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Abstract. In this paper, we discuss about the steady state behaviour of M/G/1 retrial queueing 

system with two phases of services and immediate feedbacks under working vacation policy 

where the regular busy server is affected due to the arrival of negative customers. Upon arrival 

if the customer finds the server busy, breakdown or on working vacation it enters an orbit; 

otherwise the customer enters into the service area immediately. After service completion, the 

customer is allowed to make finite number of immediate feedback. The feedback service also 

consists of two phases. At the service completion epoch of a positive customer, if the orbit is 

empty the server goes for a working vacation. The server works at a lower service rate during 

working vacation (WV) period. Using the supplementary variable technique, we found out the 

steady state probability generating function for the system and in orbit. System performance 

measures and reliability measures are discussed. Finally, some numerical examples are 

presented to validate the analyticalresults. 

 

1.  Introduction 

In queueing theory, there have been significant contributions to retrial queues and vacation queues. 

From Ke et al. [12] andArtalejo and Gomex-Corral [3], we can find general models and results in 

retrial and vacation queues. Retrial queues are characterized by the fact that an arriving customer, who 

finds the server busyjoins the retrial group and request for service after some time. Such queues have 

wide applications which are used to model many problems in telephone switching systems, 

telecommunication network and retail shopping queues. For more reference, see bibliography on retail 

queues in Artalejo [2]. 

The concept of arrival of positive and negative customers in the queueing system created more 

interest and it has been studied by many due to its application in industries, computers, manufacturing 

and network systems. Such queues (G-Queues) were first introduced by Gelenbe [8] to model neural 

networks. The positive customers arrive and receive service in regular manner into the system, 

whereas the arrival of negative customers neither receive service nor join the orbit instead they destroy 

and remove the positive customer in service and cause breakdown to the server and service channel 

will fail for a short interval of time, also this customer arrive only at the service time of the positive 

customers. Krishnakumar et al. [13], Gao and Wang [7], Peng et al. [17], Wu and Lian. [27], Rajadurai 

et al. [18,20], have discussed about retrial queueing models with the presence of G-queues. The 

readers may refer the bibliography paper on queueing system with G-networks by Do [5] for detailed 

analysis. 

mailto:vmcsn@vit.ac.in
http://creativecommons.org/licenses/by/3.0
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One of the additional features that have been discussed widely in retrial queueing literature is the 

feedback customers. If the customer is not satisfied with the service, then the service can be provided 

repeatedly to the customer for many reasons. For instance, messages are sent from the source to the 

destination via packets. The packets are transmitted through router. The packets that are transmitted 

may be returned and it can be re-transmitted repeatedly until it reaches the desired destination. This 

type of retransmission is called feedback. Ke and Chang [11], Krishnakumar et al. [13], Varalakshmi 

et al. [24] have discussed the concept of feedback where the customer joins the tail of the queue to 

receive feedback service. Kalidas and Kasturi [10] provided a different approach to this aspect, that is 

the customer who desires to receive another service, directly enters in to the service station without 

being waiting in the queue. This concept is referred as immediate feedback. Varalakshmi et al. [25] 

analyzed a single server retrial queue with two phase service and server breakdown where the 

customer can get finite number of immediate feedback under Bernoulli schedule. 

A considerable amount of work has been done in the past in queueing system models with 

vacations and is successfully implemented in various analysis problems such as production systems, 

computer systems and communication systems. During vacation the server completely stops providing 

service to the customer and the server simply takes a break like being checked for maintenance. 

During working vacation, the server gives service to the customer but in lower rate. This queueing 

system has subsequent application in the field of mailing service, file transfer and network service. 

M/M/1 working vacation queue has been introduced by Servi and Finn [23]. This was extended to 

M/G/1 working vacation queue by Wu and Takagi [26]. Further Arivudainambi et al. [1] analyzed an 

M/G/1 retrial queue with single working vacation policy. Furthermore at the end of lower speed 

service rate, if there are customers in the system, the server can end the vacation and come back to 

normal busy service state. This concept is referred as vacation interruption. Some of the authors like 

Rajadurai et al. [19, 21], Gao et al. [6], Li and Song [14], Liu and Tian [15], Zhang and Hou [28] have 

analyzed queueing models with working vacations and vacation interruptions. For recent survey and 

literature on working vacation queuing models the readers may refer Chandrasekaran et al. [4] 

In this paper, we extended the work of Arivudainambiet al. [1] and Zhang and Liu [29] by 

incorporating the concept of G-queues with immediate feedback. So far, very few authors have studied 

the concept of retrial queue with negative arrival, working vacation and interruption. This motivates 

the author’s to develop two phase service retrial G-queue with immediate feedback and working 

vacation policy by using supplementary variable technique though moost work with the concept of 

retrial queue and working vacation are by using matrix geometry analysis.  

The rest of the paper is as follows. The mathematical model considered is described and practical 

justification of our model is given in Section 2. In section 3, the stability condition for our model is 

analysed. In section 4, the steady-state joint distribution of the server state and the number of 

customers in the system and in orbit are obtained. System performance measures and reliability 

measures are obtained in Section 5. Some special cases are considered in Section 6. In Section 7, the 

analytical results are validated numerically on the system performance for various paramaters. Finally, 

Section 8 concludes the paper. 

2.  Model description 

2.1.  Description 

In this section, we consider a single server retrial queueing system with two phases of service and 

immediate feedback under working vacation policy where the regular busy server is subjected to 

breakdown due to the arrival of negative customers.  

2.1.1.  Arrival Pattern. The positive customers arrive into the system according to a Poisson process 

with rate  . 
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2.1.2.  Retrial rule. If an arriving positive customer finds the server idle, then the customers enter in 

the service station immediately to begin his service. Otherwise, the customer will join the group of 

blocked customers called orbit and request for service repeatedly till he finds the server free. 

2.1.3.  The two phase of service. A single server provides two phases of service for all the positive 

customers (or retrial). As soon as the first phase of service (FPS) the customer receives second phase 

of service (SPS). The service time follows general distribution in both the phases with its random 

variable Si,b , distribution function Si,b(t) and LST     
    .And the first moment is given by     

      

∫              
 

 
where i=1,2. 

2.1.4.  .The removal rule.The arrival of negative customers into the system follows Poisson process 

with rate  . These customers arrive only during the regular service time of the positive customers. The 

arrival of negative customers will vanish if the server is idle or repair or on working vacation. Their 

arrival will remove the positive customers being in service forever and causes breakdown to the 

server. As soon as breakdown occurs, the server is sent for repair immediately. 

2.1.5.  The repair time. After the repair process, the server is treated as good as new. The servers 

repair time (G) is assumed to be arbitrarily distributed with the distribution function G(t) and LST 

G*(v). 

2.1.6.  Immediate feedback. At the end of regular service completion of each customer, if the customer 

is not satisfied with the service, the customer can get second round of service by entering into FPS 

with probability   or leave(go out) the system with probability 1-  . After completion of feedback 

service, the customer may again go in for a third round of service by entering in to FPS followed by 

SPS with probability    or leave the system with the probability 1-  . This can continue till the 

customer obtains m rounds of service after which the customer must leave the system. The next 

customer in the orbit gets into service only if the preceding customer completes all the feedback 

rounds successfully. 

2.1.7.  Working vacation process. At the service completion epoch, if the orbit becomes empty the 

server goes for a working vacation and the vacation time follows exponential distribution with the 

parameter  . During WV period, the server provides service at lower rate if any customers arrive. At a 

service completion epoch in the vacation period if any customers are seen in the orbit, the server will 

stop the vacation and comes back to the normal busy period which is referred as vacation interruption. 

Otherwise, the server continues the vacation. At the completion epoch of the vacation, if any customer 

is found in the orbit, the server switches to regular service else, the server goes for another vacation. 

The service time during working vacation follows general random variable    with distribution 

function     ; LST  
     and the first moment is given by  

      ∫            
 

 
 . During 

working vacation, the server provides single phase service and no feedback is allowed. 

The inter arrival time, retrial time, service time, working vacation time and repair time are assumed 

to be independent of each other. 

2.2.  Practical Justification of the proposed model 

This model has a potential application in the area of computer processing system. In a computer 

processing system, the messages (customers) are sent to the destination through processor (server) for 

processing and if the processor is busy the messagesare stored in buffer (orbit). The working mail 

server may be damaged by virus (negative customers), andthe messages are lost at the node. After 

completion of message processing, the internet service may demand the same service to the processor 

(the immediate feedback) for finite number of times, if any failures occur in pervious process. To 

improve the performance of computer, if all the messages are processed and no new messages are 
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seen, the processor startsto perform some maintenance jobs, such as virus scan (working vacations). 

During this period, if any messages arrive, the processor processes it in slower rate to economize the 

cost. At the end of completion of maintenance, the processor checks for the messages; if no message is 

in the system then the processor may decide to go for another maintenance work (multiple working 

vacations).Other applications are in SimpleMail Transfer Protocol (SMTP) mail system and telephone 

consultation of medical service systems. 

3.  Stability condition 

The necessary and sufficient condition for the stability of the system is carried out in this section. We 

analyze the embedded Markov chain’s ergodicity at departure or vacation or repair epoch. 

In the steady state, we assume that R(0)=0, R()=1, Si,b(0)=0, Si,b()=1(where i=1,2), Sv(0)=0, 

Sv()=1), G(0)=0, G()=1 are continuous at x = 0. So that the function ,( ),  ( ),  ( )  ( )i b va x x x and x    are 

the conditional completion rates for repeated attempts, regular service (on FPS and SPS), lower speed 

service and repair respectively (for i = 1, 2).  

,
,

,

( ) ( )( ) ( )
( ) ,  ( ) ,  ( ) ,  ( )  .

1 ( ) 1 ( ) 1 ( ) 1 ( )

i b v
i b v

i b v

dS x dS xdR x dG x
a x dx x dx x dx x dx

R x S x S x G x
     

   
 

Further, Let 0 0 0 0 0
1, 2,( ), ( ), ( ), ( ), ( )b b vR t S t S t S t G t be the elapsed retrial time, elapsed regular service time in 

FPS, elapsed regular service time in SPS, elapsed working vacation time and elapsed repair time 

respectively at time t. we introduce the random variables, 

 

 

0,    if the server is idle during working vaction period,

1,     if the server is idle during regular busy period,

2,    if the server is busy and in regular busy period in FPS at time t,
U(t)=

3,    if the server is busy and in regular busy period in SPS at time t,

4,    if the server is busy during working vacation period at time t,

5,    if the server is under repair at  time t.











 

 Thus, the system state at time t can be expressed by means of bivariate Markov process

 ( ), ( ); 0U t N t t  where ( )U t  denotes the state of the server (0,1,2,3,4,5) depending on the server is idle 

on normal busy and working vacation period, busy on regular service in FPS,SPS and working 

vacation period and under repair respectively. ( )N t corresponds to the number of customers in the 

orbit at time t. If  ( ) 1U t   and ( ) 0N t  , then 0( )R t represent the elapsed retrial time, if ( ) 2U t  and 

( ) 0N t   then 0
1, ( )bS t corresponds to the elapsed service time of the customer being served in FPS 

during regular busy period. If ( ) 3,U t   and ( ) 0N t   then 0
2, ( )bS t  corresponds to the elapsed service time 

of the customer being served in SPS during regular busy period. If ( ) 4,U t   and ( ) 0N t  , then 0( )vS t  

represents the elapsed time of the customer being served in lower rate service period. If ( ) 5,U t  and

( ) 0N t  , then 0( )G t  represents elapsed time of the server being repaired. 

 Let {tn; nN} be a sequence at which either service completion (normal or working vacation) 

times or repair termination times. Then the sequence of random variables      ,  n n nY C t N t    forms 

an embedded Markov chain for the queueing system.  

Theorem 3.1. The embedded Markov chain ;  nY n N  is ergodic if and only if *( )R   for our system 

to be stable, where   11 (1) 1 (1) (1) ( )bH E G


 


      

Proof.To prove the sufficient condition of ergodicity, we use Foster’s criterion (see Pakes [16]) which 

states that an irreducible and aperiodic Markov chain ;  nY n N is an is ergodic if there exists a 
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nonnegative function g(k),k N and ε > 0, such that mean drift 
1( ) ( ) /k n n nE g z g z z k       is finite for all 

kN and k   for all kN, except perhaps for a finite number k’s. In our case, we consider the 

function f(k) = k. Then we have 

 

*

1,                       0,

( ),             1, 2...

k

k

R k





 

  


 


 

 

 

Obviously the inequality *( )R   is the sufficient condition for Ergodicity.  

To examine the necessary condition as noted in Sennot et al. [22], if the Markov chain  ;  1nY n   

satisfies Kaplan’s condition, namely, k< for allk≥ 0 and there exits k0 N such that k≥ 0 for k≥k0. 

Notice that, in our case, Kaplan’s condition is satisfied because there is a j such that mik= 0 fork<i -j 

and i> 0, where  = (mkj) is the one step transition matrix of  ;  .nZ n N  Then, *( )R  implies the 

non-ergodicity of the Markov chain.□ 

4.  Steady state probability analysis 

The steady state distribution of the system under consideration is studied in this section. 

4.1.  The steady state equations 

We assume that the stability condition is fulfilled. For the process  ( ),  0 ,N t t   we define the limiting 

probabilities  0( ) ( ) 0,  ( ) 0P t P C t N t    and the limiting probability densities (for 0 ≤ j ≤ m-1) 

 

 

 

0

0
, 1,

0
, 2,

( , )    = ( ) 1,  ( ) ,  ( ) ,  for 0,  0 and 1,

( , )  = ( ) 2, ( ) ,  ( ) ,  for 0,  0 and 0,

( , )  = ( ) 3,  ( ) ,   ( ) ,  for 0,  0 an

b

b

n

j n b

j n b

x t dx P C t N t n x R t x dx t x n

Q x t dx P C t N t n x S t x dx t x n

P x t dx P C t N t n x S t x dx t x

        

       

       d 0,n 

 

 

0
,

0

( , )  ( ) 4,  ( ) ,  ( ) ,  for 0,  0 and 0,

( , )   ( ) 5,  ( ) ,  ( ) ,for 0,  0 and 0.

v n v

n

x t dx P C t N t n x S t x dx t x n

R x t dx P C t N t n x G t x dx t x n

         

        
 

We assume that the stability condition is fulfilled in the sequel and so that we can set t≥0, x≥0, (for 0 ≤ 

j ≤ m-1) 

0 0 , , , , , , = lim ( ),  ( ) lim ( , ),  ( ) lim ( , ),  ( ) lim ( , ),  ( ) lim ( , ),  

( ) lim ( , ).

b b b bn n j n j n j n j n v n v n
t t t t t

n n
t

P P t x x t Q x Q x t P x P x t x x t

R x R x t

 
    



     


 

By the method of supplementary variable technique, we easily obtain the system of governing 

equations of this model (for 0≤j≤ m-1 and i=1,2). 

2

0 1 ,0 2, 1 ,0 2, 0 ,0 0

0 0 0 0 0

( )  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
b b

m

l l b m b v v

l

P P x x dx P x x dx R x x dx x x dx P       

    

 



 
       
 
 
     (1) 

 
( )

( ) ( )  0,  1n
n

d x
a x x n

dx


            (2) 

 
,

1, , , 1

( )
( ) ( )  ( )b

b b

j n

b j n j n

dQ x
x Q x Q x

dx
             (3) 

 
,

2, , , 1

( )
( ) ( )  ( )b

b b

j n

b j n j n

dP x
x P x P x

dx
             (4) 

 
,

, , 1

( )
( ) ( )  ( )

v n

v v n v n

d x
x x x

dx
    


            (5) 
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  1

( )
( ) ( )  ( ) 1n

n n

dR x
x R x R x n

dx
             (6) 

The steady state boundary conditions at x=0 are 

2

1 , 2, 1 , 2, ,

0 0 0 0 0

(0) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,
b b

m

n l l n b m n b v n v n

l

P x x dx P x x dx x x dx R x x dx     

    

 



 
     
 
 
      (7) 

0 , 1 ,

0 0 0

(0) ( ) ( ) ( ) ( )
b n n n v nQ x a x dx x dx x dx   

  

           (8) 

, 1 , 2,

0

(0) ( ) ( ) , j 1, 2,3, ..., 1
b bj n j j n bQ P x x dx m 



        (9) 

, , 1,

0

(0) ( ) ( ) ,j=0,1,2,...,m-1 
b bj n j n bP Q x x dx



        (10) 

0
,

, 0
(0) 

0, 1
v n

P n

n

  
   

 
        (11) 

, ,

0 0

(0) ( ) ( )
b bn j n j nR Q x dx P x dx

  
  
 
 
         (12) 

The normalizing condition is  

1

0 , , ,

1 0 00 0 0 0 0

( ) ( ) ( ) ( ) ( ) 1
b b

m

n j n j n v n n

n n j

P x dx Q x dx P x dx x dx R x dx

      

  

  
        
  

  

          (13) 

4.2.  The steady state solution of this model 

The probability generating function technique has been employed to obtain the steady state solution 

for the queueing model considered. In order to solve the system equations, let us define the following 

generating functions for |z|  1, (for 0 ≤ j ≤ m-1). 

, , ,

1 1 0 0 0

, , ,

0 0 0

( , ) ( )  ;  (0, ) (0)  ;  ( , ) ( ) ;  (0, ) (0) ; ( , ) ( ) ;

(0, ) (0) ;  ( , ) ( )  ;  (0, ) (0)  ; ( ,

b b b b b b

b b

n n n n n
n n j j n j j n j j n

n n n n n

n n n
j j n v v n v v n

n n n

x z x z z z Q x z Q x z Q z Q z P x z P x z

P z P z x z x z z z R x z

   
    

    

  

  

    

      

    

  
0 0

) ( )  ;  (0, ) (0)  n n
n n

n n

R x z R z R z

 

 

  

 
On multiplying equations (1)-(12) by znand summing over n, (n = 0,1,2...) (for 0 ≤ j ≤ m-1 and i=1,2). 

We obtain the following equations 

 
( , )

( ) ( , )  0
x z

a x x z
x


 


  


       (14) 

 1,

( , )
(1 ) ( ) ( , )  0b

b

j

b j

Q x z
z x Q x z

x
  


    


      (15) 

 2,

( , )
(1 ) ( ) ( , )  0b

b

j

b j

P x z
z x P x z

x
  


    


      (16) 

 
( , )

(1 ) ( ) ( , )  0v
v v

x z
z x x z

x
  


     


      (17) 

 
( , )

(1 ) ( ) ( , )  0
R x z

z x R x z
x

 


   


       (18) 
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2

1 2, 1 2,

0 0 0

0

0 0

(0, ) ( , ) ( ) ( , ) ( )

               + ( , ) ( ) ( , ) ( )

b b

m

l l b m b

l

v v

z P x z x dx P x z x dx

x z x dx R x z x dx P

   

  

 

 



 

 

  

  

 

     (19) 

0

0 0 0

1
(0, ) ( , ) ( ) ( , ) ( , )

b vQ z x z a x dx x z dx x z dx
z

   

  

          (20) 

1 2,

0

(0, ) ( , ) ( )
b cj j j bQ z P x z x dx 



         (21) 

1,

0

(0, ) ( , ) ( )
b bj j bP z Q x z x dx



         (22) 

0(0, ) v z P           (23) 

0 0

(0, ) ( , ) ( , )
b bj jR z Q x z dx P x z dx

  
  
 
 
        (24) 

The solutions of the equations (14)-(18),is given by 

( , ) (0, )[1 ( )] xx z z R x e            (25) 

( )
1,( , ) (0, )[1 ( )] b

b b

A z x
j j bQ x z Q z S x e


         (26) 

( )
2,( , ) (0, )[1 ( )] b

b b

A z x
j j bP x z P z S x e


         (27) 

( )
( , ) (0, )[1 ( )] vA z x

v v vx z z S x e


          (28) 

( )( , ) (0, )[1 ( )] b z xR x z R z G x e         (29) 

where ( ) ( ), ( ) ( ), ( ) (1 )b vA z b z A z b z b z z         

Inserting equations (25) and (28) in equation (20) and solving, we get, 

0 0

( )
(0, ) (0, ) ( )

b

R z
Q z z P V z

z
          (30) 

where     
  *

* *
1 ( )

( ) 1  and ( )
( )

v v

v

S A z
R z R z R V z

A z


 


     

Substituting equation (22) in (21) and after some simplification we get, 

 
1

1

0

0

(0, ) ( ) (0, )
b b

m
m

j j b

j

Q z H z Q z






 
 
 
 
       (31) 

Using the equations (26), (27) in (21)-(22) and substituting in equation (24), we get 

 1

0

1 ( )
(0, ) (0, )

( ) b

m
b

j
bj

H z
R z Q z

A z







         (32) 

Inserting equations  (26)-(29), (30), (32) in (19) and making some manipulation, we finally obtain 

 

*
1

0

*

( ) ( ) (1 ( )) ( ) ( ( )) ( )
(0, ) 

( ) ( ) ( ( )) 1

b b

b v v

z A z H z z G b z V zzP
z

Dr z A z S A z




     
  

  
  
 

    (33)  
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 

 

*
1

* *
1, 2,

1
1

1 1 1 2

1

2

1 1 1 2 1 2 1

where  ( )= ( ) ( ) ( ) (1 ( )) ( ) ( ( )) ( )

            ( ) ( ( )) ( ( ))

   ( ) ( ) ( ... ) ( )

   ( ) 1 ( ) ( ) .... ( ...

b b b

b b b b b

m
l

b l l b

l

b b m

Dr z zA z z A z H z z G b z R z

H z S A z S A z

z H z H z

z H z H z



    

     

 








     
 



  

     



 
1

) ( )
m

bH z


 

Using the equation (33) in (30) and (31), we get 

 
  *

1 0

0

( ) ( ) ( ( )) 1 ( )
(0, ) ( )

( )b

m b v vj

j j b

j

P A z R z S A z zV z
Q z H z

Dr z








  
 
 
 


   

(34) 

Using the equations (22), (26)and (34,) we get 

 
  *

1 0
*
1,

0

( ) ( ) ( ( )) 1 ( )
(0, ) ( ) ( ( ))

( )b

m b v vj

j j b b b

j

P A z R z S A z zV z
P z H z S A z

Dr z








  
 
 
 


   

(35) 

Inserting equation (34) in (32), we get 

   
  *

11 0

0 0

( ) ( ( )) 1 ( )
(0, ) 1 ( ) ( )

( )

mm v vj

b j b

j j

P R z S A z zV z
R z H z H z

Dr z


 



 

  
  
 
 

 
   

(36) 

Using the equations (23) and (33)-(36) in  (25)-(29), we get the following limiting probability 

generating functions results ( , ), ( , ), ( , ), ( , ), ( , )
b bj j vx z Q x z P x z x z R x z  . 

Theorem 4.1.The marginal probability distributions of the number of customers in the orbit when the 

server is idle, busy on FPS, busy on SPS, on working vacation and under repair are given by 

 *
0( ) = 1 ( ) ( ) ( )z zP R Nr z Dr z         (37) 

  *

*
1

where     ( )  ( ) ( ) ( ) ( ) 1

( )= ( ) ( ) ( )

( ) ( ) ( ) (1 ( )) ( ) ( ( ))

b v v

b

b b

Nr z I z V z A z S A z

Dr z zA z I z R z

I z z A z H z z G b z

  



    

 

       
1

* *
0 1,

0
( ) ( ) ( ) ( ) ( ) 1 1 ( ) ( )

b

m
j

j j b v v b b
j

Q z P H z zV z R z S A z S A z Dr z 




           
  (38) 

         
1

* * *
0 1, 2,

0
( ) ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) ( )

b

m
j

j j b v v b b b b
j

P z P H z zV z R z S A z S A z S A z Dr z 




           
 (39) 

0 ( )
( )v

P V z
z




           (40) 

       
1

* *
01

0

0

(1 ( )) ( ) ( ) ( ) ( ) 1 1 ( )

( )
( ) ( )

m
j

j b b v vm
j

j

P H z H z zV z R z S A z G b z

R z
Dr z b z

 







           
  (41) 

  

*

0
* * *

( )
where    P

1 1 ( ) ( )v

R

S R R

 

       
  




  
        

  
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    

     

1 1

11
*

0 0

1 (1) 1 (1) (1) ( ) ; 1 (1) 1 (1) (1) ( )

1 (1) (1) ( ) 1 ( )

b b

mm
j

b j b

j j

H E G H E G

H H R E G


   




   





 

         

 
      

   
 

 
 

Proof.  Integrating the equations ( , ), ( , ), ( , ), ( , ), ( , )
b bj j vx z Q x z P x z x z R x z  with respect to x, we define 

the PGF’s as  

0 0 0 0 0

( ) ( , ) ; ( ) ( , ) ; ( ) ( , ) ; ( ) ( , ) ; ( ) ( , ) ;
b b b bj j j j v vz x z dx Q z Q x z dx P z P x z dx z x z dx R z R x z dx 

    

            

To determine the probability that the server is idle (P0) we use the normalizing condition. Thus by 

letting z=1 in (37)-(41) and applying l’Hopital’s rule whenever necessary we get  

 
1

0

0

(1) (1) (1) (1) (1) 1
b b

m

v j j

j

P R Q P




      . □ 

Theorem 4.2 The PGF of number of customers in the system and orbit size at stationary point of time 

is  

0 ( )
( ) 

( ) ( )

sP Nr z
S z

b z Dr z

  



        (42) 

and
0 0 ( )

( ) 
( ) ( )

P Nr z
O z

b z Dr z

  



        (43) 

where

 

 

      

*

* *

1 1
* *

0
0

( )
( ) ( ) ( ) (1 )

( )

(1 ( )) ( ) ( ) 1 1 ( ) ( ( )) 1
( )

(1 ( )) ( ) ( ) ( ) ( ) 1 (1 ( ( ))) ( )

b

b v v
s

m m
j

j b b v v
j

j

V z
zA z I z R

b z

z R I z V z A z S A z
Nr z

H z H z zV z R z S A z G b z b z











  
 




 
  

 
                    

                


 
 
 
 
 
 
 
 
 
 

 

 

*
1  ( )= ( ) ( ) ( ) (1 ( )) ( ) ( ( )) ( )b b bDr z zA z z A z H z z G b z R z     

 
 

 

 

      

*

* *

1 1
* *

0
0

( )
( ) ( ) ( ) (1 )

( )

(1 ( )) ( ) ( ) 1 1 ( ) ( ( )) 1
( )

(1 ( )) ( ) ( ) ( ) ( ) 1 (1 ( ( ))) ( )

b

b v v
o

m m
j

j b b v v
j

j

V z
zA z I z R

b z

z R I z V z A z S A z
Nr z

H z H z zV z R z S A z G b z zb z











  
 




 
  

 
                    

               


 
 
 
 
 
 
 
 
 
  

 

 

Proof. The PGF of the number of customers in the system S(z) and in the orbit O(z) are obtained by 

 
1

0

0

( ) ( ) ( ) ( ) ( ) ( )
b b

m

v j j

j

S z P z z R z z Q z P z




       
1

0

0

( ) ( ) ( ) ( ) ( ) ( )
b b

m

v j j

j

O z P z z R z Q z P z




       

substituting the equations (37) – (41) in the above results then the equations (42) and (43) can be 

deduced by direct calculation. □ 
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5.  System performance measures 

In this section, the steady state probabilities when the system is in different states, the mean orbit 

(Lq)/system (Ls) size and reliability analysis are analysed respectively. 

5.1.  Mean system size and orbit size 

If the system is in steady state condition 

i. The mean orbit size (Lq) can obtained by differentiating  equation (43) with respect to z and 

evaluating at z = 1 

  
 

0

* 21

(1) (1) (1) (1)
lim ( )

( ) 3 (1)

o o
q

z

P Nr Dr Nr Drd
L O z

dz V Dr

    
  
  

 

ii. The mean system size (Ls) can obtained by differentiating equation (42) with respect to z and 

evaluating at 1z   

 

0

* 21

(1) (1) (1) (1)
lim ( )

( ) 3 (1)

s s
s

z

P Nr Dr Nr Drd
L S z

dz V Dr

    
  
  

 

5.2.  System state probabilities 

From equations (37)- (41) by letting z=1 and applying l’Hopital’s rule whenever necessary, we get 

i. The steady state probability that the server is idle during the retrial time 

     

  

* *
1

*
1

1 ( ) 1 ( ) 1 (1) 1 (1) (1) ( )

(1)
( ) 1 (1) 1 (1) (1) ( )

v b

b

R S H E G

R H E G


   


 

   

 
       

 
 

    
 

ii. The probability that the server is normal busy in FPS 

  

     

  

1
* * *

0 1,

0

*
1

(1) 1 ( ) 1 ( ) ( )

(1)
( ) 1 (1) 1 (1) (1) ( )

b b

m
j

j b v b

j

j j

b

P H S S R

Q Q
R H E G


    



   





 
      

   
 

 
    


 

iii. The probability that the server is normal busy in SPS 

  

       

  

1
* * * *

0 1, 2,

0

*
1

(1) 1 ( ) ( ) 1 ( ) ( )

(1)
( ) 1 (1) 1 (1) (1) ( )

b b

m
j

j b v b b

j

j j

b

P H S S S R

P P
R H E G


     



   





 
      

   
 

 
    


 

iv. The probability that the server is on working vacation is 

  
 *

0 1 ( )
(1)

v

v v

P S 




     
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v. The probability that the server is under repair is 
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
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




 
     

   
 

 
    


  

5.3.   Reliability measures 

For an unreliable queueing system, the reliability measure will give the knowledge that is required for 

the mastery of the system. To justify and validate the analytical results of this model, the availability 

measure and failure frequency of the sever is as follows 

i. The availability of the server in steady state  (A),that is the probability that the server is either 

serving a positive customer or is in idle period such that it is given by 

11 lim ( ) 1 (1)zA R z R     

     

  
 

1
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1
0

*
0
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1 (1) (1) 1 ( ) ( ) ( )

1
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1 ( ) 1 ( )

m
j
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m
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j

v v

H H S R E G

A
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S A z R


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


      
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






 
     

   
 

 
            
  


  

ii. The failure frequency of the server in steady state is given by  

 
     

  
 

1
* *

1 1
0

*
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* *

1 (1) (1) 1 ( ) ( )
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
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


      
  



 


 

 
     

   
 

  
            
  


   

6.  Special cases 

Case (i):No retrial,No immediate feedback, No negative arrival and Single phase of service 

Let 
*

2,( ) 1; 0j bR        ; This model reduces to  M/G/1 queue with working vacation policy. 

The result coincides with Zhang and Hou [28]. 
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            


      
 

 

Case (ii): No immediate feedback, No negative arrival, No vacation interruption, Single working 

vacation and Single phase of service 
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Let 2, 0j b       ; we obtain an M/G/1 retrial queue with Single working vacation.  The 

following result agrees with Arivudainambi et al. [1]. 
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  
 

 

Case (iii): No immediate feedback, No negative arrival and Single phase of service 

Let 2, 0j b     ; our model reduces to an M/G/1 retrial queue with working vacations. The result 

agrees with the result of Gao et al. [6]. 
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Case (iv): No immediate feedback, No negative arrival, No working vacation and Single phase of 

service 

Let 2, 0j b v         ;we obtain an M/G/1 retrial queue with general retrial times The 

following result agrees with Gomez-Corral [9]. 
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1, 1,

*
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( ) ( ) ( ) 1
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b b b

b b

R E S S A z z
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  

     

 

7.  Numerical illustration 

In this section, we present some numerical examples to study the effect of various parameters on the 

system performance measures of our model. The arbitrary values to the parameters are so chosen such 

that they satisfy the stability condition. The retrial time, service time, working vacation time and repair 

time are taken general distributions, where Exponential -   xf x e   , Erlangian of order two-

2( ) xf x xe   , Hyper exponential-
22( ) (1 )x xf x c e c xe      ).  

 Table 1 shows that when immediate feedback probability for  (α1) increases, the probability that 

server is idle (P0) decreases, then the mean orbit size (Lq) increases and probability that server is busy 

with feedback customer (Q)also increases. Table 2shows that when negative arrival rate (δ) increases, 

the mean orbit size(Lq) increases, probability that server is idle during retrial time(P) increases and the 

servers failure frequency (F) also increases. Table 3 shows that when lower speed service rate (μv) 

increases, the probability that server is idle (P0) increases, then the mean orbit size (Lq) decreases and 

probability that server is on working vacation (Ω)also decrease for the values of  = 0.5; δ = 1.5; µ= 8; 

µv= 5; a = 3; r = 0.5; θ= 3; c=0.7. 

Table 1: The effect of immediate feedback probability (α1) on P0,Lq and Q 

feedback 

probability 
Exponential  Erlang-2 stage  Hyper-Exponential 

α1 P0 Lq Q  P0 Lq Q  P0 Lq Q 

0.10 0.8852 0.0726 0.0038  0.7070 0.2499 0.0123  0.8750 0.0779 0.0033 

0.20 0.8805 0.0748 0.0077  0.6889 0.2698 0.0249  0.8709 0.0795 0.0066 

0.30 0.8758 0.0770 0.0116  0.6702 0.2917 0.0379  0.8668 0.0812 0.0100 
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0.40 0.8710 0.0792 0.0156  0.6510 0.3158 0.0513  0.8626 0.0828 0.0134 

0.50 0.8660 0.0816 0.0197  0.6313 0.3425 0.0650  0.8584 0.0845 0.0169 

Table 2: The effect of negative arrival rate (δ) on Lq, P and F 

negative 

arrival  rate 
Exponential  Erlang-2 stage  Hyper-Exponential 

Δ Lq P F  Lq P F  Lq P F 

0.30 0.3433 0.0901 0.0050  0.8031 0.3687 0.0162  0.4600 0.1448 0.0077 

0.40 0.3671 0.0903 0.0087  0.8983 0.3722 0.0284  0.4922 0.1448 0.0135 

0.50 0.3906 0.0905 0.0135  0.9934 0.3757 0.0439  0.5241 0.1449 0.0209 

0.60 0.4137 0.0907 0.0193  1.0881 0.3790 0.0624  0.5558 0.1450 0.0297 

0.70 0.4364 0.0909 0.0260  1.1827 0.3822 0.0839  0.5872 0.1450 0.0399 

Table 3: The effect of lower speed service rate (μv) on P0, Lq and Ω 

Vacation 

distribution 
Exponential  Erlang-2 stage  Hyper-Exponential 

μv P0 Lq Ω  P0 Lq Ω  P0 Lq Ω 

2.00 0.8016 0.0907 0.0802  0.5540 0.3588 0.0776  0.8007 0.0924 0.0897 

3.00 0.8290 0.0872 0.0691  0.5818 0.3537 0.0727  0.8244 0.0895 0.0790 

4.00 0.8498 0.0842 0.0607  0.6077 0.3481 0.0682  0.8432 0.0868 0.0706 

5.00 0.8660 0.0816 0.0541  0.6313 0.3425 0.0641  0.8584 0.0845 0.0637 

6.00 0.8791 0.0794 0.0488  0.6525 0.3371 0.0604  0.8710 0.0826 0.0581 

 

 For the effect of the parameters on the system measures, three dimensional graphs are illustrated in 

Figure 1 and Figure 3.  In Figure 1, the surface displays an downward trend as expected for increasing 

the value of arrival rate (λ) and negative arrival rate (δ) against the idle probability (P0). Figure 2 show 

that the mean orbit size (Lq) decreases for increasing the value of the lower service rate (μv) and 

regular service rate (μb). 

 

Figure 1. P0 versus λ and δ 
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Figure 2. Lq versus μv andμb 

8.  Conclusion 

In the foregoing analyses, a single server retrial G- queue with two phases of service and immediate 

feedback under working vacation policy is investigated. By using the method of supplementary 

variable technique and probability generating function approach, the probability generating functions 

for the numbers of customers in the system and in  its orbit when it is free, busy or on working 

vacation, under repair are derived. Some system’s performance measures and reliability measures are 

discussed. The explicit expressions for the average queue length of orbit and system have been 

obtained. Numerical examples are presented to study the impact of various parameters on the system 

performance. The analytical results that are validated numerically may be useful in many real-life 

situations such as WWW server, e-mail system, call centres, telecommunication networks, telephone 

switching system, etc. to design the outputs. The introduction of immediate feedback in presence of 

retrial G-queues and multiple working vacations is the novelty of this investigation. Our suggested 

model has practical real-life application in computer processing system which processes the messages 

through processor.  

References 
[1] Arivudainambi D, Godhandaraman P and Rajadurai P 2014 OPSEARCH 51 434–62 

[2] Artalejo J R 2010 Mathematical and Computer Modelling 5171–81 

[3] Artalejo J and Gomez-Corral A 2008 Retrial Queueing Systems(Berlin Germany: Springer) 

[4] Chandrasekaran VM, Indhira K, Saravanarajan M C and Rajadurai P 2010 Int. J. Pure Appl. 

Math10633–41 

[5] Do T V 2011 Mathematical and Computer Modelling 53205–12 

[6] Gao S and Liu Z 2013 Appl Math Model 371564–79 

[7] Gao S and Wang J 2014 Euro J Operat Res 236561–72 

[8] Gelenbe E 1989 Neural Comput. 150 2–10 

[9] Gomez-Corral A 1999 Naval Res. Logist 46 561–81 

[10] Kalidass K andKasturi R 2014 OPSEARCH 51 201–18 

[11] Ke J C and Chang F M 2009 Comput. Ind. Eng.57433–43 

[12] Ke JC, Wu CU and Zhang Z G 2010 Int. J. Oper. Res.73–8 

[13] Krishnakumar B, Madheswari S P and Anantha Lakshmi SR 2013Int. J. Oper. Res.13 187–210. 

[14] Li J and Tian N 2007 J Syst. Sci. Syst. Eng. 16121-127 

[15] Liu Y and Song J 2013 J Appl Math Comput. 42 103-115 

[16] Pakes A G 1969 OperatRes171058–61 

[17] Peng Y, Liu Z and Wu J 2014 J Appl Math Comput 44187–213 

[18] Rajadurai P, Chandrasekaran V M amdSaravanarajan M C 2015 Int J Math Operat Res 7519–46 

[19] Rajadurai P, Saravanarajan M C and Chandrasekaran V M 2015 Int J ApplEng Res 10  4130-35 



15

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042156 doi:10.1088/1757-899X/263/4/042156

 

 

 

 

 

 

[20] Rajadurai P, Chandrasekaran V M and Saravanarajan M C 2016 OPSEARCH 53197-223 

[21] Rajadurai P, Chandrasekaran VM andSaravanarajan M C 2016 Ain Shams Engineering Journal  

[22] Sennott LI, Humblet P A andTweedi R L 1983Operat Res 31783–89 

[23] Servi L D and Finn S G 2002Perform Eval 5041–52 

[24] Varalakshmi M, Rajadurai P, Saravanarajan M C and Chandrasekaran V M 2016Global Journal 

of Pure and Applied Mathematics 12 436-41 

[25] Varalakshmi M, Rajadurai P, Saravanarajan M C and Chandrasekaran V M2016 Int J Math 

Operat Res 9(3) 302-328 

[26] Wu D and Takagi H 2006Perform Eval 63654–81 

[27] Wu J and Lian Z 2013 Comput. Ind. Eng 6484–93 

[28] Zhang M and Hou Z 2012 J Appl Math Comput 39 221–34 

[29] Zhang M and Liu Q 2015 OPSEARCH 52 256–70 


