample of static misty

predicate variable is contingent articulation "b:= (x ==

x+1)" which dependably assesses to false esteem.

Such predicate variables present fake control way in

code. Static predicates can't avoid dynamic

investigation assaults as fake control ways are never

chosen for execution.

b) Utilization of Element Misty Predicate Variables

The predicate variables are a set of related Boolean

variable. These variables assess to same esteem in

given run of programming yet they assess to diverse

qualities at distinctive run of programming. The

obfuscation plan utilizes a variation of element

predicate variables, a set of conditions which are

assessed at run time such that exponential number of

substantial blends of estimations of predicate

variables is conceivable. These variables empower

determination of a specific blend of code clone

pieces for a given run of obfuscated programming.

These element predicate variables present substantial

control stream ways by keeping element structures,

(for example, connected rundown) demonstrated in

the Figure 4. These element predicates build static and

element investigation endeavours as exponential

number of code clone blends are workable for

execution.

Figure 4 Dynamic Predicate Variables for Sort and Search

Fragments

Assume that two connected records are kept up -

one for "sort" part and other for "inquiry" section.

Variables P1 and P2 move haphazardly through the

rundowns such that they point to distinctive hubs

(containing whole number information values) at

diverse times. For a given run of programming, clones

for separate sections are chosen by matching clone

identifier (a one of a kind whole number worth

allocated to each one code clone of section) with

information quality pointed by predicate variables.

The Figure 5 demonstrates the information handling

framework in the wake of connecting the code clone

sections utilizing element predicate variables. Any

grouping of intelligent code clone parts is feasible for

given run of programming. Aggressor needs to

execute programming different times to create

follows for comprehension usefulness of programming.

Figure 5 Linked Code Clone Fragments for Data Processing

Application

3.4 Step-3: Applying Identifier Renaming Technique

In this step, identifier renaming system is connected to

intelligent code clone fragments. In this paper we

demonstrate that assailant's endeavours are

expanded if code is obfuscated utilizing identifier

renaming strategy. In identifier renaming system,

serious names, (for example, "sort") are uprooted. It is

restricted change (as unique names can't be

recouped by aggressor) and it has almost no taken a

toll overhead. In spite of the fact that the obfuscation

plan proposes utilization of identifier renaming

strategy, the plan does not confine utilization of other

condition of the craftsmanship code obscurity

strategies, for example, control obfuscation, control

stream levelling for obfuscating of legitimate code

clone sections. The Figure 6 shows obfuscated code in

the wake of applying identifier renaming code

obscurity strategy. Note that in the figure, just

compelling capacity names, (for example,

"supplement") are supplanted with arbitrary inane

names ("h"), yet in genuine code, all compelling

names, for example, neighborhood variables,

parameter can be supplanted as well.

Read

Selec
t

insert

bubble

Seque
nce

Sort

binary

outpu
t

0 1

2

2 0

1

P
1 P

2

78 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

4.0 RESULTS AND DISCUSSION

Practicality Index (mi) – Analyses a list worth extent

from 0 to 100 that connotes keeping up the code.

Great practicality of the code is distinguished if the

quality reach is high appraisals are given to recognize

and troubleshoot in your code.

Green imprint - 20 and 100 shows code has great

upkeep list (mi).

Yellow imprint - 10 and 19 shows code has modestly

upkeep record (mi).

Red imprint - 0 and 9 shows code has low upkeep list

(mi).

Cyclamate Complexity – Procedures the essential

unpredictability in the code. Cyclamate multifaceted

nature is created by figuring the quantity of diverse

code ways in the project. A program that has

complex control stream will oblige more tests to attain

great code scope and will be less viable. Multifaceted

nature in the system is high if the stream of control

needs more number of trials to meet the great

maintenance\e or else it will have low support

Cyclamate complexity(cc)

CC = nl - nn + 2(np)

nl = aggregate of connections in the stream of

diagram

nn= aggregate of hubs in the stream of diagram

np = aggregate of withdrew parts of the stream of

diagram.

Profundity of Inheritance –it determines the

aggregate of class definitions that is reaching out up

to the inception of the class progression. On the off

chance that the pecking order profundity is high then

it is hazardous. So it is important to comprehend where

the exact routines and fields to be situated or need a

substitution Class Coupling –it figures the coupling to

incomparable classes by utilizing the accessible

parameters, neighbourhood variables, return sorts,

capacity calls, regular instantiations, base classes,

interface executions, fields characterized on outer

sorts, and characteristic design. Programming is

thought to be great when it has tight union and low

coupling. High coupling demonstrates a methodology

that is hard to reprocess and keep up. Lines of Code –

It demonstrates the unpleasant number of lines in the

given code. The quantity of line in the code is focused

around the IL code, so it is not the accurate include of

line the source document. On the off chance that the

number is high it may show that a capacity or system

is requesting to do part of work and it have to be

apportioned. It may likewise demonstrate that the

capacity or system is hard to keep up.

Figure 6 Identifier Renaming for Data Processing Application

4.1 Metric Tool: Source Monitor Measurements

1. Kiviat Chart

This diagram infers that if the greatest furthest reaches

of the measurements recognized present inside the

red round demonstrates that it has well

Figure 7 result before obfuscation source monitor

a) Cyclamate Complexity (CC)

Sort/system many-sided quality can be measured by

applying cyclamate complexity. It gives better sign of

strategy comprehensibility. Every if proclamation,

while and for circles switch case || or && inside a

contingent administrator.

b) Lines of Code (LOC)

Lines of code (LOC) are a total of each one line that

it has any codes. It is cool to quantify however very

nearly hard to conclude as is profoundly subject to

coding technique, dialect, environment, and coding

expertise.

a
 f

s

u

q

h

i

t

79 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

Figure 8 Result – Source Monitor

5.0 EXPREMENTAL ANALYSIS

Correlation have been made with specimen code

prior and then afterward obscurity

a) Before Obfuscation(SOURCE MONITOR)

Test C source code has been composed and its result

was broke down in source monitor to check the

viability of the code. The acquired result is given

.

Figure 9 Maximum viability of code

Figure 10 Chart shows greatest viability of the given code

Figure 11 Metrics Result – After Obfuscation

Considering the above result acquired, without

influencing the viability of the product, code

obfuscation to be carried out so that robbery of the

product can be decreased

80 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

Figure 12 Chart shows still viability of the product is protected

Here obscurity has been carried out by utilizing after

systems, for example, immaterial name to the

strategies, false remarks, variable disfiguring and so on

so perusing and adjusting the jumbled code is truly an

extreme part for any coder.

Table 1 Comparison of metrics before and after obfuscation

(Source Monitor)

Parameter Before

Obfuscation

After

Obfuscation

Lines 239 247

Statements 102 108

% of Branch

statement

11.8 13.8

% of lines of

comment

1.7 3.6

Avg. statements per

function

8.4 8.8

Line number of most

complex function

86 94

Line number of

deepest statement

80 80

Max. Block depth 3 3

Avg. block depth 1.01 1.02

Avg, Complex 5.33 5.56

b) Before Obfuscation (VISUAL STUDIO-CODE

METRICS VIEWER)

Test adding machine code has written in C dialect to

ascertain the measurements esteem. Table 1 shows

the metrics value that was observed before and after

obfuscation. The Maintainability Index of the product

is in great condition. Result got by assessing the code

is given underneath.

Figure 13 Measurements come about before obfuscation

a) After Obfuscation (VISUAL STUDIO- CODE

METRICS VIEWER)

Lines of code for the same system is expanded still the

Maintainability Index of the product is stay great.

Code is obfuscated and the metrics are still

maintained to confuse the pirate in deciding the

piracy of the product.

Figure 14 Measurements come about after obfuscation

Table 2 is clearly making us to understand that

obfuscation wouldn’t increase the dirtiness to code to

the maximum level and also it states that obfuscate is

81 R. Senthilkumar & Arunkumar Thangavelu / Jurnal Teknologi (Sciences & Engineering) 78:2 (2016) 73–81

prominent technique for providing the security against

the reverse engineering attacks.

Table 2 Comparison of metrics before and after obfuscation

Metric parameter Before

Obfuscation

After

obfuscation

Maintainability

Index

71 71

Cyclometer

Complexity

37 37

Depth of

inheritance

7 9

Class Coupling 19 20

Lines of code 246 261

6.0 CONCLUSION

In this paper examined about the results from the

source monitor and visual studio measurements

viewer tool which will quantify the quality of the code

security against robbery the measurements that has

used to assess the quality of the security is a quality

based measurements the level of muddling may be

altered focused around measurements .this may be

reached out by including some developed

programming measurements with help of the current

and the same can be stretched out as dialect free

fragments

References

[1] C. Collberg, C. Thomborson, and D. Low. 1997. A Taxonomy

Of Obfuscating Transformation. Technical Report 148,

Department of Computer Science, The University of

Auckland, Auckland, New Zealand.

[2] Christian S. Collberg, Clark Thomborson. 2002.

Watermarking, Tamper-Proofing, And Obfuscation: Tools

For Software Protection. IEEE Transactions on Software

Engineering. 28(8): 735-746.

[3] C. Collberg and J. Nagra. 2009. Surreptitious Software:

Obfuscation, Watermarking, And Tamper Proofing For

Software Protection. Addison Wesley Professional.

[4] P. C. van Oorschot. 2003. Revisiting Software Protection.

Proc. 6th Int'l Conf. Information Security (ISC 03), LNCS 2851.

Springer-Verlag. 1-13.

[5] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven

Rudich, Amit Sahai, Salil Vadhan, and Ke Yang. 2001. On

the (im) Possibility Of Obfuscating Programs. In J. Kilian,

editor, Advances in Cryptology: CRYPTO 2001, 2001. LNCS

2139.

[6] B. Lynn, M. Prabhakaran, and A. Sahai. 2004. Positive Results

and Techniques for Obfuscation. In Eurocrypt, Springer

Verlag.

[7] M. Ceccato, M. DiPenta, J. Nagra, P. Falcarin, F.Ricca, M.

Torchiano, and P. Tonella. 2009. The Effectiveness Of Source

Code Obfuscation: An Experimental Assessment. In IEEE

International Conference on Program Comprehension

(ICPC 2009). IEEE CS Press.

[8] J. Chan and W. Yang. 2004. Advanced Obfuscation

Techniques For Java Byte Code. JOURNAL OF SYSTEMS AND

SOFTWARE. 71(1): 1-10.

[9] Christian Collberg, Clark Thomborson, and Douglas Low.

1998. Manufacturing Cheap, Resilient, And Stealthy

Opaque Constructs. In ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL98, San

Diego.

[10] Wang, C., Hill, J., Knight, J. C., and Davidson, J. W. 2001.

Protection of Software-Based Survivability Mechanisms. In

Proceedings of the 2001 conference on Dependable

Systems and Networks. IEEE Computer Society. 193-202.

[11] Sebastian Schrittwieser and Stefan Katzenbeisser. Code

Obfuscation against Static and ynamic Reverse

Engineering. Vienna University of Technology, Austria,

Darmstadt University of Technology, Germany.

[12] Falcarin, P., Di Carlo, S., Cabutto, A., Garazzino, N., Barberis,

D. 2011. Exploiting Code Mobility For Dynamic Binary

Obfuscation. Internet Security (WorldCIS), 2011 World

Congress on. 114-120.

[13] Yuichiro Kanzaki, Akito Monden. A SOFTWARE PROTECTION

METHOD ASED ON.

[14] TIM. 2010. E-SENSITIVE CODE AND SELF-MODIFICATION

MECHANISM. Proceedings of the IASTED International

Conference, November 8 - 10, 2010 Marina Del Rey, USA

Software Engineering and Applications (SEA 2010).

[15] Christian Collberg. 2011. The Case for Dynamic Digital Asset

Protection Techniques. Department of Computer Science,

University of Arizona, June 1.

[16] Business Software Alliance. 2013. Eighth Annual BSA and

IDC Global Software Piracy Study.

[17] R. Senthilkumar and Dr. Arunkumar Thangavel. 2015. Code

Security Using Control Flow Obfuscation with Opaque

Predicate. International Journal of Applied Engineering

Research (IJAER).

[18] Harsha Varadhan Rajendran, Ch.Kalyan Chandra and R.

Senthilkumar. 2010. Design of Java Obfuscator

“MANGINS++”- A Novel Tool To Secure Codes. Journal of

Computer and Mathematical Sciences. 1(6): 636-768.

[19] Vivek Balachandran, Sabu Emmanuel, Ng Wee Keong.

2014. Obfuscation by Code Fragmentation to Evade

Reverse Engineering, 2014 IEEE International Conference

on Systems, Man, and Cybernetics October 5-8, 2014, San

Diego, CA, USA.

