
A Survey on Prioritization of Software Quality 
Attributes

R. Senthilkumar* and T. Arunkumar

SCOPE, VIT University, Vellore - 632014, Tamil Nadu, India; 
 senvpm73@gmail.com, rsenthilkumar@vit.ac.in

Abstract

Objective: The objective of the survey is to understand the need of software quality metrics in providing better software prod-
uct. Without knowledge about the quality dependencies, conflicts, incurred costs, and technical feasibility it is very difficult 
to minimize the cost involved in software development. Statistical Analysis: The Quantitative feedback for the prioritization 
and cost/benefit considerations for quality requirements is highly recommended. The distinction between the utilization of 
software metrics and software quality confirmation is necessary to quantify the strength software product against vulnera-
bilities. The prioritization of software quality attributes is demonstrated to influence the software developers for providing 
the quality software product. The prioritization is established, product and process metrics. Findings: Various distinctive 
metrics identifying with upkeep are depicted. This will be trailed by brief exchanges about programmed gathering of soft-
ware metrics information, use of gathered information, and expenses of software metrics. This survey has been formed with 
remarkably the quality components reasonableness and steady quality likewise, the quality model versatile quality identity 
a primary need. It is intended for my future investigation eagerness of ensuring nature of programming by means of mech-
anized data collection of the product quality measurements. Application: The benefits of an instrument, or a gadget set, 
to be conveyed, will preferably be to manage the bolster costs in a relationship in a more orchestrated and proficient way. 

*Author for correspondence

1. Introduction
Estimation is finished by metrics. Three parameters are 
measured: process estimation through process metrics, 
product estimation through product metrics, and proj-
ect estimation through project metrics. Process metrics 
survey the adequacy and nature of programming process, 
decide development of the process, exertion required in 
the process, viability of imperfection evacuation amid 
advancement. Product metrics is the estimation of work 
product delivered amid distinctive periods of program-
ming improvement. Project metrics delineate the project 
attributes and their execution.

Indian Journal of Science and Technology, Vol 9(44), DOI: 10.17485/ijst/2016/v9i44/86988, November 2016

ISSN (Print) : 0974-6846 
ISSN (Online) : 0974-5645

1.1 Process Metrics
To enhance any process, it is important to gauge its 
predefined traits, add to an arrangement of significant 
metrics in light of these properties, and afterward utilize 
these metrics to get markers with a specific end goal to 
infer a procedure for process change. 

Utilizing programming process metrics, program-
ming architects can evaluate the effectiveness of the 
product process that is performed utilizing the process as 
a structure. Process is set at the focal point of the triangle 
joining three variables (product, individuals, and innova-
tion), which have an imperative impact on programming 

Keywords: Prioritization, Process Metrics, Product Metrics, Project Metrics, Quality Attributes, Software Quality Metrics



A Survey on Prioritization of Software Quality Attributes

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org2

quality and association execution. The aptitude and inspi-
ration of the general population, the unpredictability of 
the product and the level of innovation utilized as a part 
of the product advancement have an imperative impact 
on the quality and group execution. The process triangle 
exists inside of the circle of ecological conditions, which 
incorporates advancement environment, business condi-
tions, and client/client qualities.

To quantify the productivity and adequacy of the 
product process, an arrangement of metrics is defined in 
view of the results got from the process. These results are 
recorded underneath. 

1. Number of mistakes found before the product dis-
charge 

2. Deformity recognized and reported by the client 
after conveyance of the product 

3. Time spent in settling blunders 
4. Work products conveyed 
5. Human exertion utilized 
6. Time used 
7. Adjustment to plan 
8. Hold up time 
9. Number of agreement adjustments 
10. Assessed cost contrasted with real cost. 

Note that process metrics can likewise be inferred 
utilizing the attributes of a specific programming build-
ing action. For instance, an association might quantify 
the exertion and time spent by considering the client 
interface plan. It is watched that process metrics are of 
two sorts, to be specific, private and open. Private Metrics 
are private to the individual and serve as a pointer just 
for the predetermined individual(s). Deformity rates by 
a product module and imperfection blunders by an indi-
vidual are cases of private process metrics. Note that some 
process metrics are open to all colleagues yet private to 
the project. These incorporate mistakes identified while 
performing formal specialized surveys and absconds 
reported about different capacities incorporated into the 
product. 

Open metrics incorporate data that was private to 
both people and groups. Project-level imperfection rates, 
exertion and related information are gathered, broke 

down and surveyed with a specific end goal to get mark-
ers that assistance in enhancing the authoritative process 
execution.

1.2 Product Metrics
In programming advancement process, a working prod-
uct is created toward the end of each effective stage. Every 
product can be measured at any phase of its improve-
ment. Metrics are created for these products with the goal 
that they can show whether a product is created by client 
prerequisites. In the event that a product does not meet 
client prerequisites, then the essential moves are made in 
the individual stage. Product metrics help programming 
designer to identify and rectify potential issues before 
they bring about disastrous imperfections. Likewise, 
product metrics survey the interior product ascribes with 
a specific end goal to know the proficiency of the accom-
panying. 

•	 Examination, outline, and code model 
•	 Power of experiments 
•	 General nature of the product a work in progress
•	 Different metrics detailed for products in the 

improvement process are recorded beneath. 
•	 Metrics for analysis model: These location dif-

ferent parts of the analysis model, for example, 
framework usefulness, framework size, etc. 

•	 Metrics for design model: These permit program-
ming specialists to evaluate the nature of design 
and incorporate compositional design metrics, 
part level design metrics, et cetera. 

•	 Metrics for source code: These evaluate source 
code multifaceted nature, viability, and different 
attributes. 

•	 Metrics for testing: These design proficient and 
successful experiments furthermore assess the 
viability of testing. 

•	 Metrics for support: These survey the solidness of 
the product. 

•	 Metrics for the Analysis Model 

There are just a couple of metrics that have been 
proposed for the analysis model. On the other hand, it 



R. Senthilkumar and T. Arunkumar

Indian Journal of Science and Technology 3Vol 9 (44) | November 2016 | www.indjst.org

is conceivable to utilize metrics for project estimation in 
the connection of the analysis model. These metrics are 
utilized to look at the analysis model with the goal of 
foreseeing the span of the resultant framework. Size goes 
about as a marker of expanded coding, reconciliation, 
and testing exertion; at times it likewise goes about as a 
pointer of many-sided quality included in the product 
design. Capacity point and lines of code are the regularly 
utilized systems for size estimation.

1.3 Project Metrics
Project metrics empower the project supervisors to 
survey current projects, track potential dangers, distin-
guish issue regions, modify work process, and assess the 
project group’s capacity to control the nature of work 
products. Note that project metrics are utilized for stra-
tegic purposes instead of key purposes utilized by the 
process metrics. Project metrics fill two needs. One, they 
minimize the improvement plan by making important 
modification keeping in mind the end goal to evade post-
pones and reduce potential dangers and issues. Two, these 
metrics are utilized to survey the product quality all the 
time and alter the specialized issues if required. As the 
nature of the project enhances, the quantity of mistakes 
and surrenders are diminished, which thusly prompts a 
decline in the general expense of a product project. 

Frequently, the first utilization of project metrics hap-
pens amid estimation. Here, metrics gathered from past 
projects go about as a base from which exertion and time 
gauges for the present project are figured. As the project 
continues, unique assessments of exertion and time are 
contrasted and the new measures of exertion and time. 
This correlation offers the project supervisor to screen 
(some assistance with supervising) and control the 
advancement of the project. As the process of improve-
ment continues, project metrics are utilized to track the 
blunders identified amid every advancement stage. For 
instance, as programming develops from design to cod-
ing, project metrics are gathered to survey nature of the 
design and acquire markers that thus influence the meth-
odology decided for coding and testing. Likewise, project 
metrics are utilized to gauge production rate, which is 
measured as far as models created, capacity focuses, and 
conveyed lines of code.

2. Software Quality Attributes
To begin with in a nutshell, know what is Quality? Quality 
can be characterized in distinctive way. Quality definition 
might vary from individual to individual. However, at 
long last there ought to be a few guidelines. So Quality 
can be characterized as 

•	 These are some quality definitions from alternate 
point of view. Presently let’s perceive in what man-
ner one can quantify some quality traits of item or 
application. 

•	 The following are the factors that are utilized to 
gauge programming advancement quality. Every 
scribe can be utilized to quantify the item per-
formance. These characteristics can be utilized 
for Quality certification and in addition Quality 
control. Quality Assurance exercises are oriented 
towards counteractive action of presentation of 
imperfections and Quality control exercises are 
gone for identifying deformities in items and 
administrations. 

•	 Unwavering quality: Measure if item is sufficiently 
solid to maintain in any condition. Should provide 
the reliably results. Item dependability is mea-
sured as far as working of venture under diverse 
working environment and distinctive conditions. 

•	 Viability: Distinctive variants of the item ought to 
be anything but difficult to keep up. For improve-
ment it is ought to be anything but difficult to add 
code to existing framework, ought to be anything 
but difficult to overhaul for new components and 
new advances time to time. Upkeep ought to be 
financially savvy and simple. Framework be any-
thing but difficult to keep up and correcting 
absconds or rolling out an improvement in the 
product. 

•	 Convenience: This can be measured as far as con-
venience. Application sought to be easy to use 
but difficult to learn. Route ought to be basic. The 
framework must be simple to use for information 
arrangement, operation, and translation of yield. 
Give steady client interface guidelines or tradi-
tions with our other often utilized frameworks



A Survey on Prioritization of Software Quality Attributes

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org4

•	 Portability: This can be measured as far as cost-
ing issues identified with porting, Technical issues 
identified with porting, Behavioral issues identi-
fied with porting. 

•	 Correctness: Application ought to be correct as far 
as its usefulness, figuring utilized inside and the 
route ought to be correct. This implies application 
ought to stick to utilitarian necessities. 

•	 Productivity: To Major framework quality trait. 
Measured regarding time required to finish any 
assignment given to the framework. For instance, 
framework ought to use processor limit, circle 
space and memory productively. In the event that 
framework is utilizing all the accessible assets then 
client will get corrupted performance falling flat 
the framework for productivity. In the event that 
framework is not proficient then it cannot be uti-
lized as a part of constant applications. 

•	 Security: Uprightness accompanies security. 
Framework trustworthiness or security ought to 
be adequate to anticipate unauthorized access to 
framework capacities, averting information mis-
fortune, guarantee that the product is shielded 
from infection contamination, and ensuring the 
protection of information went into the frame-
work. 

•	 Testability: Framework ought to be anything but 
difficult to test and find deformities. In the event 
that required ought to be anything but difficult to 
partition in diverse modules for testing. 

•	 Adaptability: Should be sufficiently adaptable to 
alter. Versatile to different items with which it 
needs connection. But it is difficult to understand 
the interface with the other standard segments. 

•	 Reusability: Programming reuse is a decent 
cost productive and efficient advancement way. 
Distinctive code libraries classes ought to be suffi-
ciently nonexclusive to utilize effectively in diverse 
application modules. Isolating application into 
diverse modules with the goal that modules can be 
reused over the application. 

•	 Interoperability: Interoperability of one frame-
work to another ought to be simple for item to 
trade information or administrations with dif-

ferent frameworks. Diverse framework modules 
ought to work on distinctive working framework 
platforms, diverse databases and conventions con-
ditions. 

Applying above quality characteristics measures we 
can figure out if framework meets the prerequisites of 
value or not. As indicated over every one of these char-
acteristics are connected on QA and QC prepare so that 
analyzer or client additionally can discover nature of use.

3.  Prioritize the Software Quality 
Attributes

From undertaking to extend, the components of value 
that are important will fluctuate colossally. Inserted 
frameworks might have basic proficiency prerequisites 
given constraints of space and control; however, ease 
of use contemplations may be totally immaterial. Then 
again, while handheld applications might see comparative 
productivity necessities to those of conventional installed 
frameworks, ease of use will be an important thought for 
selection and separation from the opposition. 

A compelling method for prioritizing the scope of 
value credits is to handle the issue in two stages. This 
makes the process proficient, yet at the same time shields 
us from missing any important components. For these 
prioritization steps, it is important that all partner groups 
are included in the talk. A typical botch in necessities 
examination is to choose prerequisites by representing a 
partner that we don’t enough speak to, and it is exception-
ally uncommon for an investigator to have the capacity to 
authoritatively settle on choices for the expansive scope 
of categories. The primary stage is to consider each of the 
traits thus, and to figure out whether there is any pres-
ent information that would make that trait completely in 
or out of extension for this task. As shown in the Table 
1, a handheld item to be assembled for a particular 
working environment, with no desire of changes to this 
environment, will not have to consider portability issues. 
This same item, however, due to constraints of memory 
or preparing limit, might need to conclusively manage 
effectiveness issues at this stage. Not these characteristics 
can be at the same time streamlined, and for sure, some 
of the regions of value are inconsistent with each other 



R. Senthilkumar and T. Arunkumar

Indian Journal of Science and Technology 5Vol 9 (44) | November 2016 | www.indjst.org

(for instance, a framework that is construct to suit high 
proficiency will intrinsically be less viable, 1–3 gives an 
astounding lattice demonstrating these tradeoffs). 

For the most part, it is find that at any rate half of the 
considerable numbers of qualities are completely in or 
out of degree, while it might be using this progression 
a shorter rundown, this outcome in a little time funds 
contrasted with the expanded risk of neglecting basic pre-
requisite. By slashing the rundown into equal parts (which 
is regular), It diminish the quantity of examinations by a 
factor of four. We find that numerous correlations are very 
straightforward, and some will create critical discourse. 
Once more, we can’t know this ahead of time, or without 
sensible representation from a scope of partners. When 
we are done this, we have limited the huge rundown we 
began with, utilizing two methodologies, and are left with 
a subset of value qualities that are positioned in general 
importance for our particular undertaking. We have done 
nothing to really deliver testable prerequisites as of right 
now, yet we are currently prepared to do as such, and our 
limited center will guarantee that we fabricate the suitable 
necessities. This separating and prioritization sets aside 
little time in an engaged session.

4.   Translate into Quantifiable 
Criteria

The terms or credits that have used to this point are not 
effortlessly confined in a quantifiable manner. To indicate 
“the framework should be easy to understand” presents to 
us no closer to testable necessities, and a sensible way to 
deal with getting to more fitting terms is lost from large 
portions of today’s conspicuous wellsprings of informa-
tion on prerequisites. 

This basic step is really one that has been around for 
decades, and is more frequently found in books identified 
with programming quality or quality designing than to 
books concentrated on programming necessities. What 
we have to do here is perform an interpretation, from 
the scene of value that has guaranteed we are legitimately 
secured, to a corresponding arrangement of criteria that 
will permit us to more effectively determine our sought 
results in measured, testable terms. There are huge num-
bers of these testable criteria that we can look over. Table 
2 demonstrates a curtailed rundown of criteria that guide 
to quality characteristics. A more thorough rundown 

Attribute Score Availability Usability Maintainability Reusability Portability

Availability 0   high high high high

Usability 4     less less less

Maintainability 3       less less

Reusability 2          

Portability 1          

Table 1. Prioritization of software quality attributes



A Survey on Prioritization of Software Quality Attributes

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org6

of very nearly 50 criteria is caught in a spreadsheet that 
maps these connections.

It is likely utilized a large portion of these as particu-
lar measures for undertakings before. It can be extending 
from indicated GUI norms and reaction times that can a 
support ease of use, Mean Time to Between Failures and 
Mean Time to Repair that together measure accessibility 
prerequisites, and numerous others. From your experi-
ence, you will probably have the capacity to add others to 
the rundown also. 

This table has developed from various distinctive 
sources. While looking into current necessities based 
books for quality prerequisites3,4, we get a couple of 
samples of terms that are utilized for particular quality 
characteristics, (for example, reaction times for conve-
nience), however no place close to a rundown that covers 
all criteria, and no examination of the need to perform the 
mapping from ascribes to criteria distinguished here. To 
be sure, in one mainstream message, 5 the author essen-
tially regrets “the fluffy thought of ease of use” and gives 

no further guidance on the best way to determine quanti-
fiable quality prerequisites. Rather, we have to jump into 
Quality based references, for example, 6–8 for a more finish 
depiction of this methodology. Pressman demonstrates 
the relationship between the properties and criteria, how-
ever does not give a reasonable way from the wide credits 
to concrete quantifiable prerequisites articulations. There 
are several key focuses here. By and large, we have to rec-
ognize more than one of these criteria to give satisfactory 
scope of any one part of value (else, we would just deter-
mine our quality necessities in the original terms we had 
already distinguished). Also, the majority of the criteria 
we can utilize will at any rate in part fulfill more than one 
of these parts of value in the meantime (determined error 
taking care of systems can support power, ease of use and 
wellbeing, for instance). In the event that a paradigm in 
any event mostly fulfills two or more of the properties we 
consider as important, (for example, Modularity in Table 
2), it is a more alluring and productive model to utilize.

  Reliability Robustness Availablility Flexibililty Usability safety Testability portability

Error handling   Y     Y y    

Hazard Analysis   y       y    

Inline code Use             y  

Modularity y     y     y y

MTBF y   y          

MTTR     y          

Simplicity y     y   y y y

Training       y        

Table 2. Mapping of software quality attributes to criteria



R. Senthilkumar and T. Arunkumar

Indian Journal of Science and Technology 7Vol 9 (44) | November 2016 | www.indjst.org

5. Summary
This paper is a review of the software quality metrics 
found in the software designing writing. Meanings of 
the terms quality and software quality by diverse creators 
were exhibited. The relationship between software quality 
confirmation and utilization of metrics were talked about. 
The metrics displayed were grouped by sorts. The sorts 
were: established, product furthermore, process metrics. 
Definitions on product and process situated metrics by 
a few creators were likewise exhibited. The utilization of 
the metrics was in no time talked about and in addition 
the expenses of software metrics. This review has been 
composed with uncommonly the quality elements prac-
ticality and unwavering quality what’s more, the quality 
model many-sided quality personality a main priority. 
It is designed for my future exploration enthusiasm of 
guaranteeing quality of software via computerized infor-
mation accumulation of the software quality metrics. The 
advantages of an instrument, or a device set, to be deliv-
ered, will ideally be to deal with the support costs in an 
association in a more arranged and efficient way.

6. References
1. Leffingwell D, Widrig D. Managing software requirements: 

A use case approach. 2nd Edition, Addison Wesley: USA; 
2003. p. 503.

2. Amalarethinam DIG, Beena TLC. Level based task 
prioritization scheduling for small workflows in cloud envi-
ronment. Indian Journal of Science and Technology. 2015 
Dec; 8(33):1–7.

3. Call JM, Richards P, Walters G. Factors in software quality. 
National Technical Information Service. 1977; 1:1–168.

4. Wiegers K. Software requirements. 2nd Edition, Microsoft 
Press: USA; 2003. 

5. Chamoli S, Tenne G, Bhatia S. Analysing software metrics 
for accurate dynamic defect prediction models. Indian 
Journal of Science and Technology. 2015 Feb; 8(S4):96–100.

6. Lauesen S. Software requirements: styles and techniques. 
Addison Wesley: USA; 2001. 

7. Galin D. Software quality assurance: From theory to imple-
mentation. Pearson/Addison-Wesley: USA; 2004. 

8. Rawat MS, Mittal A, Dubey SK. Survey on impact of soft-
ware metrics on software quality. International Journal 
of Advanced Computer Sciences Applications. 2012; 
3(1):137–41.

9. Rajasekaran S, Thangavelu A, Dhavachelvan P, Gunasekaran 
G. Query base k-DRM for software security. Indian Journal 
of Science and Technology. 2015 Aug; 8(17):1–5.


