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Abstract
To a wireless sensor network, cooperation among multiple sensors is necessary when it executes applications that con-
sist of several computationally intensive tasks. Most previous works in this field concentrated on energy savings as well
as load balancing. However, these schemes merely considered the situations where only one type of resource is required
which drastically constrains their practical applications. To alleviate this limitation, in this article, we investigate the issue
of complex application allocation, where various distinctive types of resources are demanded. We propose a heuristic-
based algorithm for distributing complex applications in clustered wireless sensor networks. The algorithm is partitioned
into two phases, in the inter-cluster allocation stage, tasks of the application are allocated to various clusters with the
purpose of minimizing energy consumption, and in the intra-cluster allocation stage, the task is distributed to appropri-
ate sensor nodes with the consideration of both energy cost and workload balancing. In so doing, the energy dissipation
can be reduced and balanced, and the lifetime of the system is extended. Simulations are conducted to evaluate the per-
formance of the proposed algorithm, and the results demonstrate that the proposed algorithm is superior in terms of
energy consumption, load balancing, and efficiency of task allocation.

Keywords
Wireless sensor network, complex application allocation, hierarchical architecture, heterogeneity, load balancing

Date received: 22 April 2018; accepted: 18 July 2018

Handling Editor: Mohamed Elhoseny

Introduction

In the last decade, with the development in technology
of micro-electronics, digital electronics design, as well
as advances in low-power wireless communication and
network technique, a new type of network, wireless sen-
sor network (WSN), has emerged.1 In general, a WSN
is composed of a large number of sensor nodes which
are endowed with detection, computation, and commu-
nication capabilities. The emergence of WSN has
greatly extended the application areas over traditional
sensors. In fact, by grouping numerous sensors into a
connected network, the end-users can obtain much
more accurate data of a target that is in a remote and/

or hostile environment. Therefore, WSNs have been
widely used in many applications such as object
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detection and tracking,2 privacy and security protec-
tion,3 natural disaster rescue,4 health care,5 and so on.

In many real-world scenarios, a WSN will face appli-
cations which may require large amount of information
collection, considerable computation operations, and
intensive communication overhead. In contrast, as a
tiny, low-cost and battery-powered device, a single sen-
sor node usually has limited resource and can perform
relatively simple action. Consequently, in order to suc-
cessfully execute a complicated application, various
sensors should work cooperatively. In particular, by
task decomposition and allocation, a difficult task can
be divided into several uncomplicated parts, and each
sub-task is assigned to a sensor node which can handle
it independently. A typical example is the Third
Generation Surveillance System (3GSS) where a num-
ber of cameras are connected with a network.6 To such
a system, a common application is to detect, classify,
localize, and recognize an object; it involves computa-
tionally intensive operations which can hardly be per-
formed by a single sensor node. A promising way to
resolve this problem is to decompose the complicated
application into simple tasks and distribute them
among specific sensors. In such a way, various cameras
can collaboratively accomplish the complex applica-
tion. Thus, task allocation has a vital influence on the
overall performance of a WSN, and the development of
efficient strategies for collaborative task distribution
has attracted much attention in recent research.

Although the issue of task allocation has been widely
studied and well addressed in conventional distributed
systems, including multiprocessor systems,7 cloud com-
puting,8 social networks,9 and so on, the problem has
distinctive features in WSNs. As sensor nodes in WSNs
are usually powered by batteries and the power is irre-
placeable, they may be prone to be invalid due to
energy exhaustion. If the energy of some sensor nodes
is depleted in short term, critical data cannot be col-
lected in the sensing area which may seriously weaken
the function of a WSN. A more disastrous effect is that
if too many nodes are dead, the communication link
will become collapsed and the whole network may be
out of work. On the other side, the sensor nodes in a
WSN should consume the energy uniformly, and a
poor workload balancing may lead to some sensor
nodes deplete their energy much earlier than others.
Therefore, how to reduce and balance energy consump-
tion becomes a desirable design goal to WSNs.10,11 The
issue should also be taken into account for task alloca-
tion in WSNs. In fact, numerous studies have been con-
ducted in this field.12–14 Most existing works focus on
distributing computation and communication tasks
rationally among sensor nodes with the purpose of
extending network lifetime by load balancing and
energy conservation. These approaches model task allo-
cation as a multi-objective optimization problem which

has been proved to be NP-hard; thus, heuristic-based
algorithms are widely presented to solve this problem
in polynomial time.

In general, a WSN is considered to be an
application-oriented network, that is it is created and
deployed to implement a specific application. In real
practice, an application normally requires detecting
and gathering various types of information. In this arti-
cle, this kind of applications is referred to as complex
applications. Formally, a complex application is com-
posed of multiple tasks each of which can be executed
if some specific information is collected and processed.
Actually, most real-world applications to WSNs are
complex applications, one typical example is the envi-
ronment monitoring system. In the scenario of an envi-
ronment monitoring system, sensor nodes are deployed
in the target area to detect environmental conditions.
Considering an application that starts running on such
a WSN to determine whether the environmental status
is normal in a particular region, different sorts of data
including temperature, humidity, pressure, and so on
should be detected and sent back to the sink node for
further analysis. Consequently, to perform such a com-
plex application, various types of information are
required. For a WSN, it should have the capacity to
collect, process, and transmit distinctive kinds of data.
As a limited resource and low-cost unit, a sensor node
is usually equipped with only one sensing device, thus
the whole WSN comprises a great deal of sensor nodes
which are integrated with multiple sensing elements of
different types. This kind of WSN is referred to as a
heterogeneous WSN, a typical example of a heteroge-
neous WSN is shown in Figure 1, where sensor nodes
with distinctive sensing devices are marked by different
notations. Compared with homogeneous WSNs in
which sensor nodes have identical or similar functional-
ities, heterogeneous WSNs have their unique character-
istics. On one hand, all the nodes in a heterogeneous
WSN can share underlying protocols or standards,
such as the structure of a frame, the implementation of
modulation and demodulation, and data transmission
protocol. On the other hand, to high-level applications,
such as task allocation, heterogeneous WSNs are quite
different from homogeneous WSNs. Previous studies
mainly focus on distributing tasks in a homogeneous
WSN. Nevertheless, these methods cannot be directly
adopted to solve the problem of assigning complex
applications in heterogeneous WSNs. The challenge
stems from the fact that to distribute a complex appli-
cation in a heterogeneous WSN, sensor nodes with par-
ticular resources must be determined. To this end, an
allocation algorithm should consider not only the con-
ventional optimization metrics, such as energy con-
sumption and latency, but also the sensing capability of
a node. The node that has the required sensing capabil-
ity can be regarded as the candidate for the task,
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otherwise it cannot undertake corresponding task even
if it has superior properties in energy conservation or
computation speed. In summary, as a common issue in
practice, complex application allocation in heteroge-
neous WSNs is different from traditional task alloca-
tion problem in WSNs and should be concerned with.

To WSNs, one core issue is energy conservation
and/or network lifetime extension; it is not an excep-
tion to complex application allocation in heteroge-
neous WSNs. Since communication is the most energy
costly operation in WSNs, and the communication
energy expenditure is proportional to the distance
(normally second power) between the two nodes, a
node is usually constrained to communicate directly
with other nodes within a limited range. In order to
send the collected data to the sink node with low
power, a hierarchical communication network should
be formed—the most popular and effective method is
clustering.15–17 By dividing the whole WSN into small
parts and clustering multiple nodes into a group, a
sensor node can communicate with the sink node
through the cluster head (CH) in a multihop manner,
which can significantly reduce power dissipation.
Therefore, the complex application allocation should
be considered in a clustered WSN.

With this background, in this article, we design a
complex application allocation mechanism in heteroge-
neous clustered WSNs, which is claimed as a main con-
tribution of this article. In comparison with previous
works, the presented mechanism assumes that a com-
plex application can be divided into various tasks and
each task requires various kinds of resources, and
accordingly, a sensor node is endowed with a sensing
resource that enables it to accomplish a corresponding
action. Meanwhile, the WSN has a hierarchical struc-
ture and all the sensor nodes are grouped into clusters
and each cluster has a leader. The goal is to find an
optimal scheme that can distribute the complex applica-
tion to proper sensor nodes with the purpose of mini-
mizing energy dissipation and balancing the workload
while meeting the application’s requirement for multi-
ple resources. A two-stage application allocation algo-
rithm is presented to achieve the goal. First, a dynamic
programming (DP)-based algorithm is developed to
assign the partitioned application to clusters according
to the aim of decreasing energy consumption. Then,
inside each cluster, an algorithm which considers both
the energy dissipation and the workload balancing is
developed to distribute the task to sensor nodes. In
addition, the algorithm provides parameters for end-
users to adjust the importance of distinctive objectives.
Finally, extensive simulations are conducted and the
results demonstrate that the proposed algorithm is fea-
sible and efficient.

Related work

As an event-driven system, a WSN is designed and
deployed to accomplish specific applications. As a tiny
and resource limited unit, a sensor node can hardly exe-
cute a complicated application independently, an effec-
tive method to resolve this problem is to divide the
application into small parts and assign them to appro-
priate sensors. Thus, task allocation has attracted a
great deal of interests and becomes a hot spot in WSN.

As mentioned above, the issue of task allocation in
WSN is NP-hard which makes it infeasible to be solved
optimally within limited time, and therefore, heuristic-
based approaches are essential to handle this problem
in polynomial time. Yu and Prasanna18 studied the
problem of allocating an epoch-based real-time appli-
cation in a homogeneous WSN in which each sensor
node was equipped with discrete dynamic voltage
scaling (DVS). They first proposed an Integer Linear
Programming (ILP) formulation which can obtain
the optimal solution with intensive computation.
Furthermore, they presented a three-phase heuristic
which can be adopted to large-scale systems. One fea-
ture of this method is that the voltage levels of tasks
can be adjusted with the goal to maximize the system
lifetime. Abdelhak et al.19 proposed an energy-
balancing task scheduling and allocation heuristic with
the aim of prolonging the network lifetime (EBSEL).
This approach is divided into two phases. In phase 1,
the tasks are grouped in order to reduce communica-
tion traffic, and in phase 2, the task group which
requires the highest computational energy is distributed
to the nodes with the highest remaining energy. In so

Figure 1. An example of heterogeneous WSN.
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doing, energy balancing is achieved and the lifetime
is extended. Shen et al.20 are concerned with a
specific application—digital signal processing (DSP)
application—in WSNs which is defined as the energy-
driven partitioning (EDP) problem. They formulated
the EDP problem as a synchronous dataflow (SDF)
graph and developed an algorithm that can minimize
the overall energy consumption by analyzing the pat-
tern of internal data exchange rates in the application.
Similarly, Yu et al.21 also modeled the workload
distribution problem in a WSN as an SDF graph parti-
tion problem. They proposed an optimal online task
allocation algorithm to maximize the network lifetime
by taking the energy cost of sensing, computing, com-
municating, and sleeping into account. They proved
that for each sensor node, by using at most two of the
important partition cuts with proper weights, it can
obtain the optimal solution. Li et al.22 investigated
scheduling tasks with a predefined deadline. A three-
phase task scheduling (TPTS) scheme is presented that
takes into account an integrated goal including overall
energy dissipation reduction, workload balance, and
latency constraint. First, the whole deadline of all tasks
is divided into subdeadlines and each task is endowed
with a subdeadline. Then, an energy-load tunable
graph partitioning algorithm is developed to decom-
pose the task graph into several disjoint partitions and
distribute them to distinct clusters. Finally, a
contention-aware scheduling scheme is employed to
allocate tasks to appropriate sensors. One common
flaw of these approaches is that they only consider
homogeneous WSNs and thus cannot be utilized to
address our case.

Another category of popular approaches exploits
bio-inspired meta-heuristic algorithms. Compared with
the aforesaid traditional heuristic approaches, these
methods adopt bionic swarm intelligence which allows
them to obtain good-quality solutions with high effi-
ciency. Jin et al.23 investigated task mapping and sche-
duling in multihop wireless networks (MHWNs). They
designed a hybrid function that takes both network
lifetime and schedule length into account, then an
adaptive intelligent scheme that is based on genetic
algorithm (GA) is proposed to provide real-time guar-
antees. Compared with GA, the particle swarm optimi-
zation (PSO) algorithm has the advantage of simplicity
of implementation and the capability to converge to a
reasonably good solution quickly. As a consequence, it
has been widely applied in task allocation in WSNs.
Guo et al.24 considered the case that when some sensors
become out of work, how to transfer the remaining
tasks on these nodes to other sensors. They proposed a
self-adapted task scheduling strategy which is inspired
by the multi-agent system theory; in this strategy, they
developed an effective discrete PSO algorithm with a
well-designed particle position code and a hybrid

fitness function that takes into account the task execu-
tion time, the energy expenditure, and network balance.
Furthermore, in Guo et al.,25 they proposed a real-time
fault-tolerant task allocation algorithm (FTAOA).
Likewise, to maximize the network lifetime, a discrete
PSO algorithm is adopted. Various metrics, involving
task execution time, energy dissipation, load balance,
and the reliability cost of the network, are integrated
into the fitness function. Compared with other similar
work, the main difference of FTAOA is that it uses pri-
mary/backup technology to achieve fault tolerance in
task allocation which makes WSNs sustain functional-
ities even when some nodes are failed or out of power.
In addition, passive backup copies overlapping technol-
ogy is employed to further improve the performance.
One shared defect of these bio-inspired approaches is
that they would easily get stuck in local optimum and
the computational complexity may grow exponentially
with the size of the problem which makes them not
suitable for large-scale systems.

All the aforementioned works focus on improving
the applicability and performance of task distribution
in homogeneous WSNs where a WSN is dedicated for
a single sensing task. However, due to the difficulty
and high cost of deployment, for example, establishing
a WSN in a hostile environment to collect information,
WSNs are preferred to have the ability of performing
various kinds of tasks. Many researchers begin to con-
cern about this issue in recent years, one promising
solution is the software-defined wireless sensor net-
works (SD-WSNs).26 A typical SD-WSN is composed
of a number of sensor nodes whose functionalities can
be dynamically configured by running different pro-
grams. Specifically, such software-defined sensor nodes
are able to conduct different sensing tasks according to
the software that is activated. In comparison with con-
ventional WSNs, SD-WSNs is more versatile, flexible,
and easy to manage. Following the line, Zeng et al.27

studied the minimum energy sensor activation problem
with the consideration of guaranteed quality of sensing
tasks in SD-WSNs. They formulated the problem as a
mixed-integer with quadratic constraints programming
model and linearized it into a mixed-ILP problem to
further lower the computation complexity. Then an
efficient online algorithm is proposed to deal with the
problem. Although SD-WSNs are capable of perform-
ing multiple distinctive types of tasks, each individual
node becomes more complicated and costly as it
requires larger storage space and a control procedure
that can coordinate different functions of the node.

Problem statement

The goal of distributing a complex application is to
find out a scheme of allocating all the tasks in the

4 International Journal of Distributed Sensor Networks



application to appropriate sensor nodes while extend-
ing the network lifetime. The network lifetime has
diverse definitions by taking into account the number
of died nodes, sensing coverage, connectivity, and so
on.28 Although these definitions are concerned with
distinctive metrics, they are all related to two elements:
energy consumption and workload balancing.
Therefore, in this article, the purpose of our scheme is
to minimize energy dissipation as well as balance work-
load. To a regular sensor node Si, its energy cost con-
tains communication energy Ei

comm and computation
energy Ei

comp, and the energy consumption of a WSN
EWSN is the sum of the energy consumed by all the sen-
sor nodes that are assigned with tasks, which can be
expressed as follows

EWSN =
Xn

i= 1

(Ei
comm +Ei

comp) ð1Þ

Ei
comm = lEelec + lefsd

2 ð2Þ

Ei
comp =Piti ð3Þ

where l is the amount of data to be sent and d is the
transmitting distance, and Eelec and efs are hardware-
dependent parameters that hinge on the mode of digital
coding, modulation, acceptable bit-error rate, and so
on, P denotes processor’s average power consumption
for computation and t is the time required for process-
ing the task.

In addition, load balancing plays a key impact on
the network lifetime. Since the load of a sensor node Si

is proportional to its energy dissipation, and the work-
load balancing is a comprehensive measurement to the
energy consumption state of all the nodes in a WSN, it
can be represented as follows

BWSN =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xn

i= 1

(Ei
resid � avg(Ei

resid))
2

s
ð4Þ

where Ei
resid is the residual energy of node Si, and

avg(Ei
resid) denotes the average residual energy of all the

nodes in the WSN.
According to the above descriptions, the problem of

complex application allocation in a heterogeneous clus-
tered WSN can be formulated as follows

argmin
l2L

(EWSN and BWSN )

s:t: RTk
=

P
Si2GTk

CSi
� h(Si) for all Tk 2 A ð5Þ

where L is the set of all feasible solutions, GTk
is the

cluster to which task Tk is assigned, h(Si) is a binary
variable, and h(Si)= 1 implies that sensor node Si will
contribute its specified type of resource to the task, oth-
erwise it equals 0. Note that, here the symbol ‘‘=’’ is

the vector equality which means that each element of
the two vectors is the same. It implies that a task must
be allocated to a cluster that can provide all the
demanded resources. From the above model, we can
find that this is a multi-objective optimization problem.
Nevertheless, these two objectives are not compatible
or even conflicting to some extent, and some trade-offs
must be made to achieve a solution with good
performance.

Problem formulation

The network model

In general, a WSN is composed of a number of sensor
nodes that are connected by wireless links. All the nodes
are randomly dispersed in the target region to detect or
monitor the occurrence of specific events. Accordingly,
the network can be modeled by a connected undirected
graph G =(S,E), where S = fs1, s2, . . . , sng denotes the
set of sensor nodes, and E = feijji, j= 1, 2, . . . . . . , ng
represents the communication links between a pair of
nodes. Each sensor node can send and receive messages
within a certain range; thus, eij = 1 if node j is within
the communication range of node i; otherwise, it is 0. In
this work, a WSN has a hierarchical structure that con-
sists of three types of devices, sink node (base station),
CHs and normal sensor nodes. For the sink node, it
receives a complex application from end-users and
decomposes the application into several tasks. Here, we
are not concerned with the strategy of dividing a com-
plex application; instead, we put emphasis on distribut-
ing these tasks to various clusters with the purpose of
minimizing energy dissipation. CH is responsible for
selecting proper sensor nodes to cooperatively accom-
plish the task; the main goal is to reduce energy con-
sumption as well as balance workload. To the normal
sensor nodes that are assigned with a task, they collect
data and send them (raw or processed) back to the CH.
There is only one sink node in the WSN while the WSN
is grouped into multiple clusters and each cluster has a
CH. A CH communicates with the sink node through
one-hop link and within a cluster, normal nodes can
transmit data to the CH directly. We also assume that a
CH is endowed with more resources, in terms of com-
putation and power supply, than ordinary nodes.
Meanwhile, each sensor node is equipped with a GPS
device that makes the location information is locally
available within a cluster.

The application and the node model

In fact, the problem of task allocation has been widely
discussed in WSNs, most of existing works do not con-
sider the characteristics of the allocated tasks. They all
assume that only computation and communication
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resources are required to execute a task. Therefore, a
task can be distributed to any sensor nodes, the differ-
ence between distinctive allocation solutions is the dif-
ferent energy cost. However, in many real-world
scenarios, to complete an application, various types of
resources may be required. Here, we name this kind of
applications as complex applications. In particular,
when allocating a complex application, we need to con-
sider not only the computation and energy features at
each sensor node but also the matching between the
resource available at each node and the resources
required by the application. In our work, a complex
application is composed of several tasks, these tasks are
independent and have no precedent constraints, that is,
all the tasks can be assigned and executed simultane-
ously. To a task, it requires various types of resources.
We assume that only when all of the required resources
are fulfilled, the task is deemed to be successfully
accomplished. Formally, a complex application can be
denoted as a set of tasks A= fT1, T2, . . . , Tmg, each
task Tk 2 A is associated with a set of specific resources
and can be represented as a tuple (Tk ,RTk

) where k is
the index of the task and RTk

= fr1
Tk
, r2

Tk
, . . . , rp

Tk
g indi-

cates the required resources for completing task Tk . p is
the total number of resource type in the system and
r

q
Tk
2 f0, 1g represents whether resource q is necessary

for task Tk . Our application model is illustrated in
Figure 2.

Another notable feature to our framework is the
characteristics of individual sensor nodes. Most previ-
ous works assume that the nodes in a WSN are similar
with respect to functionalities; they all can perform
computation and communication tasks. Thus, they
concentrate on how to assign computation and com-
munication load among sensors. On the other side,
although the term ‘‘Heterogeneity’’ has been introduced
in some existing literatures, they merely referred to that
the nodes had distinct initial energy state and computa-
tion capacity. In practice, to distribute a complex appli-
cation, the sensor nodes in a WSN are endowed with
various types of resources that can be used for detect-
ing and collecting information of the target. In this
work, this kind of WSN is regarded as a heterogeneous
WSN. In particular, in a heterogeneous WSN, each
sensor node is equipped with a specific type of sensing
device, such as ultrasonic sensor and photoelectric sen-
sor. As a consequence, a sensor node Si can be indi-
cated as a tuple (i,CSi

) where i is the index of the sensor
node and CSi

is a binary vector which represents the
type of resource owned by Si, CSi

= fc1
Si
, c2

Si
, . . . , cp

Si
, g,

cl
Si
2 f0, 1g, and

Pp
l = 1 cl

Si
= 1, that is, a sensor node

has only one particular type of resource. Obviously, the
sensor node model here is intuitively different from that
in existing works. Accordingly, the term heterogeneity
in our study refers to the diversity of sensing devices
possessed by sensor nodes. On the other side, we

assume that to the sensor nodes with the same resource,
they are identical in computation capacity and initial
power supply. Thus, if allocating a task to two nodes
that both can provide the required resource, the main
difference comes from the energy cost for communica-
tion and the residual power state of the nodes. Another
assumption is that a complex application will be
assigned to a set of sensor nodes with no duplicate
units, that is, a sensor node can only join one task.

The proposed algorithm

Since the task allocation issue has been proven to be an
NP-complete problem, in this article, we provide a
heuristic algorithm to solve it in polynomial time. The
algorithm can be briefly divided into two stages,
namely, inter-cluster distribution and intra-cluster dis-
tribution. The first scheme is run on the sink node and
its aim is to allocate the tasks in an application to coop-
erative clusters with minimum power cost. After this, in
each cluster, the CH is responsible for distributing the
task to proper sensor nodes under the condition that
the task can be successfully executed while reducing
energy consumption as well as balancing workload.

The inter-cluster application allocation algorithm

In our case, a WSN has a hierarchical structure and all
the sensor nodes are grouped into multiple clusters. A
complex application consists of various tasks each of
which requires distinctive resources, and only when all
of the tasks are executed successfully, the complex
application is deemed to be finished. For a task, it can
be assigned to any cluster that will provide the required
resources; thus, the possible solutions of distributing
the complex application to clusters are numerous.
Among these solutions, the one with the minimum
energy consumption is preferred. We name this prob-
lem as inter-cluster application allocation.

To a cluster, if it is assigned with a task Tj 2 A, the
energy cost contains two parts: computation energy
and communication energy. Since the sensor nodes
with the same kind of sensing device are identical in the

Figure 2. Application model.
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features of computation and communication, the
energy dissipation is mainly determined by the distance
between the nodes and the CH as shown by equation
(2). Thus, to minimize the energy cost of a single task,
it should be allocated to a cluster in which the sensor
nodes with the necessary resources are closest to the
head. On the other side, our aim is to reduce the energy
consumption of the whole application as much as pos-
sible under the constraint that a cluster can undertake
only one task, the ideal state is allocating all tasks to
their lowest energy cost clusters with non-overlapping.
However, this situation is hard to achieve since there
may exist a cluster that can provide the lowest energy
cost for more than one task. In such a case, the alloca-
tion of one task will influence the result of other tasks
and further alter the energy cost of the application
assignment. This problem can be modeled as a sequen-
tial decision-making problem. In such a framework, an
agent makes a series of decisions to interact with the
environment, a decision corresponds to a particular
action that will change the state of the environment

and after performing the action, a reward can be
obtained. In general, a specific objective is set, for
example, maximizing the sum of the received rewards.
To our issue, the sink node can be regarded as the
agent that is responsible for allocating the complex
application, the action is distributing each task to a
cluster, the reward is energy dissipation, and the aim is
to find out a task allocation scheme which can mini-
mize the total energy consumption. As a conventional
problem, several approaches have been developed to
solve it. In this article, we adopt and modify the DP
algorithm,29,30 a popular method due to its simplicity
and high performance, to distribute the tasks in a com-
plex application to various clusters. The key idea of this
application distribution algorithm is the use of energy
consumption value to organize and structure the search
for best schemes. As long as the minimum energy cost
value is found, the optimal allocation policy can be eas-
ily obtained. Specifically, the algorithm can be sepa-
rated into two steps; in the first phase, the energy
consumption of current allocation policy is computed,
and then the policy is improved by a minimization over
the overall energy dissipation. This process continues
until converging to the optimal solution. From above
process, we can find that the core of the application
allocation algorithm is the computation of the energy
cost. It can be defined as a function o : A 3O! R,
where O is the set of possible allocation strategies, the
value equals the total energy consumption that starts
from current task distribution and thereafter following
a strategy v 2 O. To compute the function value of a
specified application allocation policy, the energy con-
sumption for executing each task in the application,
including the computation and communication energy
cost, is needed. As a consequence, a scheme that
assigns a task to multiple sensor nodes inside a cluster
is adopted to compute the exact energy consumption,
the scheme is detailed in the next section. In summary,
the inter-cluster application allocation algorithm is
shown in Algorithm 1.

The first component of Algorithm 1 (lines 1–10) is
initialization. In this part, the resources of a cluster are
calculated, and they are equal to the sum of resources
of all sensor nodes in the cluster. To a task Tj, if its
required resources are covered by the resources of a
cluster Gu, Gu is regarded as a potential cluster to Tj

(line 5). Then, an initial policy of application allocation
is generated by randomly distributing a task to a cluster
that can perform it. Meanwhile, the original value of
each task is set to 0. From lines 11–19, the value of
each task under current allocation policy is computed
iteratively. Note that in line 16, E(Tj,Gu) represents the
energy cost of assigning task Tj to cluster Gu.
Moreover, the value of task Tj contains not only the
energy cost of executing Tj but also the energy con-
sumption for executing succeeding tasks following

Algorithm 1. Inter-cluster application allocation algorithm

1: Initialization
2: compute the resources of each cluster Gu, where

RGu
=
P

Si2Gu
CSi

3: compare the required resources of each task Tj 2 A
with RGu

4: if RTj
� RGu

then
5: r(Tj,Gu)= 1
6: end if
7: randomly allocate task Tj 2 A to a cluster Gu as long

as r(Tj,Gu)= 1
8: V(Tj)= 0 for all Tj 2 A
9: set e as a small positive number
10: optimal_flag:= 1;
11: =� Evaluate the policy value �=
12: repeat
13: d : = 0
14: for each task tj 2 A do
15: v : = V(Tj)
16: V(Tj) : = E(Tj,Gu)+ V(Tsucc

j )
17: d : =max(d, jv � V(Tj)j)
18: end for
19: until d \ E
20: =� Improve the policy �=
21: for each task tj 2 A do
22: a : =p(Tj)
23: p(Tj)= arg minGu

(E(Tj,Gu)+ V(Tsucc
j ))

24: if a 6¼ p(Tj) then
25: optimal_flag:= 0;
26: end if
27: end for
28: if optimal-flag:= 1 then
29: stop
30: else
31: go to line 12
32: end if
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current application allocation policy thereafter, which
is denoted as V (Tsucc

j ). Here, the variable V (Tj) is not
the value of task Tj, it indicates the value of a task allo-
cation state. From lines 21–27, the current policy is
improved if it is not the optimal one. In line 23, the
cluster which can provide the minimum energy cost for
present task as well as subsequent tasks is preferred. By
evaluating and improving current application alloca-
tion policy iteratively, the optimal application distribu-
tion scheme can be obtained.

The intra-cluster task allocation algorithm

Through inter-cluster application allocation, all tasks
in an application have been allocated to multiple clus-
ters with the least energy expenditure. Then, the CH
which is associated with a task is responsible for distri-
buting the task to variable sensor nodes in the cluster.
Thus, the CH plays an important role in the process of
intra-cluster task allocation. However, in this article,
we are concerned with task allocation and the selection
of the CH is beyond our scope. On the other side, as
there is no specific requirement for the CH, any previ-
ous method can be adopted to determine the CH in our
approach. In our model, a task can be partitioned into
several parts, each of which demands for a specific type
of resource; the selected nodes should have one type of
the required resource and therefore the task can be
guaranteed to perform. Our global purpose of allocat-
ing a complex application is extending network lifetime;
it can be achieved from two aspects: energy reduction
and load balancing. In previously described stage, the
main metric is the energy consumption of different allo-
cation schemes; in this phase, both the energy cost and
workload balancing are taken into account.

To reduce the power consumption of distributing a
task inside a cluster, it is important to minimize the
energy cost for communication between each pair of
allocated nodes and the CH. This is due to the fact that
in our case, each normal sensor node with the identical
type of resource will consume equal energy when under-
taking the same amount of computation, that is, from
the viewpoint of computation energy consumption,
there is no difference among the nodes that can provide
the same type of resource. On the other side, the com-
munication energy cost is highly related to the distance
between a sensor node and the CH, the larger the dis-
tance, the more energy needed. Consequently, to mini-
mize the total energy expenditure of allocating a task
inside a cluster, the nodes that are closest to the CH are
preferred. However, if these nodes are always chosen
out to execute tasks, their power will be overused and
they die quickly. In such a case, the system lifetime will
be significantly shortened. Therefore, it is hard to find a
coherent solution that can simultaneously optimize
energy dissipation and workload balancing, although

there may be an optimal solution for each one of the
individual objectives. Even worse, as mentioned above,
to prolong the network lifetime, these two objectives
are a pair of contradictory metrics to a certain extent,
and a solution that provides good performance for one
target may worsen the performance for another one.
Thus, some trade-offs between the two metrics must be
made to achieve the global optimization. Here, we
develop an effective method to handle the issue. The
main idea is that to each sensor node which has the
demanded type of resource, it is associated with a prob-
ability which indicates its possibility to be selected as a
member for performing the task. Obviously, the prob-
ability is determined by two elements where one is
energy related and the other is load related. To achieve
a good load balance among sensor nodes, the workload
assigned to a node should match the remaining energy
of it. In general, the lower residual energy of a node, the
smaller probability of it to be selected. By integrating
these two factors, we can adopt the following equation
to evaluate the probability of a node to contribute its
resource q to the task

p(Si)= (1� m)
hiP

Si2Gu\Si provides resource q hi

+m
Ei

residP
Si2Gu\Si provides resource q Ei

resid

ð6Þ

where hi =(1=Ei) represents the heuristic information
from energy cost of node Si, Ei

resid is the residual energy
of Si, and m is an important parameter that allows users
to adjust the preference tolerance between energy cost
and load balancing. The smaller value of m indicates
the more importance of energy consumption while less
importance of even load distribution. To calculate p(Si),
two parameters, Ei and Ei

resid, are needed. Ei is the total
energy consumption of sensor node Si to execute the
task, which can be easily calculated by equations (2)
and (3) as all variable values are known in advance.
Meanwhile, as the initial energy and the power con-
sumption are known to the CH, it can construct a list
which records the residual of each sensor node, and the
element is updated when a node joins a task. Overall,
we propose an algorithm to allocate a task inside a clus-
ter which can control the trade-offs between the objec-
tives. The pseudocode is given in Algorithm 2.

In Algorithm 2, B indicates the set of sensor nodes
which is selected out for performing the task and it is
initialized to be empty. Gq

u is the set of nodes that have
resource q in current cluster Gu. From lines 6–10, the
nodes that have the required resource of the task are
classified according to their resource type. Then, the
nodes with the maximum probability computed by
equation (6) in each category are determined and they
eventually form a group to collaboratively execute the
task.
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Computational complexity analysis

To the inter-cluster application allocation algorithm, its
computational complexity is the same as that of policy
iteration algorithm of DP, that is, O(m3), where m is
the number of tasks in a complex application. To the
intra-cluster task allocation scheme, we assume that
jGuj is the number of sensor nodes in cluster Gu, jGq

uj is
the number of nodes in cluster Gu that has resource q,
and jRTk

j is the number of required resource type of
task Tk . The iteration from lines 6–10 executes at most
jGuj times, and the iteration from lines 11–17 is exe-
cuted in O(jGq

uj) steps. Moreover, the loop at line 5 runs
jRTk
j times. Thus, the complexity of the proposed algo-

rithm is O(m3(jRTk
j(jGuj+ jGq

uj))). From the above
analysis, we can find that the amount of tasks plays a
notable impact on the computation load; nevertheless,
it is essentially a polynomial-time algorithm.

Experimental results

In this section, extensive experiments are conducted to
objectively evaluate the performance of our two-phase
complex application allocation algorithm in heteroge-
neous hierarchical WSNs, which is referred to as TP-
CAA-HH. Since no similar works (dealing with the
issue of complex application allocation algorithm in
heterogeneous hierarchical WSNs) have been proposed
so far, we develop an intuitive method as well as mod-
ify an existing method to solve the problem, namely,
greedy-based distribution method and binary PSO-
based method, and compare our approach with these
two methods.

Greedy-based method (G-CAA-HH). To this
approach, the complex application is first distributed to
clusters randomly, that is, for all clusters that own the
required resources of a specific task, they have the same
probability to be selected out to perform the task.
Afterward, a task is allocated to various sensor nodes
within a cluster by a greedy heuristics; in more detail,
the CH computes the energy dissipation of each sensor
node that can match the demanded resources of the
task, the ones with the minimum cost will cooperatively
execute the task.

Binary particle swarm optimization–based method
(BPSO-CAA-H). To compare with the state-of-the-art,
we modify the BPSO-based task allocation method pro-
posed in Yang et al.31 The original approach is capable
of allocating tasks in a homogeneous nonhierarchical
WSN, we do a few modifications to make this scheme
suitable for our situation. In particular, all the sensor
nodes are partitioned into several groups according to
their resource type, in each group, a sensor node is
determined by using BPSO algorithm with the consider-
ation of both the energy consumption and load balan-
cing. Note that in this framework, the WSN has a flat
structure and all nodes communicate directly with the
sink node.

Experimental setup

In our simulation, the WSN is composed of 400 sensor
nodes that are uniformly distributed in a circular area
with a radius of 500 m, the sink node is located at the
center. We assume there are six distinctive types of
resources in the system. To a task, the number of
the type of required resources is generated randomly;
similarly, a sensor node is endowed with a random
resource. To energy consumption model, several
popular parameters are adopted32,33 as follows:
Eelec = 50 nJ=b, efs = 10 pJ=b=m2, the amount of data
l is uniformly distributed in the range of [40,000,
60,000] bits. Our simulation platform includes
MATLAB R2016a run on an AMD 3.6 GHz CPU and
4GB RAM.

To comprehensively evaluate the performance of
TP-CAA-HH, the following metrics are measured:

� Energy consumption. It is the energy dissipation
for executing the applications. In addition, the
energy consumption for performing each task in
an application is also recorded for comparison.

� Stand deviation of residual energy. It is the stand
deviation of residual energy of all nodes, as
defined by equation (4). It indicates the load bal-
ancing of the system.

� Number of unallocated task. It is the number of
tasks that cannot be successfully allocated for

Algorithm 2. Intra-cluster task allocation algorithm

1: Initialization
2: assign values to parameters m
3: B=[,Gq

u =[
4: p max= 0
5: for each r

q
Tk
= 1, r

q
Tk
2 RTk

do
6: for each Si 2 Gu do
7: if C

q
Si
= 1 then

8: Gq
u =Gq

u [ Si

9: end if
10: end for
11: for each Si 2 Gq

u do
12: compute p(Si)
13: if p(Si).p max then
14: p max= p(Si)
15: u= i
16: end if
17: end for
18: B=B [ Su

19: end for
20: return B
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the lacking of some specific resources. This is
due to the fact that with the running of WSN,
some nodes may deplete the power and their
resources become unavailable.

� Number of living nodes. It is the number of nodes
that do not exhaust their energy. In the simula-
tion, we regard this metric as a measurement of
network life since in most existing literatures,
network lifetime is defined as the proportion of
alive nodes to all nodes in the WSN.

Effect of parameters

The first set of experiments is conducted to investigate
the effect of parameter m of the algorithm. In the
experiment, the number of applications is 10 and an
application consists of 15 tasks. The results are demon-
strated in Figure 3. In Figure 3(a), when the value of m

varies from 0.1 to 0.9, the energy consumption of an
application increases gradually, this is because that by
equation (6), a higher value of m indicates that the
residual energy of a node has a more impact on the
probability p(Si). Specifically, when m is 0.8 or 0.9,
the intra-cluster task allocation algorithm puts more
emphasis on the even power distribution among sensor
nodes, the nodes which have been used several times
will be endowed with a low possibility to be selected
again, while the ones with sufficient energy are more
likely to join the task even though more power is
needed for computation and communication. In con-
trast, Figure 3(b) demonstrates that with the increasing
of m, the standard deviation of remaining energy of all
nodes decreases. It is easy to understand because a high
value of m implies more importance on load balancing;
therefore, the energy consumption can be distributed
among nodes uniformly.

Performance comparison

Effect of the number of applications. To further illustrate
the efficiency of the proposed algorithm, we compare it
with two benchmarks. Here, we focus on the effect of
the number of complex applications which varies from
1 to 350, the parameter m is set to 0.5. Figure 4 shows
the energy state of different methods. Based on Figure
4(a), we observe that the energy consumption of the
three approaches all goes up when the number of appli-
cations increases, whereas TP-CAA-HH and G-CAA-
HH noticeably outperform BPSO-CAA-H. This is
because BPSO-CAA-H distributes all tasks in a non-
hierarchical WSN in which all sensor nodes need to
communicate with the sink node directly. In contrast,
to TP-CAA-HH and G-CAA-HH, the sensor nodes

only send information to the CH and the CH forwards
it to the sink node, which consumes much less energy.
Furthermore, TP-CAA-HH is better than G-CAA-HH
due to the fact that TP-CAA-HH allocates applications
to clusters with the goal of minimizing energy cost,
while G-CAA-HH allocates applications randomly. It
illustrates that Algorithm 1 is efficient in allocating
tasks to clusters. Figure 4(b) shows the standard devia-
tion of the residual energy of all nodes in WSN, we find
that the standard deviation of the residual energy
increases with the execution of applications. However,
the proposed algorithm is superior to the other two
methods which implies that TP-CAA-HH can distri-
bute tasks more evenly to the nodes. An interesting
observation is that when the application number is
large (greater than about 190), the residual energy stan-
dard deviation of BPSO-CAA-H decreases. This is
because to BPSO-CAA-H, the remaining power of the

Figure 3. Performance with parameters: (a) energy
consumption and (b) standard deviation of residual energy.
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nodes reduces remarkably when more applications are
allocated, and eventually, the residual energy of most
sensor nodes drops to 0 or near 0. In such a case, the
standard deviation will also decline.

In our configuration, some applications may not be
successfully allocated due to the lack of some specific
types of resources, as the corresponding sensor nodes
deplete their energy and die. Thus, we compare the per-
formance of the three methods in terms of unallocated
task number, the results are shown in Figure 5. From
Figure 5(a), we observe that with the application distri-
bution, G-CAA-HH is the first approach where the
case of unallocated tasks occurs, followed by BPSO-
CAA-H, while TP-CAA-HH is capable of allocating all
the applications with no failure. This can be explained
by the fact that to G-CAA-HH, it assigns tasks with
greedy heuristics which will lead to the overuse of some
nodes. If these nodes exhaust their power prematurely,

the tasks that demand the corresponding resources can
no longer be executed. In contrast, TP-CAA-HH con-
siders both energy cost and workload balancing which
significantly defer the death of the nodes; thus, all the
tasks are allocated successfully. It should be noted that
BPSO-CAA-H can select the desired sensor nodes from
the whole WSN that makes it predominant on the pos-
sibility of task assignment. However, the presented
approach is better which provides a further verification
of the superior performance of TP-CAA-HH. Figure
5(b) shows the average energy dissipation of a task in
an application, the result seems a little strange. To G-
CAA-HH, it allocates task to nodes with the least
energy cost and therefore should have better perfor-
mance. Nevertheless, the simulation exhibits opposite
result. We attribute this to the fact that in TP-CAA-
HH, it distributes all tasks in an application to various
clusters by Algorithm 1, which aims at minimizing
energy consumption, whereas to G-CAA-HH, it allo-
cates an application randomly which consumes more

Figure 4. Performance comparison with the number of
applications: (a) energy consumption and (b) standard deviation
of residual energy.

Figure 5. Performance comparison with the number of
applications: (a) number of unallocated tasks and (b) energy cost
of each task.
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power. Consequently. the proposed inter-cluster alloca-
tion algorithm is certified to be efficient again.

The last experiment is conducted to investigate the
performance with respect to the number of living nodes
which provides an indirect illustration of the network
lifetime. The result is shown in Figure 6. As expected,
with the increase of application number, the amount of
living nodes of BPSO-CAA-H descends drastically
while only very few nodes die of TP-CAA-HH, G-
CAA-HH achieves a medium performance. This can
easily be explained by the fact that TP-CAA-HH
adopts the technology of both reducing energy con-
sumption and balancing workload which is significantly
beneficial to prolong the lifetime of individual sensor
nodes. In contrast, to BPSO-CAA-H, nodes transmit
information directly to the sink node that expends the
power of sensor nodes seriously. Therefore, a great deal
of nodes die within a short period. To G-CAA-HH,
although sensor nodes communicate with the CHs, it
neglects load balance and the overused nodes deplete
their energy quickly.

Effect of cluster size. In this set of experiments, we inves-
tigate the performance of various algorithms with
changing the cluster size. The cluster size is the number
of nodes in a cluster; here, it is varied from 16 to 30
with a step 2. In the simulations, the number of applica-
tions is 200; each application contains five tasks, and
the radius of the area is set to 2000 m. From Figure
7(a), we observe that the energy dissipation of the
WSN increases when the network size gets larger. The
explanation is that, when the quantity of sensor nodes
increases in a cluster, more tasks can be successfully
allocated which will inevitably lead to more energy con-
sumption. TP-CAA-HH and G-CAA-HH dissipate
much less power than BPSO-CAA-H; this situation

comes from two aspects. On one side, to a single task
allocation, BPSO-CAA-H consumes much more energy
than TP-CAA-HH and G-CAA-HH because it searches
appropriate nodes in the whole WSN, while TP-CAA-
HH and G-CAA-HH assign a task within a cluster. On
the other side, when the sensing resources of a WSN
are limited, that is, only few tasks can be completed,
BPSO-CAA-H can allocate more tasks than the other
two methods and the energy consumption will improve
accordingly. Figure 7(b), CAA-HH, shows the best per-
formance even compared with G-CAA-HH, which allo-
cates tasks with a energy-greedy strategy within a
cluster. In summary, if the number of tasks is large and
the WSN is resource constrained, BPSO-CAA-H can
be adopted to allocate tasks as much as possible, while
if the network size is large, TP-CAA-HH is preferred to
achieve good performance in task allocation as well as
energy conservation.

Figure 8 shows the performance of the three algo-
rithms with regard to the number of unallocated task
and the number of living nodes. As illustrated in

Figure 7. Performance comparison with cluster size: (a)
energy consumption and (b) energy cost of each task.

Figure 6. Number of living sensor nodes.
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Figure 8(a), the number of unallocated tasks decreases
as there is an increase in cluster size. This is due to the
fact that more sensor nodes in a cluster indicates a
higher possibility for distributing a task; hence, less
tasks will not be allocated. BPSO-CAA-H achieves the
best performance because all the nodes in WSN can be
used for executing tasks, whereas to TP-CAA-HH and
G-CAA-HH, only the nodes in the cluster can be allo-
cated with a task. However, it should be noted that
with the increase in the cluster size, the gap between
BPSO-CAA-H and TP-CAA-HH is narrowed down
which implies that when the cluster size is large, TP-
CAA-HH can allocate almost the same number of
tasks as BPSO-CAA-H while costs much less energy.
Figure 8(b) shows that when the cluster size becomes
larger, the number of living nodes increases proportion-
ally, yet TP-CAA-HH outperforms the other two meth-
ods. This can be ascribed to the fact that TP-CAA-HH
makes a good tradeoff between energy consumption

and load balance, which can prolong the lifetime of
nodes significantly.

Conclusion

In this work, we discussed the issue of complex applica-
tion distribution in a heterogeneous clustered WSN.
Unlike most previous studies that assume all sensor
nodes in WSN are homogeneous, in our system all
nodes are associated with distinctive kinds of resources
each of which can be utilized to perform a specific
action. Accordingly, a complex application is composed
of several tasks and each task demands various types
of resources. Our objective is to distribute the complex
application to appropriate sensor nodes with the pur-
pose of prolonging the system lifetime while ensuring
that the required resources of each tasks can be covered
by the resources of the nodes. To achieve this goal, a
two-phase-based application allocation algorithm is
proposed. First, a DP-based scheme is employed to dis-
tribute all tasks in the complex application to multiple
clusters which aims at minimizing the energy dissipa-
tion. Then, inside a cluster, the task is further assigned
to sensor nodes by a feedback mechanism which pre-
vents the overuse of individual nodes. In particular, a
parameter m is provided to allow end-users to tune the
importance between energy conservation and workload
balancing. Experimental results show that compared
with approaches based on Greedy and BPSO, the pro-
posed algorithm achieves superior performance in
terms of energy consumption as well as load balancing.

In this article, an application can be allocated with
no time constraints. However, in some scenarios, an
application is required to be distributed and performed
within limited time. In the future, we will extend our
approach to take application deadline into account
which can provide real-time guarantees. Meanwhile, in
recent years, the technology of mobile sink has emerged
as a promising method to further reduce energy con-
sumption of WSNs;34,35 therefore, another interesting
future direction is to address the problem in a WSN
with mobile sink.
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