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Hyperspectral images usually contain hundreds of contiguous spectral bands, which can precisely discriminate the various spectrally similar 

classes. However, such high-dimensional data also contain highly correlated and irrelevant information, leading to the curse of dimensionality 

(also called the Hughes phenomenon). It is necessary to reduce these bands before further analysis, such as land cover classification and target 

detection. Band selection is an effective way to reduce the size of hyperspectral data and to overcome the curse of the dimensionality problem 

in ground object classification. Focusing on the classification task, this article provides an extensive and comprehensive survey on band selection 

techniques describing the categorisation of methods, methodology used, different searching approaches and various technical difficulties, as well 

as their performances. Our purpose is to highlight the progress attained in band selection techniques for hyperspectral image classification and to 

identify possible avenues for future work, in order to achieve better performance in real-time operation.
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Introduction
The hyperspectral imaging technology discussed here 
captures a scene by using various imaging spectrom-

eter sensors [e.g. Airborne Visible Infrared Imaging 
Spectrometer (AVIRIS), EO-1 Hyperion, Reflective 
Optical System Imaging Spectrometer (ROSIS) and 
HyMap] over wavelengths ranging from the visible to the 
near infrared (VNIR). This range offers detailed spectral 
information about ground objects in several continuous 
spectral bands (from tens to several hundreds).1 Because 

of their high spectral resolution, hyperspectral images 
offer a very high discrimination ability between similar 

ground cover objects.2 However, the large number of 
bands brings the curse of dimensionality, which dimin-

ishes the discriminating ability of the hyperspectral data 
as the dimensionality rises with fewer labelled training 
samples.3–5 This problem is also referred to as the 

“Hughes phenomenon”.6 Furthermore, the high dimen-

sionality of the hyperspectral image also carries noisy 
and redundant information, which increases the compu-

tational complexity of the data processing. More impor-
tantly, while the data of the complete set of hundreds 
of spectral bands provide opportunities for a wide range 
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of applications, they are not designed for any particular 
problem. Each band may or may not reveal unique 
absorption features of the materials of interest in a given 
problem. Thus, a given band can be a useful feature for 
one problem, but not for another. Therefore, the original 
hyperspectral bands are essentially candidate features 
for a specific application. Dimensionality reduction is 

an essential task in reducing the number of bands or 
transforming the data from its original space to a lower-
dimensional data space, whilst preserving the desired 
information from the original data.7,8

In general, there are two approaches to reducing the 
dimensionality of hyperspectral data: feature extraction 
and band (also called feature) selection. Feature extraction 
approaches transform original feature space into new 
feature space, which loses the physical significance of 
the bands but preserves more discriminative information 
needed for further analysis.9–20 In the band selection 
method, a set of informative bands are selected according 
to criteria such as information-theoretical approaches 
(e.g. mutual information, divergence, transformed 
divergence), distance measures (e.g. Euclidian distance, 
Bhattacharyya distance, Jeffries–Matusita distance) and 
searching strategies (e.g. forward selection, backward 
selection), where the significant physical characteristics 
of the original spectral bands can be preserved.21–25 

As band selection methods preserve the physical 
characteristics of the original spectral bands, they are 
preferred over feature extraction methods. In this review 
article, the focus is on band selection techniques due 
to their excellence in practice, including a survey of the 
approaches suggested by researchers in the past along 
with their pros and cons.

This article provides a summary of various intensive 
studies addressing band selection approaches for 

hyperspectral image classification and indicates possible 
guidelines for future research. The remaining part of the 
paper is organised into sections providing a brief overview 
of the band selection process, classification methods 
that use spectral information only and a summary of 
the literature survey, followed by an indication of future 
challenges.

Overview of band selection 
process

Figure 1 shows the general framework for the band 
selection process in hyperspectral image processing. 
In the process of band selection, a subset of a few 
suitable bands is selected from the original hyperspec-

tral data, where the physical properties of the original 
data are preserved. Let the hyperspectral image cube 
be represented as χ ϵ RH × W × N, where H and W are the 
height and width of the hyperspectral image cube and 
N is the total number of spectral bands. Assume that 
k classes in the hyperspectral data are denoted as 
Ω = [Ω1, …………, Ωk].

In the process of hyperspectral band selection, 
irrelevant and redundant bands are discarded, because 

they are not relevant or important with respect to the 
land cover classes of hyperspectral images. When the 
number of samples is much less than the number of 
features, processing of the hyperspectral data becomes 
challenging, because of the Hughes phenomenon. The 
general process for band selection consists of four key 
steps as shown in Figure 2: 1) Band subset generation, 
2) Evaluation of band subset, 3) Stopping criteria and 4) 
Validation of results.

Figure 1. General framework of the band selection process.
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Band subset generation specifies a candidate subset for 
evaluation in the search space. Two simple concerns are 
considered for determination of the nature of the band 
subset generation process. First, band subset generation 
chooses the starting point of the search process, which 
guides the search direction. To choose the search starting 
points, scoring, forward, backward and random methods 
may be considered. Second, the band selection process 
is carried out with a specific strategy, such as sequential 
search or exhaustive search. A newly generated band 
subset is evaluated using certain evaluation criteria. Many 
evaluation criteria have been proposed in the literature 
for determination of the goodness of the candidate 
subset of features. Finally, to stop the selection process, 
stop criteria must be determined. The band selection 
process stops at validation, which is not part of the band 

selection process. However, the band selection method 
must be validated by carrying out different tests and 
comparisons with previously established results or by 
comparison with the results of competing methods.

Band selection approaches
The hierarchical structure of band selection methods 
based on the basic taxonomy of band selection methods 
is shown in Figure 3. Band selection methods are subcat-
egorised according to subset evaluation criteria, avail-
ability of prior information and selection strategy used to 
create the band subset. A brief introduction of all subcat-
egories is given in the following sections.

Band selection based on band subset 
evaluation criteria
Based on subset evaluation criteria, band selection tech-

niques are categorised as the filter method, the wrapper 
method and the hybrid method. The filter approach 
selects the bands where the selection criteria are 
independent of the classifiers used, subsequently, to 
perform classification of the data. However, the wrapper 
approach performs band selection based on the clas-

sification performance of a given classifier, for example, 
k-nearest neighbour, maximum likelihood, support vector 

Hyperspectral data

with all bands

Band

subset
Band subset

generation
Band subset

evaluation

Stopping
criteria

Validation
of results

Goodness of band
subset

No Yes

Figure 2. Stages of the band selection process.
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machines (SVM) or logistic regression. The hybrid band 
selection approach is a combination of the filter and 
wrapper approaches. Filter approaches are usually faster 
than wrapper approaches as they have lower compu-

tational cost. On the other hand, wrapper approaches 
usually have better performance than filter approaches 
as they select more representative bands from the orig-

inal band set.

Goodness of band subset is evaluated using certain 
evaluation criteria. These criteria are either dependent 
or independent of the learning algorithm. Generally, the 
filter approach uses independent evaluation criteria such 
as information measures (divergence, entropy or mutual 
information),21,26–28 distance measures [Bhattacharya 
distance, Kullback–Leibler divergence, Jeffries–Matusita 
distance, Hausdorff distance or Spectral Angle Mapper 
(SAM)]29–32 and dependency measures (correlation 

measures, similarity measures).33,34 On the other hand, the 
wrapper approach uses dependent evaluation criteria.35–38 

Dependent evaluation criteria require a predefined 

learning algorithm. The performance of the algorithm is 
used to evaluate the goodness of the band subset, which 
then determines the optimal subset of bands.

The hyperspectral data consist of discrete spectral 
bands. To compute the information contained, each 
band is considered as a discrete random variable B. The 
mathematical expressions of some of the evaluation 
criteria used for band selection are given below.

Entropy
According to information theory, the amount of informa-

tion is measured with Shannon entropy. The Shannon 
entropy of a discrete random variable B with probability 
distribution p(b) can be written as:
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where h(b) is a grey-level histogram of band B and the 
total number of pixels in band B is given by M × N.

Mutual information
The mutual information between two bands, Bm and Bn, 

with joint probability distribution p(bm,bn) and marginal 

probability distribution p(bm) and p(bn), can be expressed 
as:
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where h(bm,bn) is the grey-level histogram of bands Bm,Bn.

Bhattacharya distance
The Bhattacharya distance between bands Bm and Bn is 

defined as
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Here, µi and µj are band means and Si and Sj are band 

covariance matrices.

Kullback–Leibler divergence
The Kullback–Leibler divergence between bands Bm and 

Bn is expressed as:
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Jeffries–Matusita distance
The Jeffries–Matusita distance between bands Bm and Bn 

is expressed as:
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where Bm,n is the Bhattacharya distance calculated using 
Equation (6).

Hausdorff distance
The Hausdorff distance for band Bm is expressed as:
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where xm is the pixel vector associated with class cli and xl 

is the pixel vector associated with class clj.
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Correlation coefficient
The correlation coefficient between bands Bm and Bn is 

expressed as:
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where Cov is the covariance between the two bands, 
sm and sn are standard deviations of the respective 
bands.

Overall accuracy

Overall accuracy is a dependent evaluation criterion and 
is evaluated using a classifier.
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Classify (Yi) is the function that gives the class of Yi. For 

the pixel Yi with true class, the function assess(Yi) = 1 and 
0 otherwise.

Band selection based on availability of prior 
information
Based on the availability of prior information, the band 
selection techniques are categorised as supervised band 
selection,30,35,39,40 semi-supervised band selection23,32,41 

or unsupervised band selection.42–45

Supervised band selection methods need a collection of 
labelled data, which is a very costly and time-consuming 
process to generate. Supervised band selection 
approaches use an evaluation criterion that maximises 
the class separability of training data samples with known 
class labels. With limited labelled samples, the supervised 
band selection method fails to identify the discriminative 
bands. As the collection of class information a priori is an 

expensive and time-consuming task, the unsupervised 
band selection methods are more suited to band selection 
in practice. Though the unsupervised band selection 
approach performs better in the presence of limited 
unlabelled data, the lack of discriminative information 
generally leads to an unsatisfactory classification 
performance. Hence, the semi-supervised approach is 
gaining attention for band selection. Such methods use 
both labelled and easily available unlabelled data samples. 

By using limited labelled and unlabelled samples, semi-
supervised band selection approaches can combine the 
advantages of both supervised and unsupervised band 
selection methods. They be categorised into two types: 
manifold learning based46 and clustering based.47,48

In recent years, spatial information has been taken 
into account and some spectral–spatial-based band 
selection methods have been proposed. These 
methods have provided significant advantages in terms 
of improving performance.49–56 For hyperspectral 
image processing, spatial information means that we 
take into account the information from neighbouring 
pixels when making a decision about the current pixel, 
thereby potentially improving the decision accuracy. In 
Reference 23, a semi-supervised learning method is 
proposed for band selection in hyperspectral imagery. 
With the introduction of hypergraphs for hyperspectral 
pixel similarity calculation, a better relationship between 
multiple samples can be captured than using the 
traditional graph method; hypergraphs are constructed 
by incorporating both spectral and spatial spaces. An 
automatic band selection method is proposed for band 
selection by exploiting spatial structure to determine the 
discriminating power of each band.49 An unsupervised 

band selection algorithm is proposed in Reference 50 

based on spatial information. A band selection method in 
hyperspectral imagery is proposed in Reference 53 that 
takes into consideration a few selected cluster average 
values using the spatial information from each band. A 
multiple spatial feature extraction and fusion method is 
proposed in Reference 24 to reduce dimensionality. Using 
the complementary information of different features, 
the spatial feature extraction method may be a better 
choice for reducing the dimensionality of hyperspectral 
images before band selection. In Reference 56, two semi-

supervised wrapper-based band selection algorithms are 
proposed to incorporate spatial information into band 
selection.

Band selection based on selection strategy 
used

There are two major approaches to band selection based 
on selection strategies: individual band evaluation and 
band subset evaluation. Individual evaluation consists 
of clustering-based methods47,57 and ranking-based 
methods.58–60 In Individual band evaluation, the score 
(which signifies the importance of the band) of an indi-
vidual band is measured according to a certain criterion, 
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such as non-Gaussianity,22 variance,61 mutual informa-

tion62 etc. In band subset evaluation, candidate band 
subsets are created by search strategies such as exhaus-

tive search,63–67 greedy search68–71 and combinatorial or 

metaheuristic optimisation methods.72–76

Individual evaluation-based band selection
Clustering-based band selection consists of two steps. 
First, band subsets are formed by grouping the similar 
bands and separating dissimilar bands within the clustering 
framework. In the second step, the centroids of the clusters 
are then considered as the most representative bands and 
picked out to constitute the final band subset. Clustering 
is a commonly used method of selecting discriminative 
bands and the selected discriminative bands are consid-

ered as the cluster centres.77 In Reference 78, sparse 

subspace clustering is used to select the most suitable 
band subset. In Reference 57, a dual clustering method 
is proposed by also employing the background informa-

tion in the clustering procedure. In Reference 79, based 

on a hierarchical structure, bands are clustered in order to 
maximise the inter-cluster variance and minimise the intra-
cluster variance. A novel hyperspectral band selection 
approach is proposed in Reference 80, where a represent-
ative band is selected based on maximum weight strategy. 
However, clustering-based band selection methods focus 
mainly on redundancy among the bands. Consequently, 
the most suitable and informative bands may be discarded 
in the selection process.34,60,79 In the ranking-based band 
selection method, bands are selected based on their 
ranking, in which the rank of each band is first computed 
according to a definite evaluation criterion (as mentioned 
above), and then the top-ranked bands are sorted in a 
sequence to form the subset. The most commonly used 
ranking methods are maximum variance-based principal 
component analysis (MVPCA) and information divergence 
(ID)-based methods. The main disadvantage of the ranking 
methods is that correlation among bands is ignored while 
evaluating the discriminating ability of a band. As a result, 
most of the time, the ranking-based methods select the 
redundant bands.

To consider both redundancy as well as correlation 
among the bands, the combination of clustering- and 
ranking-based methods are discussed.

Subset evaluation-based band selection
Hypothetically, a band selection method by exhaus-

tive search is a direct approach and finds the optimum 

among all possible subsets according to a certain 
evaluation criterion. If n bands exist in the original 
band set, then the optimal band selection procedure 
requires the evaluation of 2n band subsets in order to 

identify the best subset. However, this procedure is 
not practical as it is too expensive, time-consuming 
and essentially impossible. To avoid testing all the 
possible combinations of bands, which imposes a 
heavy computational burden when selecting the 
band subset, greedy search strategies, e.g. Sequential 
Forward Selection (SFS),  Sequential  Backward 

Elimination (SBE), Sequential Forward Floating 
Selection (SFFS) and Sequential Backward Floating 
Selection (SBFS), can be used. SFS and SBE are fast; 
however, they do not permit feedback so that earlier 
selected bands can be reviewed. Therefore, once a 
band is selected, it will not be removed in a later 

iteration. SFFS and SBFS provide enhanced strategies 
of searching by re-evaluating the selected bands for 
addition or removal at each iteration.

Over the years, in the literature, numerous band 
selection approaches have been presented based on 
optimisation inspired by Nature (also called metaheuristic 
algorithms) including Ant Bee Colony (ABC), Genetic 
Algorithms (GA), Particle Swarm Optimisation (PSO), 
Cuckoo Search (CS) optimisation algorithm, Grey Wolf 
Optimisation (GWO), Differential Evolution (DE) and so 
on.29,81–84 These methods consider the band selection 
problem as a combinatorial optimisation problem, 

which is solved by formulating an appropriate fitness 
function or objective function. The objective function 
evaluates the band subsets and returns the degree of 
their goodness. The objective function needs to be 
defined carefully as it influences the performance of 
the system. It can be dependent or independent of the 
learning algorithm. Hence, the objective function can 
be modelled by dependent or independent evaluation 
criteria as mentioned above. Selection of an effective 
search strategy is very important in band selection. 
To optimise the objective function, an appropriate 
optimisation algorithm must be chosen which converges 
to the global optimum solution and does not get stuck in 
a local optimum.

Table 1 details the categorisation of band selection 
approaches in representative papers published on 
hyperspectral image classification, including the search 
or selection strategy used, the techniques used and the 
performance of the system.
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Band  selection 
strategy References Technique used

Comments on performance of the 
system

Band subset evaluation based on: Filter
Band selection based on availability of prior information: Unsupervised
Ranking 21, 22, 

28, 62, 81, 
85–105

A score of each band is calculated 
which is used as a ranking criterion 
to create a combination of the most 
discriminative bands. To estimate the 
relevance of a band, various ranking 
criteria can be used, such as informa-

tion theory measures, correlation-based 
measures and distance-based measures.

Classifier independent. 
The correlation between bands is 
not measured during the selection 
process, which leads to the state 
where the dependency among the 
chosen bands is quite high. 
Highly stable and highly correlated 
band subsets.

Clustering 34, 53, 57, 
77–80, 98, 
106–121

Bands are grouped into clusters by 
means of K-Means, Fuzzy C-Means 

and hierarchical clustering, in which the 
inter-cluster variance is maximised and 
the intra-cluster variance is minimised. 
In a second step, a representative band 
is chosen as the best.

Classifier independent. 
Considers the dependency among 
the bands, which gives a less cor-
related band subset. 

Sensitive to initial cluster centres, 
repetitive calculations increase the 
computational burden.

Clustering and 
ranking

58, 60, 
122, 123

Both ranking-based and clustering-
based techniques are combined in a sin-

gle framework. Hence, both information 
content and redundancy among bands 
are taken into consideration.

Classifier independent. 
Less correlated and highly stable 
band subset.

Clustering + 
branch and 
bound search

124 Bands are clustered by a spectral 

clustering algorithm, then branch and 
bound search is used to find optimal 
band subset.

Classifier independent. 
Sensitive to initial cluster centres.

Combinatorial/ 

metaheuristic 
search

26, 42, 

54, 72–76, 

125–127

Band selection problem as combina-

torial optimisation problem, which is 
solved by formulating an appropriate 
fitness or objective function. 
The objective function is formulated 
by considering the band separability 
measures.

Classifier independent.

Greedy search 25, 31, 33, 
44, 45, 50, 

61, 68–71, 

128–139

Bands are selected using sequential 
searching such as SFS, SBE, SFFS, 
SFBS.

Searching an optimal band subset 
with a sequential band selec-

tion process cannot guarantee an 
 optimal solution. 
Classifier independent.

Exhaustive 
search

63–67 Tests all possible combinations of band 
subsets.

Classifier independent. 
Excessive computation complexity.

Table 1. Categorisation of band selection approaches in representative papers published on hyperspectral image classification.
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Band selection based on availability of prior information: Supervised
Greedy search 30, 35, 39, 

40

Uses labelled samples. Bands are 

selected using sequential searching 
such as SFS, SBE, SFFS, SFBS.

Classifier independent. 
Fails to identify the most highly 
discriminative band within the 
limited labelled samples.

Ranking 23, 140 Uses the unlabelled samples to assist 
the labelled ones to select highly 
 discriminative and informative features.

Classifier independent. 
Fails to identify the most highly 
discriminative band within the 
limited labelled samples.

Highly stable and highly correlated 
band subsets.

Combinatorial/ 

metaheuristic 
search

141 A band subset is produced by using 
search techniques and a subset evalua-

tion process evaluates the goodness of 
the corresponding candidate subset by 
some criterion. Objective function used 
is classifier accuracy.

Classifier independent. 
Fails to identify the most highly 
discriminative band within the 
limited labelled samples.

Band selection based on availability of prior information: Semi-supervised
Exhaustive 
search

32, 46 Uses both unlabelled and labelled sam-

ples. Tests all possible combinations of 
band subsets.

Classifier independent. 
Excessive computation complexity.

Clustering 47, 48 Bands are clustered by both unlabelled 
and labelled samples according to simi-
larity measures such as the conditional 
entropy and conditional mutual infor-
mation (MI). A representative band from 
each cluster is selected with value.

Sensitive to initial cluster centres. 
Classifier independent. 
Less correlated band subset.

Combinatorial/ 

metaheuristic 
search

41 Band selection problem as combina-

torial optimisation problem, which is 
solved by formulating an appropriate 
fitness or objective function. 
Objective function is formulated by 
considering the band separability 
 measures.

Classifier independent.

Band subset evaluation based on: Wrapper
Band selection based on availability of prior information: Supervised
Exhaustive 
search

142, 143 Tests all possible combinations of band 
subsets. 

Band selection is achieved through 
 classifier selection.

Classifier dependent. 
Searches all possible combinations. 
High computational cost.

Greedy search 70, 144 Bands are selected using sequential 
searching such as SFS, SBE, SFFS, 
SFBS.

Classifier dependent. 
High computational cost.
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Discussion and conclusion
The selection of suitable and highly discriminative bands 
is essential for hyperspectral image processing, as hyper-
spectral images consist of hundreds of highly correlated 
spectral bands. However, classification performance is 
restricted by the availability of the number of labelled 
samples. In this review article, an overview of various band 
selection approaches has been presented to address the 
challenges faced by the current system. In this section, 
this work is summarised by outlining the research chal-
lenges faced by the band selection approaches:
1) Most of the band selection approaches select the 

bands individually, disregarding the relationships 
among them. Therefore, selected bands fail to repre-

sent the characteristics of the original data.
2) Water absorption or noisy bands have low-discrimi-

nating capability and need to be manually removed. 
However, the removal of these low-discriminating 
bands is a very expensive, time-consuming process 
and requires expert knowledge.

3) Noisy bands usually result in large spectral divergence. 
Noisy bands have fewer intra-band correlations and 
they tend to be easily selected. However, this may 
not produce a band subset of suitable bands for the 
clustering-based approach. Also, clustering-based 

approaches are sensitive to the initial number of clus-

ters, leading to undesirable band subsets.
4) Although a combinatorial optimisation search strategy 

produces a desirable band subset, it is sensitive to the 
initialisation strategy and may produce an unreliable 
band subset.

5) An appropriate band subset searching strategy which 
ensures the use of an appropriate learning algorithm is 
required.

6) How to compute the distance between the spectral 
bands as well as in what way to select the discrimina-

tive set of bands are still challenging tasks in hyper-
spectral band selection.

7) How to decide the minimum number of spectral bands 
is still challenging issue.

8) Although ranking-based band selection approaches 
use different evaluation criteria, they generally select 
individually informative bands. However, the combina-

tion of individually informative bands would result in 
undesirable band subset. This is due to the fact that 
selected bands have large amounts of redundant infor-
mation and provide little extra information.

Therefore, in order to address these challenges, there is 
a need to develop a suitable and automatic band selection 
strategy which reduces the size of a hyperspectral image 

Combinatorial/ 

metaheuristic 
search

36, 38, 83, 
145–156

Band selection problem as combin-
atorial optimisation problem which is 
solved by formulating an appropriate 
fitness or objective function. 
The objective function is formulated by 
considering the overall accuracy of the 
classifier.

Classifier dependent. 
High computational cost.

Band selection based on availability of prior information: Unsupervised
Greedy search 157 Selects band by integrating overall 

accuracy and redundancy.

Classifier dependent. 
High computational cost. 
Highly stable and highly correlated 
band subsets.

Band selection based on availability of prior information: Semi-supervised
Greedy search 56, 158 Uses labelled and unlabelled samples, 

and sequential search strategy.
Classifier dependent. 
High computational cost.

Band subset evaluation based on: Hybrid
Clustering/
combinatorial/

metaheuristic 
search

29, 159, 

160

Combines both filter and wrapper 
methods.

Sensitive to initial cluster centres. 
Classifier dependent. 
High computational cost.
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without compromising classification accuracy. Such an 
automatic band selection strategy should decide the 
minimum number of bands needed to process the 
hyperspectral data.
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