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Abstract

In the current scenario, there is a drastic increase in air traffic. The air to ground com-

munication plays a crucial role in the air traffic control system. There is a limited spec-

trum available for aircraft to establish a connection with the Air Traffic Controller (ATC).

With air traffic growth, the available spectrum is getting more congested. This paper pro-

posed an Advanced Squirrel Algorithm (ASA)-trained neural network (NN) for efficient

spectrum sensing for cognitive radio-based air traffic control applications. ASA is a novel

metaheuristic-based training algorithm for an NN. With the proposed algorithm, it is possi-

ble to dynamically allocate the unused spectrum for air to ground communication between

aircraft and ATC. The quantitative analysis of the proposed ASA-NN-based spectrum

sensing is done by comparing it with the existing metaheuristic-based NN training algo-

rithms, namely, particle swarm optimization Gravitational Search Algorithm (PSOGSA),

particle swarm optimization (PSO), gravitational search algorithm (GSA), and artificial bee

colony (ABC). Simulation-based evaluation shows that the proposed ASA-NN is capa-

ble of efficiently detecting the spectrum holes with high convergence rate as compared to

PSOGSA-, PSO-, GSA-, and ABC-based algorithms.

1 INTRODUCTION

The development in the aviation sector has resulted in the

tremendous growth of the wireless communication technolo-

gies governing the air traffic control. Wide range of wireless

technologies are employed to assist the on-ground surveillance

and navigation of airplanes while taking off, landing, and

en-route. The employed wireless devices operate at different

radio channels. The radio channels in Very High Frequency

(VHF) and High Frequency (HF) bands are mainly used for

enabling the link between air traffic control stations and aircraft.

The VHF spectrum for wireless communication between the

Air Traffic Controller (ATC) and aircraft has a bandwidth

of 19 MHz ranging from 118 to 127 MHz [1]. The spectral

spacing of each band is 25 kHz, resulting in a total of 760

radio channels. As the flight traffic is tremendously increasing

year on year, so the number of aircraft tuning to a particular

station is also increasing immensely. The problem arises when
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the pilots of different aircraft tune the controller frequency

at the same time, thus leading to frequency congestion and

also the pilot may accidentally override others. This situation

can lead to incorrect information delivered to the aircraft. In

addition to that, different applications correspond to aircraft

communication, which further leads to the congestion of radio

channels, specifically in the regions of highly crowded airports.

Therefore, it is important to utilize the radio spectrum available

for aircraft communication.

Concerning the above discussion, the recent studies suggest

that the industrial, scientific and medical bands are highly con-

gested [2, 3] . In contrast, a significant portion of the licensed

radio spectrum is vacant and is used inefficiently [2]. In the radio

spectrum allocated for aircraft communication, only around

12.5% is effectively utilized [4]. In the current scenario, there

exist the problem of spectrum scarcity, and at the same time,

there is also the situation of inefficient spectrum utilization [5].

With the continuous increase in the air traffic over the last
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decade, the air traffic management system has predicted that

the air traffic will reach its peak by 2020 [6]. The high traffic

would result in more congested bandwidth for data transmis-

sion between aircraft and ATC.

Moreover, the audio data transmission from aircraft to ATC

is highly delay-sensitive, with the unavailability of proper band-

width that can cause continuous intrusion to the transmission,

which will further enhance the delay issue. Such a problem calls

for the research work with emphasis made on the need for wire-

less communication technology capable of performing dynamic

spectrum access and meeting the future requirements of avi-

ation technology with high efficiency and precision [7]. The

possible solution to the problem of spectrum scarcity and pro-

viding dynamic flexibility to the wireless communication tech-

nology employed for air traffic control is the cognitive radio

network (CRN) [6]. A CRN can sense its surrounding radio

environment and adjust accordingly [5]. The Federal Commu-

nications Commission’s report in [8] has stated the use of the

underutilized licensed spectrum to increase the effective utiliza-

tion of the frequency spectrum. The CRN, with its ability to

sense and adapt, can opportunistically access these underuti-

lized licensed spectra without causing interference to the Pri-

mary Users (PU)/Licensed Users (the users having the license

to utilize the licensed spectrum). The CRN makes this underuti-

lized licensed spectrum also known as spectrum hole to the sec-

ondary users (SUs) for opportunistic access. The first and one

of the most important working phases of a CRN is the spectrum

sensing [9]. Through different spectrum sensing techniques, the

USs find the spectrum holes and proceed further with the pro-

cess of a CRN as the process of spectrum sensing is extremely

vital. So, a novel Advanced Squirrel Algorithm (ASA)-trained

neural network (NN) is employed for efficient spectrum sens-

ing to improve the effectiveness of the CRN. An effective CRN

would result in improved spectral and bandwidth efficiency.

2 RELATED WORKS

The detection of the spectrum holes by cognitive radio (CR)

devices and utilizing it opportunistically enhances the spectral

efficiency and the channel bandwidth [6]. The spectrum sensing

plays the pivotal role in the detection of vacant and thus it is the

essential component of CR network. Conventional spectrum

sensing includes intensive techniques like the Matched Filter

(MF) [10], cyclostationary detector [5], and eigenvalue-based

detector [11], as well as the simple method like Energy Detec-

tor [12]. The simplest spectrum sensing approach has weak

performance under low signal-to-noise ratio (SNR) and are

not efficiently able to detect the spectrum holes [5, 9, 13].

The cyclostationary detector and MF are highly efficient in

detecting the spectrum holes, but the cyclostationary detector

requires long sensing time to have high detection probability

[6]. For a fixed frame period, a longer sensing time decreases the

transmission time and thus reduces the overall opportunistic

throughput. The MF technique requires priori knowledge of

the signal for efficient detection. In the absence of accurate

information of PU, the performance of the MF degrades [5].

Another important drawback associated with the MF is that it

requires dedicated receiver for each PU signal type [14].

The drawbacks associated with conventional spectrum

sensing technique calls for the necessity of efficient spectrum

prediction by CR network. With intelligent prediction-based

spectrum sensing it is possible for CR network to reduce

the sensing time and improve energy efficiency by efficient

prediction of channel state, thus skipping spectrum sensing

for some time [15–19]. The NN forms the base for the intel-

ligent prediction scheme. To maintain a trade-off between

spectrum sensing efficiency and its complexity, an NN-based

spectrum sensing is successfully employed in [16, 20, 21]. The

Conventional-NN which is based on gradient descent-based

back propagation (BP) method are prone to converge to local

optima [22, 23] and has slow convergence rate [24]. Studies have

confirmed that metaheuristic-based optimization technique can

improve the efficiency of NN [25–28]. Because of the no free

lunch theorem [29], different metaheuristic optimization is

suited for the different objective functions. Selecting the proper

optimization technique for improving the performance of the

artificial neural network (ANN) is very crucial as the entire

CRN working is dependent on it . The popular swarm-based

optimization scheme like particle swarm optimization (PSO),

artificial bee colony (ABC) Algorithm, genetic algorithm (GA),

grey wolf optimization (GWO) and ant colony algorithm (ACA)

lack proper trade-off between their exploration (Global Search)

and exploitation (Local Search) abilities [29,68]. The PSO lacks

proper convergence ability, whereas ACA and ABC lack in

exploitation [30,67]. The GA tends to get stuck to the local best

solution instead of finding the global best [31]. Such problems

call for an efficient optimization scheme that has a proper

trade-off between its exploration and exploitation abilities,

which has a good convergence rate and can overcome local

optima and converge towards global best. Therefore, advanced

flying squirrel search-based algorithm is implemented and

employed.

The prevailing spectrum sensing studies were more focused

on binary hypothesis, i.e. temporal spectrum sensing [32–34].

The works in [9, 35] have showed that temporal cooperative

spectrum sensing has better performance than the temporal

non-cooperative spectrum sensing. The 3D-spatial spectrum

sensing is an emerging field [34,36-39] that gives better insight

about real-time implementation of CR network. The work in

[34] considered 3D spatial and temporal spectrum sensing using

conventional energy detector and it has its limitation in low

SNR values.

The 3D-spatial and temporal spectrum sensing is carried

out for non-cooperative and cooperative scenario using ASA-

trained ANN-based efficient spectrum prediction. The pro-

posed technique is compared with the existing metaheuristic-

based optimization technique for ANN in spectrum sensing.

The major contributions of this paper are stated as under:

∙ Novel ASA-based technique for the weight optimization in

NN to enhance its prediction and efficiency.
∙ ASA-NN for efficient spectrum sensing by performing effec-

tual spectrum status prediction.
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∙ 3D non-cooperative spectrum sensing (3D NCSS) scheme

and temporal cooperative spectrum sensing scheme for air

traffic control.
∙ National Instrument (NI) Universal Software Radio Periph-

eral (USRP)-based real-time implementation of the pro-

posed technique for temporal cooperative spectrum sensing

scheme.

3 SYSTEM MODELLING

With the affordable airlines coming into the market, the air traf-

fic is increasing with each passing year. Such increase in air

traffic calls not only for infrastructural development but also

requires high technical advancement in the field of wireless

communication governing the air traffic system. As the flight

traffic is enormously increasing, so, the number of aircraft tun-

ing into a station is also increasing immensely. The problem

arises when the pilots of different aircraft tune the controller

frequency at the same time, thus leading to frequency conges-

tion and pilot may also accidentally override others. This situa-

tion can lead to incorrect information delivered to the aircraft.

To overcome such spectrum congestion problem, an efficient

spectrum sensing-based CRN is proposed for air traffic con-

trol. The spectrum sensing efficiency is improved by incorpo-

rating novel metaheuristic algorithm ASA-trained NN. The Air

to Ground (A/G) communication frameworks are basic for the

aircraft’s secure routing. In this way, the progress to the CR-

based systems ought to be finished with most extreme consid-

eration. While designing the CRN for the A/G communication

it should make sure that its effect should be minimal on the

existing A/G communication infrastructure. It is to be noticed

that the existing A/G communication frameworks still depend

on analogue transmission frameworks. In this work, an efficient

spectrum sensing technique has been proposed for the effective

CR-based Air Traffic control.

This paper proposes Phase I and II for the air traffic control.

For Phase I, aircrafts perform the spectrum sensing with the

help of ASA optimization algorithm. As ASA behaviour which

employs gliding technique to find the optimal solution depicts

the landing the process of the aircraft. Moreover, the seasonal

constraints in the ASA is utilized and mapped for efficient spec-

trum sensing by the aircraft during different weather conditions.

So, ASA is efficient in assisting aircraft to detect the vacant spec-

trum holes during the landing process.

In Phase II, the cognitive radio sensors/spectrum sensing

sensors (CRs/SSs) are deployed in the ground level per-

forms spectrum sensing aided with ASA-trained NN. The

Conventional-NN technique uses gradient descent-based BP

algorithm for training and has loopholes like getting stuck to

local minima and large convergence time. Whereas, ASA is a

squirrel-based optimization technique in which the population

of squirrels moves around the search space constituted by the

optimization problem in search of an optimal solution. Squirrel

position varies during the process of search based on the best

solution position so obtained. The ASA has excellent balance

between its exploration and exploitation abilities, moreover

it has fast convergence rate. So, ASA is used as the possible

alternative for optimizing the weights of NN. The ASA is

employed to optimize the weights of NN and thus to minimize

the error in the prediction of spectrum holes. The information

obtained by CRs are transferred to the ground CR base station,

which then makes the final decision on the vacant spectrum

availability. The ASA-NN-based ATC has training and working

phase, during the training phase network is trained using ASA

and in the working phase-trained network is employed for the

spectrum hole detection. The illustrative figures depicting Phase

I and II is shown in Figures 1 and 2, respectively. The blocks in

Figure 1 comprise of CR base station, which is responsible for

making the final decision on the presence and the absence of

the PUs for ground to air communication. Blocks ATC and Air-

crafts resemble incoming aircraft communicating with the ATC.

The working in Figure 1 is explained as: in the case of allocated

frequency band congestion for data transmission between Air-

craft and ATC, the CR technique is employed. For the proposed

model, aircraft perform spectrum sensing and establish link to

ATC via the spectrum holes, simultaneously CRs deployed in

grounds perform spectrum sensing so as to find the spectrum

holes for ground to air data transmission. If the allocated

frequency bands are not congested then the routine data

transmission is carried out in the allotted frequency spectrum.

4 MATHEMATICAL MODELLING

The aircraft and CRs perform periodic spectrum sensing as

aircraft approaches ATC. The schematic representation of the

frame structure for spectrum sensing and data transmission is

as shown in Figure 3. For the data transmission, orthogonal fre-

quency division multiplexing (OFDM) scheme is employed with

fast fourier transform (FFT) of length 64 . Each subcarrier has

the bandwidth of 10 kHz and total bandwidth of 0.5 MHz with

50 subcarriers. Each 25 subcarriers are used for air to ground

and ground to air transmission.

The conventional spectrum sensing considers the binary

hypothesis for the detection as in Equation (1) [6]:

H0 ∶ yi (n) = Ni (n)

{Hypothesis 0 (PU Absent)}

H1 ∶ yi (n) = xi (n) + Ni (n)

{Hypothesis 1 (PU Present)},

(1)

where xi is the PU signal which can be modelled as the zero

mean complex Gaussian with the power 𝜎2
x , Ni is the zero mean

complex AWGN (additive white Gaussian noise) with the power

as 𝜎2
N

[34], n = 1, 2, …m, m is the total sample number.

i = 1, 2, …K (K is the total number of aircraft arriving at the

airport at the same time). j = 1, 2, …L (L is the total number

of SSs/SUs or cognitive radio users (CRu) operating in a coop-

erative manner).

According to the binary hypothesis, a spectrum sensing

can accept or reject samples and infer the presence and the

absence of the PU based on the detection threshold as [40]

Ei =
1

K

∑K

i=1
|yi (n)|2

H1

>
<
H0

𝜆, here 𝜆 is the detection threshold.
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FIGURE 1 Flow diagram of the proposed CR-based ATC (Phase I)

Energy sample value greater than the threshold would be con-

sidered as the PU present and vice versa for the energy sam-

ple value lower than the threshold. The xi (n) is the nth sample

sensed by the ith aircraft. Similar hypothesis can be employed

for the j th SS.

The two phases of spectrum sensing is consideredand

and is operated simultaneously for this research. The binary

hypothesis holds good for the ground-based CRu performing

cooperative spectrum sensing. For the aircraft to perform

spectrum sensing, it is necessary that it performs spectrum

sensing when it is near to ground (looking for ground clearance

to land), so that it can be within the coverage area of some

PU transmitter. It is because, if aircraft performs spectrum

sensing outside the range of PU then there will be high false

alarm. Thus, the aircraft can cause interference to the PU’s

transmission while performing down link data transmission to

the ATC.

From Figure 4, it can be seen that (D0 − D1) is the region in

which aircraft is outside the coverage area of PU and D1 repre-

sents the radius of PU transmission range. The hypotheses H0

and H1 for the aircraft approaching an ATC can be validated

only when it is inside the radius D1. The formulation of the

spatial hypothesis can be written as in Equation (2):

⎧⎪⎨⎪⎩

B0 D1 ∩ H0

B1 D1 ∩ H1

B2 D0 ∩ H0

B3 D0 ∩ H1

(2)

where B0 = D1 ∩ H0 represents that the aircraft is within the

range of PU Transmitter–Receiver (Tx–Rx) coverage and the

Hypothesis H0 holds true (i.e. PU is inactive). Thus, aircraft have

the spectrum access opportunity. The B1 = D1 ∩ H1 indicates

that PU is active and aircraft is within the PU Tx–Rx coverage.

From Equations (1) and (2), the modified hypothesis can be

postulated as:

B0 ∶ yi (n) = Ni (n) 0 ≤ di ≤ D1

B1 ∶ yi (n) = xi (n) + Ni (n) 0 ≤ di ≤ D1

B2 ∶ yi (n) = Ni (n) D1 ≤ di ≤ D0

B3 ∶ yi (n) = Ni (n) D1 ≤ di ≤ D0

(3)

The condition B2 and B3 cannot be employed as the spectrum

opportunity for the aircraft. Only B0 is the available spectrum



1330 EAPPEN ET AL.

FIGURE 2 Proposed CR-based ATC (Phase II)

FIGURE 3 Proposed CR-based ATC (Phase II) FIGURE 4 Schematic representation of PU coverage for aircraft spectrum

sensing
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FIGURE 5 Schematic representation of spectrum sensing for the case 3D

NCSS

opportunity (i.e. the Aircraft is within the PU coverage and PU

is inactive).

4.1 3D NCSS by aircraft

The two phases of spectrum sensing is considered simul-

taneously. The Phase I spectrum sensing performed by

the aircraft is termed as the 3D NCSS because each air-

craft performs spectrum sensing without any cooperation

with the other aircraft and also the spectrum sensing is

performed during descent, so three-dimensional space has

been considered. Figure 5 shows the schematic representa-

tion of spectrum sensing performed during the 3D NCSS

scenario/Phase I.

In Phase II, the SSs are deployed in the ground near ATC per-

forms spectrum sensing in cooperative manner (i.e. spectrum

sensing data of each SUs are beamed towards the fusion centre

(FC), which makes the final decision on spectrum occupancy).

Therefore, Phase II is termed as the cooperative spectrum sens-

ing scheme.

For Phase I, to evaluate the performance of spectrum sens-

ing the probability of detection and the probability of false

alarm is employed. Based on Equation (3), the probabil-

ity of detection and the false alarm can be calculated as in

Equation (4):

PNc
f ,i (k) = P (B1|B0 )

PNc
d ,i (k) = P (B1|B1 ),

(4)

where, PNc
f ,i (k) is the probability of the false alarm of the ith air-

craft under non-cooperative spectrum sensing scheme for the

kth sensing period. The PNc
d ,i (k) is the probability of the detec-

tion of the ith aircraft under non-cooperative spectrum sens-

ing scheme for the kth sensing period. For each aircraft as well

as for the SSs, energy detector is employed for obtaining the

energy samples while performing the spectrum sensing. In case

of cooperative spectrum sensing scheme performed by the SUs,

the samples are used for training the ASA-based NN at CR base

station/ (FC).

The test statistics for energy detection-based spectrum sens-

ing is written as in Equation (5):

ei (k) =
1

m

m∑
n=1

||xi (n)||2. (5)

For large number of samples, the term ei (k) as per the Central

Limit Theorem (CLT) can be approximated as a Gaussian ran-

dom variable for the Hypotheses H0 and H1 of Equation (1)[12,

41].

ei (k) ∼

⎧
⎪⎪⎨⎪⎪⎩

N

(
𝜎2

N
,
𝜎4

N

m

)
∶ H0

N

(
(1 + SNRTVr ,i )𝜎

2
N
, (1 + SNRTVr ,i )

2 𝜎
4
N

m

)
∶ H1,

(6)

where SNRTVr ,i is the received SNR of the PU (TV received

power) at the ith aircraft.

Based on the approximation in Equation (6), the PNc
f ,i (k) and

PNc
d ,i (k) can be estimated as in Equations (7) and (8), respectively:

PNc
f ,i (k) = Q

⎛⎜⎜⎜⎝

𝜆 − 𝜎2
N

𝜎4
N

m

⎞⎟⎟⎟⎠
, (7)

PNc
d ,i (k) = Q

⎛⎜⎜⎜⎝

𝜆 − (1 + SNRTVr ,i )𝜎
2
N

(1 + SNRTVr ,i )
2 ∗

𝜎4
N

m

⎞⎟⎟⎟⎠
, (8)

where 𝜆 is the detection threshold to mark the difference

between the PU’s presence and absence.

4.2 Cooperative spectrum sensing by
SSs/SUs/CRu

The energy detection samples from SUs are transferred to

the FC. The FC with the help of ASA-NN makes the cor-

rect prediction about the vacant spectrum. The detailed work-

ing of ASA-NN-assisted spectrum hole prediction by FC is

explained in Section 6. The cooperative spectrum sensing

scheme employed by the SSs is explained as below: At FC, the

linearly weighted energy values from all SUs are obtained as in
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Equation (9):

ecss =

L∑
j=1

W j e j , (9)

where e j is the energy detected by the j th SU, W j is the weight

coefficient of the j th SU and it is calculated as shown in

Equation (10):

W j =
SNRTVr , j√∑L

l=1
SNRTVr ,l

, (10)

where SNRTVr , j is the received SNR at the j th SU. In Equa-

tion (10), l ≠ j and l corresponds to other SUs. The weighted

energy value ecss can be approximated as Gaussian random vari-

able as in Equation (11) for the Hypotheses H0 and H1 in Equa-

tion (1):

ecss ∼

{
N (𝜇0, 𝜎0 )

N (𝜇1, 𝜎1 ),
(11)

where

𝜇0 =
∑L

j=1
W j𝜎

2
n

𝜎0 =
∑L

j=1
W j

𝜎4
n

m

𝜇1 =
∑L

j=1
W j (1 + SNRTVr , j )𝜎

2
n

𝜎1 =
∑L

j=1
W j (1 + SNRTVr , j )

2 𝜎
4
n

m
.

(12)

Using Equations (11) and (12), the probability of false alarm and

the probability of detection can be calculated as Equations (13)

and (14):

P cs
f , j (k) = Q

(
𝜆 − 𝜇0

𝜎0

)
, (13)

P cs
d , j (k) = Q

(
𝜆 − 𝜇1

𝜎1

)
. (14)

In general, the opportunistic throughput of the SU performing

data transmission in the absence of PU can be calculated as in

Equation (15)

T opt = PH0

(
Ft − St

Ft

)
(1 − Pf )log2(1 + SNR), (15)

where T opt denotes the opportunistic throughput, Ft and St

are the frame time and the sensing time, respectively. The

PH0 denotes the probability that PU is inactive, generic false

alarm probability, and the SNR of SU (while performing oppor-

FIGURE 6 Simulation-based representation of the proposed model

tunistic data transmission) is represented as Pf and SNR,

respectively.

In Figure 6, the hemispherical dome represents the PU cov-

erage and within this coverage CRs are deployed as represented

by blue circles and the approaching aircraft towards ATC is rep-

resented by black dots with coordinates.

5 CONVENTIONAL FLYING
SQUIRREL SEARCH ALGORITHM

Flying Squirrel Search Algorithm (FSSA) is introduced by Jain

et al. [42] and it is based on the effectual foraging behaviour of

flying squirrels. The search for the food sources depends on

weather, type of trees, and the presence and the absence of the

predators. The flying squirrels are more active in warm weather

than cold and are capable of obtaining better and abundant

food source during that period. The flying squirrels consumes

two types of food sources, i.e. Hickory nuts (Hickory tree) and

Acorn nuts (Acorn tree). The Acorn nuts which are abundantly

available during warm weather is immediately consumed by

the squirrels whereas the Hickory nuts are stored for winter.

During winter flying squirrels are inactive, so it is difficult for

them to obtain new foods. Therefore, storing Hickory nuts

is one of the prime motives so as to withstand the extreme

weather condition.

5.1 FSSA initialization

The algorithm starts with the initialization of parameters: Max-

imum Iteration = it max, Size of squirrel population = M , Deci-

sion variable count/Number of dimensions = D, Probability

of predator’s presence = Pr p, Scaling factor = s f (value ranges

between 16 and 37), Gliding distance constant = G c , and Deci-

sion variable bounds.
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5.1.1 Random initialization of flying
squirrels (Fs)

For the population count ′M ′ and with the upper and lower

bounds as F u
s and F l

s , respectively, then each flying squirrels

can be randomly initialized using Equation (16):

FsI ,z
= F l

sz + rand () × (F u
sz − F l

sz ), (16)

where FsI ,z
represents I th flying squirrel in the zth dimen-

sion, rand () generates random number between 0 and 1,

I = 1, 2, 3…M , and z = 1, 2, 3…D.

The fitness of a squirrel in a particular dimension represents

its location and the quality of the solution. In the FSSA, optimal

solution location is mapped as optimal food source (Hickory

nuts) which is termed as the location of squirrel at Hickory

tree. The next best solutions are termed as the location of

squirrel at Acorn tree. The normal solutions (Acorn nuts)

are termed as location of squirrel at normal food source, i.e.

Normal tree. After random initialization of the flying squirrels,

the squirrels with maximum fitness value are noted as to be on

the Hickory nut tree. The next few best solutions are termed

as squirrels’ locations on the Acorn nut trees. The rest of the

squirrels are considered to be on Normal tree. While foraging it

is important to consider the probability of predator’s presence

(Pr p).

5.1.2 Movement of flying squirrels towards new
solutions

Squirrels on Acorn tree tends to move towards Hickory nut tree,

i.e. the best solution found so far using Equation (17):

F t+1
sa =

{
F t

sa + d g × G g × (F t
sh − F t

sa ) r1 ≥ Prp

Random Location otherwise,
(17)

where t is the iteration number ranging from 1, 2, 3… it max, r1

is the random number between [0,1]. The term d g is the ran-

dom gliding distance and its value ranges in between 9 and

20 m [42], however a large value of d g can cause deviation

in squirrel movements and can result in underperformed opti-

mization algorithm. So, d g is divided by a scaling factor which

is a non-zero term and its value can range from 16 to 37

[42]. The gliding constant G c helps in maintaining the trade-

off between exploration and exploitation abilities of the FSSA

and its value is considered as 1.9 [42]. The value of Pr p is taken

as 0.1.

Some squirrels which are on normal food source tree will

move towards better food location, i.e. (Hickory nut tree and

Acorn nut tree) as per Equations (18) and (19):

Normal tree to Hickory tree:-

F t+1
sn =

{
F t

sn + d g × G g × (F t
sh − F t

sn ) r2 ≥ Prp

Random Location otherwise
(18)

Normal tree to Acorn tree:-

F t+1
sn =

{
F t

sn + d g × G g × (F t
sa − F t

sn ) r3 ≥ Prp

Random Location otherwise,
(19)

here r1 and r2 are random numbers between 0 and 1.

The movement of squirrel is governed by gliding aerodynam-

ics principle [42]. The foraging behaviour of the conventional

FSSA also governed by seasonal monitoring condition which

maintains a proper balance between its exploration and exploita-

tion abilities.

Imitating the behaviour of squirrel during winter season

which makes the algorithm more realistic, season monitoring

condition is employed in conventional FSSA. For this purpose,

season constant in Equation (20) is compared with season mon-

itoring condition in Equation (21).

Season Constant:

SCt =

√√√√√
D∑

z=1

(
F t

sa,z − Fsh,z

)2

(20)

Season Monitoring Condition:

SMmin =
10E−6

(365)t∕(it max∕2.5)
. (21)

If SCt ≤ SMmin then the flying squirrels are relocated using

Equation (22):

Fs = F l
s + Levy(n) × (F u

s − F l
s ). (22)

6 ADVANCED SQUIRREL ALGORITHM

6.1 Motivation

As per the ‘No Free Lunch Theorem’ [43], the evolutionary-

based optimization algorithm’s performance varies based on

the optimization problems. A distinct optimization algorithm

is suited for distinct problems. For an optimization algorithm

to have a good performance, it should start with the good

exploration abilities. Towards the later stage, the search should

be around the elite individual with better exploitation as com-

pared to exploration so as to achieve a good convergence.

Moreover, the algorithm should make sure that it does not get

stuck to local optima. Hence, in an optimization algorithm,

there should be proper trade-off between its exploration and

exploitation abilities.

6.2 Modification

The main objective with the modification in an optimiza-

tion algorithm is that it should perform search around elite

individual and should prevent local optima. In order to improve
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the FSSA, the modifications are made to enable ASA to prevent

local optima and have better trade-off between its exploration

and exploitation abilities.

6.2.1 Crossover and mutation

In conventional FSSA due to the lack of evolution, the diversity

level is low and as the result the algorithm can get trapped to the

local optima solution. But for a population-based algorithm in

order to solve highly complex problem it is very much required

to have high dimensional diversity, so as to ensure the search

process searches for the global best solution [29].

The technique of crossover and mutation is incorporated to

the conventional FSSA in order to obtain the optimum weight

values for training the NN. The entire population is divided

in two equal sub-population F1sI ,z
such that (I = 1, …M∕2

and z = 1, …D) and F2si,z
such that (I = M∕2, …M and

z = 1, …D).

The random initialization of the search agent/squirrels of

each sub-population is performed using Equation (16). Each

sub-population has its own population diversity and the algo-

rithm proceed with finding of new solutions using Equations

(17)–(19) for each sub-population separately. The best solution

and its position from each sub-population, i.e. (Squirrel position

at Hickory nut tree) is retrieved and stored in memory. The lin-

ear crossover is then employed to it as shown in Equation (23)

and the solutions are stored in the memory.

F
c,t

sh = 𝜌F t
s1h
+ (1 − 𝜌)F t

s2h
, (23)

here 𝜌 is random number between 0 and 1, F t
s1h

, F t
s2h

are the

best solution from population set 1 and 2, respectively, and F
c,t

sh

is the solution generated after the crossover between two best

solutions from each sub-population at t th iteration. The F
c,t

sh is

also stored in the memory.

Post crossover all the best solutions stored in the memory

are mutated. The Gaussian Mutation is employed as shown in

Equation (24).

F
m,t

sh = F
c,t

sh + (F u
s − F l

s ) × ga(0, 𝜗)

F
m,t

s1h
= F t

s1h
+ (F u

s − F l
s ) × ga(0, 𝜗)

F
m,t

s2h
= F t

s2h
+ (F u

s − F l
s ) × ga(0, 𝜗),

(24)

here F
m,t

sh ,F m,t
s1h

,F m,t
s2h

are the mutated solutions of crossover

solution and the best solutions from each sub-population,

respectively. The ga(0, 𝜗) is the Gaussian mutation factor with

0 mean and 𝜗 as the variance. In order to have emphasis on

exploration and exploitation during different stages of itera-

tion, i.e. to ensure high exploration during the start of iteration

and high exploitation during later stage, the 𝜗 is decreased as

𝜗(t + 1) = 𝜗(t ) × e−t .

The mutated solutions stored in a repository are compared

with the solutions in memory and the best solution is selected.

In this way, at the end of each iteration the best solution is

retained and stored in the separate repository.

6.2.2 Chaotic winter selection

The important factor to be considered for incorporating a

modification into an optimization algorithm is its application.

The ASA is employed for training the NN, i.e. weight optimiza-

tion of the NN to minimize the error in the correct prediction

of the spectrum holes. The conventional squirrel algorithm

employs Levy distribution for reallocating the squirrels that

could not reach to an optimal food source at the end of winter

season as shown in Equation (21) [42]. This process of updating

the squirrel position is meant for enhancing the exploration

ability of the algorithm. The Levy distribution approach cannot

guarantee the optimized random blind search for the sparse

targets [44]. Moreover, the presence of bias can overshoot the

target [44] and which is not suitable for training an NN. Hence,

the sinusoidal chaotic approach is employed for relocating the

squirrels at the end of winter season.

Sinusoidal chaotic approach is as shown in Equation (25)

used generate random sequence as CH .

CHn+1 = Ch ⋅CH 2
n ⋅ sin(𝜋CHn ), (25)

here Ch = 2.3 and the initial value of CH0 is taken as 0.7, after

modification Equation (22) can be rewritten as in Equation (26)

Fs = F l
s +CHn × (F u

s − F l
s ). (26)

7 THEORETICAL ANALYSIS OF ASA
COMPARED WITH THE EXISTING
ALGORITHM EMPLOYED FOR
TRAINING NN

Because of the drawbacks associated with the Conventional-NN

[22, 24], the efforts were made in improving the performance of

NN using metaheuristic algorithms [23, 27]. The ASA is com-

pared with the hybrid Particle Swarm Optimization Gravita-

tional Search Algorithm (PSOGSA), PSO, Gravitational Search

Algorithm (GSA), ABC Algorithm employed in training the

NN. All the mentioned algorithms are used in weight and bias

optimization of NN so as to have minimized error between the

target and the predicted information about the presence and the

absence of PU.

The PSO is based on the flocking behaviour of the swarms

[45], the governing equations of PSO are :

X t+1
i

= X t
i
+V t+1

i
, (27)

V t+1
i

= WV t
i
+C1Ri1(Personalbesti − X t

i
)

+C2Ri2(Globalbesti − X t
i

), (28)
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Algorithm 1 Pseudocode of Advanced Squirrel Algorithm

1: Initialize variables and the search space (Weights and biases of the NN)

2: Divide the population of the Search Agents into two sections

3: Randomly initialize the position of the each search agents in each sub -population

4: For each iteration:

5: For each Decision Variables:

6: Evaluate the Positions of the Search Agents

7: (Each Search Agents’ position represents the values of the variables, i.e. weights

and biases)

8: Evaluate the Fitness Function

9: Compute F t
sa , F t

sn and F t
sh

10: Perform linear Crossover of the best solution’s position from each

sub-population

11: Perform Gaussian Mutation of Crossover position and the best solution

position of each sub-population

12: Obtain the optimal solution for the current iteration

13: Check for the maximum iteration

14: End

15: Go to Step:6 if iteration < Max iteration

16: End (iteration > Max iteration)

17: Return the optimal solution

here, Equation (27) governs the position and Equation (28) gov-

erns the velocity update of the ith particle at (t + 1)th iteration,

W is the weight coefficient, C1,C2 are the cognitive and social

coefficients, respectively [45].

The GSA algorithm is based on the gravitational law of

the physical bodies [46]. In GSA, the velocity and the posi-

tion of the search agents are updated as in Equations (29) and

(30).

V t+1
i

= V t
i
× rand + at

i
, (29)

X t+1
i

= X t
i
+V t+1

i
, (30)

where ‘a’ is the acceleration of the search agents. The GSA algo-

rithm is capable of finding the global optimum but has a proven

drawback of slow search speed as iteration reaches its maximum

[27] and GSA also lacks good exploration ability. The PSO, on

the other hand, has high exploration ability but suffers from pre-

mature convergence [30].

In PSOGSA, PSO is hybridized with GSA so as to have

proper trade-off between exploration and exploitation ability

[27]. The hybridization of PSO and GSA is carried out is the

low level co evolutionary heterogenous-based hybridization [47]

as shown in Equation (31):

V t+1
i

= WV t
i
+C1Ri1at

i
+C2Ri2(Globalbesti − X t

i
), (31)

here acceleration of GSA is incorporated in the velocity

update of the PSO [27].

The ABC algorithm is based on foraging behaviour of the

bee [48], the position of the bee and the entire bee population

is divided as employed bee, onlooker bee. Both FSSA and ABC

are based on the population division but in FSSA the popula-

tion is divided after the initialization and based on the fitness

level [42].

The PSOGSA is a powerful optimization algorithm and has

superior performance in training NN as compared to PSO,

GSA, and ABC [23, 27]. With hybrid PSOGSA, the perfor-

mances of NN enhances but with the cost of increase in the

complexity. Due to the hybridization, the computational com-

plexity of PSOGSA increases. The order of computation of

GSA is O(m2 ) [49], here m indicates the variable number. The

PSO’s order of computation is O(m × n) [50] with m and n

considered as variables and population size, respectively. The

PSOGSA and ABC have high computational complexity as

(O(m × n) + O(m2 )) and O(n5 ), respectively [48]. The ABC has

higher complexity than PSOGSA, PSO, and GSA.

This research work also focussed on enhancing the perfor-

mance of NN using ASA without much increase in the compu-

tational complexity. In squirrel-based algorithm, the complexity

depends on the population size. Therefore, in ASA mutation,

crossover and chaotic approach is employed without increasing

the population size. So the complexity remains as O(M × D)

which is lower than PSOGSA, ABC, GSA, and comparable to

conventional PSO. The ASA has better performance in terms of

prediction accuracy and efficiency evident in Section 8 as com-

pared to PSOGSA, PSO, and ABC.

8 ASA-TRAINED NN

The proposed ASA is employed for optimizing the weights and

the biases of the NN used in the prediction of presence and

the absence of the PU. The optimization is used because the

conventional-NN employs the BP algorithm for training NN

and the BP algorithm is based on gradient descent method

which has the tendency of getting stuck to the local optima

and has a slow convergence rate [22, 24]. If the weights and the

biases of an NN are not properly optimized then it will result

in a high deviation in the prediction error, which can further

cause incorrect prediction of the PU’s presence and can result

in the interference to the PU transmission. Therefore, it is very

important to obtain the optimized value of the weights and the

biases so as to minimize the error in the prediction of an NN

output.

The ASA-NN starts with random initialization of the weights

and biases to the NN. For the weight and bias optimization,

the NN structure considered is fixed and it comprises of one

input layer, one hidden layer, and an output layer. The num-

ber of input nodes is denoted by ‘N,’ hidden nodes as ‘H,’

and the output nodes as ‘M.’ For each learning epoch, the

output of the cth hidden node O(hc ) can be calculated as in
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Equation (32):

O(hc ) =
1

1 + e−hc
, (32)

where c = 1, 2, …H and hc =
∑N

g=1
wgcXg − bc , wgc is the weight

value between gth input node and cth hidden node. The bias

connected to the cth hidden node is represented by bc and Xg is

the input from gth input node.

The hidden nodes are connected via weigths and biases to

the output node and the output from the output node can be

represented by Equation (33):

Oo =

H∑
c=1

wocO(hc ) − bo, (33)

here o = 1, 2…M, woc is the weight connection from the cth hid-

den node to the oth output node, bo is the bias connected to the

oth output node.

The error ed (fitness function) and its average value is calcu-

lated as in Equations (34) and (35):

ed =

N∑
g=1

(
Ad

g − T d
g

)
, (34)

e =

D∑
d=1

(
ed

D

)
, (35)

here T d
g = Target output corresponding to the gth input node

for the d th training sample.

Ad
g = Actual output for the gth input node corresponding to

the d th training sample.

The objective function for the ASA for the weight and bias

optimization in NN is as Equation (36)

min
w,b

e (36)

Figure 7 shows the NN model and Figure 8 shows a pictorial

representation of ASA employed for weight optimization of an

NN. During the training phase for a given training input sam-

ples, the weights are randomly initialized. The random weights

are then fed to the ASA optimization as shown in Figure 8. The

ASA starts with the sub-population formation and random ini-

tialization of search agents based on Equations (17)–(19) in the

search space of the weight optimization to minimize the error

as in Equation (35). This process of crossover, mutation, and

chaotic winter selection is then employed based on Equations

(23), (24), and (26), respectively, so as to obtain the optimized

weight values to minimize the error. In this way, initial weight

values are then optimized using ASA and fed back to the NN

for the correct detection of the spectrum holes. Figure 8 com-

prises of CRs whose spectrum sensing samples are fed to the

ASA-NN at CR base station/FC for the channel prediction.

FIGURE 7 Pictorial representation of NN model employed for spectrum

prediction

8.1 ASA-NN for channel prediction

The ASA-trained NN is employed for efficient channel pre-

diction in CR-based ATC. The PU mainly considered is the

TV Broadcast system of a particular geographical location

(i.e. United Kingdom). For training NN, it is required to

have optimized weights, biases, and proper training input sam-

ples such that NN should be efficiently able to differentiate

between PU’s presence and absence from the channel state

information.

In a TV band, the presence of TV signals can be identi-

fied by its centre frequency, bandwidth, and the signal power

level. Moreover, TV signals employs modulations, therefore

they exhibit statistical properties as a periodic function of time,

i.e. the cyclostationary property [5]. For the correct prediction

from the channel state, the input samples employed for training

are SNR, Bandwidth of the PU, the centre frequency of the PU,

and the cyclic frequency associated with each centre frequency

of PU. The ASA optimizes the weights and biases of NN in the

MATLAB environment using pre-defined samples with the goal

of minimizing the error to 1 × 10−30.

The proposed ASA-NN employed for channel prediction

comprises of a training period and a working period. The train-

ing period will be the same for SU of the 3D non-cooperative

spectrum sensing scheme and the CRs of the cooperative spec-

trum sensing scheme. In the working period of the 3D non-

cooperative spectrum sensing scheme, SUs (Aircraft) makes the

final decision on the channel state based on the knowledge

base and the ASA-NN of the training period. In the case of

cooperative spectrum sensing, CRs perform the spectrum sens-

ing and the data is sent to the FC, where trained ASA-NN

is employed to make final decision based on received samples
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FIGURE 8 Pictorial representation of ASA-based weight optimization of NN

from CRs. In the proposed work, the real-time input samples

are obtained using USRP N210 and B210, these input sam-

ples are then fed to the ASA-NN in the MATLAB environ-

ment. The ASA-NN makes the binary channel state prediction

(1: PU is present, 0: PU is absent) based on the input sam-

ples. With the help of input samples and the optimized weights

and bias values, the proposed ASA-NN is able to efficiently

detect the spectrum holes and can enhance the opportunis-

tic throughput of the SU. The input sample description is as

follows:

1. SNR: It is considered that the TV transmitter is equipped

with omnidirectional antenna and it is transmitting sig-

nal with a transmission power ranging from 10 to 50 kW

[51]. As the TV transmission is assumed to have coverage

up to 2.5 km, so an SU within this coverage can oppor-

tunistically utilize the spectrum to enhance its bandwidth.

The TV power received within its coverage area depends

on the distance between its transmitter and receiver. The

relation between TV transmitted power and the received

power as the function of distance can be denoted as in

Equation (37) [52].

TV(rvp) = TV(tr p)

(
d
′

0

d ′

)n
′

, (37)

here TV(rvp) is the power received at TV receiver, TV(tr p) is

the power received by TV receiver for a reference distance

of d
′

0
, as d

′

0
is considered 10 m, so for such a small value

of reference distance the TV(tr p) is considered equal to the

TV transmitter power. n
′
= 3, d

′
is the distance between TV

transmitter and TV receiver.

With noise power spectral density as N0 and specific band-

width B, the SNR of the TV transmission received can be

written as in Equation (38).

SNRTVr
=

TV(rvp)

BN0
. (38)

As the distance increases SNRTVr
decreases. The Federal

Communications Commission (FCC) has defined certain
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TABLE 1 PMSE bandwidth and power

PMSE devices PPMSE

(dBm∕B)
B

Wireless microphone −78 200 kHz

In-ear monitors −78 200 kHz

Talkback −78 200 kHz

Data links −78 200 kHz

Program audio links −78 200 kHz

Program video links −65 8 MHz

minimum threshold level for SNRTVr
[51, 53, 54] . So

the SNRTVr
samples between its max and min bound are

employed as one of the input for training ASA-based NN.

The TV frequency band in U.K. 470–790 MHz (channel

21–60) in any particular location not used by digital terres-

trial television (DTT) could be used by low power devices.

The Programme Making and Special Events (PMSE) equip-

ment like wireless microphone and audio devices have been

using these white spaces on opportunistic manner with the

assistance of white space database (WSDB). The CR devices

(CRd)/ white space devices (WSD) operating in these fre-

quency range should not only consider the presence of DTT

but also the PMSE before transmission. The PMSE power

can be calculated as in Equation (39) [55].

PPMSE
(dBm∕B)

= PSU−PMSE
dB

+ r (Δ f )(dB) + mG1
(dB)

+ 𝛾(dB) + 19.03,

(39)

where PPMSE
(dBm∕B)

is the PMSE signal power over its channel

bandwidth B, PSU−PMSE
dB

is the power spectral density limit

of the CRd signal to avoid interference with the PMSE sig-

nals, mG1
(dB)

is the coupling gain between CRd and PMSE sig-

nals. The coupling gain margin is denoted by 𝛾(dB), r (Δ f )(dB)

is the ratio of PMSE signal power over CRd signal power

at PMSE receiver. The Δ f is the channel separation (DTT-

8 MHz) between CRd and PMSE signal. The value 19.03

is equivalent to 10log10(80) and it converts PSD of CRd

signal from 8 MHz to 100 kHz. Therefore, PU SNR val-

ues considered comprises of SNRTV signal to Noise Ratio

for the TV signal and the SNRPMSE signal to Noise Ratio

for the PMSE signal. The Table 1 shows the PMSE band-

width and the associated power.

2. Bandwidth of the channel: The TV broadcast system in a

specific geographical location operates at a particular band-

width. In the United Kingdom, TV broadcast channel has

8 MHz as bandwidth and this information is employed for

training the ASA-NN as a second input. In addition to that,

the bandwidth of the probable PMSE devices operating in

the TV white space is also considered.

3. Centre Frequency of the channels: The employed centre fre-

quency for training NN is as TV white space frequencies as

shown in Figure 9.

4. Cyclic Frequency (cyclostationary features of the signal): The

periodicity in a signal or in its mean and autocorrelation

results in the cyclostationary properties. The noise signal can

be differentiated from the PU signal by employing the cyclo-

stationary property. The wide sense stationary noise signals

exhibit no correlation where as modulated PU signal exhibits

correlation due to periodic nature of the signals [13].

The cyclic spectral density of the received PU signal dur-

ing spectrum sensing in Equation (1) can be calculated as

in Equation (40) [57]:

S ( f , 𝛼) =

∞∑
r=−∞

R𝛼
y (�)e− j2𝜋 f �, (40)

where R𝛼
y (�) can be calculated as in Equation (41):

R
𝛼a
y (�) = E [y(n + �)y∗(n − �)]e j2𝜋𝛼an, (41)

here 𝛼a is the cyclic frequency. When cyclic frequency is

equal to fundamental frequency of the signal then cyclic

spectral density shows peak [5]. In addition to that, noise

signals which are wide sense stationary does not have any

periodicity associated with it, so their autocorrelation func-

tion is [58].

Ry (�) = R0
y (�). (42)

As the cyclostationary signals comprises periodicity, there-

fore, their autocorrelation function can be written as

Ry (�) =

∞∑
r=−∞

R𝛼
y (�)e j2𝜋𝛼a�, (43)

where 𝛼a is equivalent with period T :

𝛼a =
a

T
, a = 0, ±1, ±2, … . (44)

The cyclic frequency is used as one of the input feature for

detecting the PU signal.

9 SIMULATION PARAMETERS
AND RESULTS

The simulation results depict the performance of ASA in train-

ing the NN for efficient spectrum sensing in terms of the prob-

ability of detection, probability of false alarm, opportunistic

throughput, and the bit error rate (BER). The BER for different

training algorithm is estimated based on the efficiency of each

algorithm in predicting the accurate spectrum holes and trans-

mitting the data efficiently to CR receiver.

The simulation parameters of each metaheuristic algorithm

employed for training NN are as follows:

The number of CRs deployed in the vicinity of the airport is

considered as 10, 5 aircraft is considered to be approaching ATC

at a time, the number of spectrum sensing samples = 500. The

TV tower transmission power is assumed to be vary from 10

to 50 kW depending on the geographical location of the place.

The noise power spectral density is 10−9, the PU bandwidth is

8 MHz. The CRs and CR base station are assumed to be within
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FIGURE 9 TV carrier frequency allocation in the United Kingdom [56]

TABLE 2 Simulation parameters of metaheuristic algorithms employed for training NN

PSO/PSOGSA GSA ABC ASA

1. Personal Coefficient and Social

Coefficient =C _1 =C _2 = 2

1. Gravitational Constant = 1 1. Population Size = 100 1. Population Size = 100

2. Inertia weight w = Linearly

decreases from 0.9 to 0.4

2. Initial search agent velocity = [0,1] 2. Maximum Iteration = 500 2. Maximum Iteration = 500

3. Population Size = 100 3. Descending Coefficient = 20 3. Total NN Layer = 3 3. Gliding Constant = 1.9

4. Maximum Iteration = 500,

Descending Coefficient = 20

4. Initial value of acceleration, mass

of the search agents set to 0

4. Hidden Layer Size = 10 4. Random Gliding Distance = 9–20 m

5. R1, R2 = [0,1] 5. Population Size = 100 5. Scaling Factor = 16–37

6. Total NN Layers = 3 6. Maximum Iteration = 500 6. 𝜗(0) = 1

7. Hidden Layer Size = 10 7. Total NN Layers = 3 7. Total NN Layers = 3

8. Gravitational Constant = 1 8. Hidden Layer Size = 10 8. Hidden Layer Size = 10

the distance of 1 km from the TV transmission tower. The TV

tower transmission range is assumed to be 2.5 km, the proba-

bility of PU being active is considered to be 0.1. The Table 2

shows the simulation parameters of metaheuristic algorithms

employed for training the NN.

9.1 Real-time training of NN with the help
of USRP, LabVIEW, and MATLAB

The NN is first trained for the known samples of the received

PU and PMSE SNR, the PU and PMSE centre frequency, PU

cyclic frequency, PU and PMSE signal bandwidth. For the real-

time training, USRP N210 (Number of N210 = 2, USRP 1

and USRP 2) and B210 (Number of B210 = 1, USRP 3) are

employed. In the training phase, USRP 1 and USRP 3 transmit

at different SNR levels, bandwidth and carrier frequency so as

to replicate the TV and PMSE transmission. The USRP 2 has

the priori knowledge about the presence and the absence of PU

signal, trains the NN using the sensed samples and trains the

ASA-NN in the MATLAB environment.

During working phase, the USRP 2 act as the FC. The USRP

2 receives the sensed samples from USRP 1 and USRP 3, and

is fed to ASA-trained NN in the MATLAB environment and

makes the final decision. Figures 10 and 11 shows the test bench

setup employed in this work. The training of NN starts with
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FIGURE 10 USRP 1 and USRP 2 (N210s) placed at a distance of 4 m (Testbench for the proposed algorithm)

FIGURE 11 USRP 3 (B210) with horn antenna

random initialization of the weight and the bias values. Dur-

ing epoch 1, for the corresponding values of the weight and

bias, the output is generated and compared with the target value

(prior information about PU). The error value and the associ-

ated weight and the bias values are then called via applied opti-

mization algorithms. After first iteration, the optimized weight

and bias values for the minimized error value is fed back to the

NN, which then generates the output and compared with the

target. The error signal along with the weight and bias values

are then again called by the optimization algorithm. The pro-

cess continues until the target error minimization value has been

reached or the iteration reaches the maximum level.

9.2 Evaluation of the detection performance
of the proposed and the existing algorithm

The detection performance of the proposed ASA-trained NN-

based spectrum sensing is compared with the PSOGSA-NN,

PSO-NN, ABC-NN, GSA-NN, and Conventional-NN. The

efficiency of the optimization algorithm in training NN is

deduced by its effectiveness in optimizing the weight and bias

values of NN to minimize the error in correct detection of the

spectrum holes. An efficient algorithm can successfully detect

the presence and the absence of PU. The detection perfor-

mance of the NN training algorithm is evaluated in terms of

probability of detection. The better probability of detection

signifies the efficiency of the algorithm in training the NN

for the correct prediction about the presence and the absence

of PU.

The probability of detection of each algorithm is evaluated

with respect to probability of false alarm, sensing time, and the

received SNR of the PU.

1. Impact of Probability of False Alarm on Probability of

Detection for each Algorithm:

Figure 12 shows the receiver operating characteristics (ROC)

for spectrum sensing with respect to probability of detection

and probability of false alarm.

Once the NN is trained using proposed algorithm, then the

probability of detection and probability of false alarm is plot-

ted by employing the real-time spectrum sensing samples

using USRP 2. The USRP 2 performs wide band spectrum

sensing in the TV white space band (470–790 MHz). From

the sensed samples, the received PU SNR, its bandwidth,

cyclic frequency, and centre frequency is obtained. These

samples are fed to the trained NN which predicts the pres-

ence and the absence of PU. For the particular SNR value

and based on the NN prediction, the probability of detec-

tion is estimated via employing Equation (14). With the given

SNR (SNRTV and SNRPMSE ) and for the predicted probabil-

ity of detection, the optimal detection threshold is estimated

using Equation (45)

𝜆 = Q
P cs

d , j (k)
𝜎1 + 𝜇1. (45)

Employing the above equations (14 and 45), the probabil-

ity of false alarm is estimated using Equation (13). From

Figure 12, it can be seen that for the probability of false

alarm = 0.1 and sensing time = 5 ms, the probability of

detection for the ASA-trained NN is better as compared

to the other algorithms. The probability of detection of

ASA-NN is ∼1, whereas for PSOGSA-NN it is ∼0.9. The
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FIGURE 12 Probability of detection versus

probability of false alarm for sensing time = 5 ms

FIGURE 13 Probability of detection versus

sensing time

PSO-NN has the comparable performance with the ABC-

NN of about ∼0.75. The detection probability for the GSA-

NN and Conventional-NN are ∼0.6 and ∼0.55, respectively.

2. Impact of Probability of Sensing Time on Probability of

Detection for each Algorithm: From Figure 13, it can be

inferred that as the window of sensing time increases the

probability of detection also increases. The increased sens-

ing time increases the accuracy of the sensed data, eventually

the prediction error reduces. But if the sensing time is kept

increasing then the transmission time reduces which even-

tually reduces the opportunistic throughput and increases

the energy consumption. Optimizing sensing time is another

problem which we have dealt in our previous work. For a

frame period of 50 ms the maximum sensing time consid-

ered is 5 ms. The detection performance of the proposed

ASA-NN is better for varying sensing time as compared to

the existing PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN,

and Conventional NN.

3. Impact of Probability of Received PU SNR on Probability of

Detection for each Algorithm:

The PU SNR here comprises of SNRTV and SNRPMSE .

Figure 14 shows the probability of detection for varying

Received SNR values of PU signals. High SNR values guar-

antees better detection performance of the NN. The pro-

posed ASA-NN is able to reach high detection probability of

∼0.98 even at low SNR value of 0 dB. The proposed ASA-

NN is very efficient in detecting the presence and absence of

PU for both high as well as for low SNR, as compared to the

existing algorithms.

4. Real-Time Detection of the Spectrum Holes using pro-

posed ASA-NN.

Once NN is trained using ASA then the ASA-NN-based

spectrum sensing is carried out using USRP 2, which act as

FC. The FC receives sensed data from the USRP 1 and USRP

3. Based on the sensed samples and trained NN, the USRP

2 makes the final decision on the presence and the absence

of the PU. Once the PU is detected then the threshold is

varied based on Equations (13) and (14). The detected PU is

then displayed via LabVIEW front panel GUI, as shown in

Figures 15 and 16.
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FIGURE 14 Probability of detection versus

SNR (received SNR of PU)

FIGURE 15 NI USRP-LabVIEW based detection of PU

9.3 Evaluation of the transmission
performance of the proposed and
the existing algorithm

Based on how efficiently an algorithm-trained NN is able to

detect the spectrum holes and effectively utilize it for the

transmission of data, the performance is evaluated in terms

of the BER and opportunistic throughput. The USRP 2 per-

forms the spectrum sensing and detect the spectrum holes

using optimization algorithm-trained NN and transmits the data

to the USRP 3. The distance between USRP 2 and USRP 3

is varied so as to have different values for the received SU

SNR.

1. ASA-NN based transmission of signals from USRP 2 to

USRP 3 using different modulation scheme:

From Figures 17–19, it can be inferred that with the pro-

posed ASA-NN it is possible to efficiently detect the spec-

trum holes and transmit data. The ASA has efficiently

trained NN and has optimized the error in detection of the

spectrum holes via its novel mutation, crossover, and chaotic

winter selection scheme. The figures corresponding to the

receiver USRP is accompanied by channel noise, but when

there is interference with the noise the received signal is as

shown in Figure 17 and it is very difficult to trace the origi-

nal transmitted signal.

2. BER analysis of different optimization algorithm employed

in training NN:

The efficiency of the optimization algorithm in training

NN to effectively detect the spectrum holes is analysed

with respect to BER as shown in Figures 20–22. From the

BER analysis, it can be inferred that the proposed ASA-

NN because of its crossover and mutation scheme is able

to obtain optimum weight values for correctly detecting the

spectrum holes and has efficiently transmitted data from

USRP 2 to USRP 3.

3. Opportunistic throughput analysis of different optimization

algorithm employed in training NN:

The opportunistic throughput of a CRN is the through-

put obtained at SU receiver. This throughput is calcu-

lated as per Equation (15) for transmission of data via

detected spectrum holes. Better detection of the spec-

trum holes results in enhanced throughput. Therefore,

efficiency of the optimization algorithm in training NN

for efficient prediction of the spectrum holes is analysed

with respect to opportunistic throughput as shown in

Figures 23–25.

9.4 Comparative analysis of each algorithm

The comparative analysis of ASA-NN with the PSOGSA-NN,

PSO-NN, ABC-NN, GSA-NN, and Conventional-NN is as

shown in Tables 3–6. Table 3 shows performance evaluation

of each NN training algorithm for probability of detection at

probability of false alarm = 0.1. As discussed in the point

1 of Subsection 9.2, the ASA has effectively improved NN
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FIGURE 16 Detected PU in the TV band

FIGURE 17 Signal (PU interference)

as compared to other optimization algorithm for efficiently

detecting the presence and absence of PU. The ASA algo-

rithm has the tremendous trade-off between its exploration and

exploitation abilities. The chaotic behaviour introduced in ASA

(Equation 26) has further enhanced its exploration ability with

which it tends to find global optimum solution.

Table 4 depicts the performance evaluation of each train-

ing algorithm with respect to probability of detection and sens-

ing time.

Table 5 shows the opportunistic throughput for each training

algorithm for varying SNR at SU Rx. As the result of efficient

spectrum prediction and data transmission, the opportunistic

throughput of ASA-NN is better as compared to the PSOGSA-

NN, PSO-NN, ABC-NN, GSA-NN, and Conventional-NN.

In Tables 3, 4, 5, and 6, the performance of the proposed

ASA-NN is compared with the existing (PSOGSA-NN, PSO-

NN, GSA-NN, and Conventional-NN) for parameters (Vary-

ing Pf , sensing time, and SNR). Table 7 shows by how much

percentage there is improvement in the Probability of Detec-

tion and opportunistic throughput using ASA-NN as com-

pared to the existing (PSOGSA-NN, PSO-NN, GSA-NN, and

Conventional-NN). From the best of authors’ knowledge, so far

FIGURE 18 Transmission at 16 QAM

FIGURE 19 Reception at 16 QAM



1344 EAPPEN ET AL.

FIGURE 20 BER for 16 QAM

FIGURE 21 BER for 16 PSK

FIGURE 22 BER for 64 QAM
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FIGURE 23 Opportunistic throughput versus

SNR for 16 QAM

FIGURE 24 Opportunistic throughput versus

SNR for 16 PSK

FIGURE 25 Opportunistic throughput versus

SNR for 64 QAM
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TABLE 3 Performance evaluation with respect to probability of detection

and probability of false alarm

Probability of detection at Pf = 0.1

ASA-

NN

PSOGSA-

NN

PSO-

NN

ABC-

NN

GSA-

NN

Conventional-

NN

∼1 ∼0.9 0.75 0.738 0.6 0.54

TABLE 4 Performance evaluation with respect to probability of detection

and sensing time

Probability of detection at sensing time = 1 ms

ASA-

NN

PSOGSA-

NN

PSO-

NN

ABC-

NN

GSA-

NN

Conventional-

NN

∼1 0.93 0.9 0.76 0.71 0.53

in the spectrum sensing based on NNs were carried for either

Pd versus SNR [59], or Pd versus Pf [60, 61] or, Pd versus sens-

ing time. All the three parameters are considered simultaneously

(Tables 3–6) to prove the efficacy of the proposed algorithm.

9.5 Convergence curve analysis

The convergence curve signifies the convergence of the opti-

mization algorithm towards the best values of the variables

TABLE 5 Performance evaluation with respect to probability of detection

and SNR

Probability of detection at received PU SNR = 0 dB

ASA-

NN

PSOGSA-

NN

PSO-

NN

ABC-

NN

GSA-

NN

Conventional-

NN

0.98 0.8067 0.6556 0.48 0.39 0.26

FIGURE 26 Convergence curve of ASA-NN for population size 50, 100,

150

FIGURE 27 Convergence curve of PSOGSA-NN for population size 50,

100, 150

FIGURE 28 Convergence curve of PSO-NN for population size 50, 100,

150

resulting in the minimization/maximization of the objective

function. The aim of each optimization algorithm is to train

the NN by optimizing the weights of NN so as to obtain the

minimized error deviation between the observed and the target

sample values. The training is carried out in the training period,

the trained NN is then implied for predicting the PU’s presence

and absence.

The convergence curve is an important paradigm showing

the efficiency of the optimization algorithm during the train-

ing phase of an NN. The optimization algorithm having mini-

mized error deviation at the end of the training phase iterations

implies that the algorithm has obtained optimum weight val-

ues for which the deviation between the observed and the tar-

get value is minimum and has trained the NN in best way. The

optimal trained NN can efficiently detect the presence and the

absence of PU during the working phase.
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TABLE 6 Opportunistic throughput for varying SNR at SU Rx

Opportunistic throughput (b/s/Hz)

S.No. Modulation scheme ASA-NN PSOGSA-NN PSO-NN ABC-NN GSA-NN Conventional-NN

1 16 QAM 2.66 2.32 1.96 1.49 1 0.35

2 16 PSK 2.51 2.199 1.82 1.22 0.72 0.48

3 64 QAM 5.3 3.78 2.226 1.355 0.807 0.652

TABLE 7 Percentage improvement of the proposed ASA-NN as compared to the existing algorithms for different parameters

Existing

Algorithms

Probability of

detection at Pf = 0.1

Probability of

detection at sensing

time = 1 ms

Probability of

detection at received PU

SNR = 0 dB

Opportunistic

throughput at 16 QAM

PSOGSA-NN 11.11% 7.52% 21.48% 14.60%

PSO-NN 33.33% 11% 50.76% 35.02%

ABC-NN 35.50% 31.50% 104.10% 78.50%

GSA-NN 67% 40.80% 151.20% 166%

Conventional-NN 85.18% 88.60% 276.90% 650%

Figure 26 shows the convergence curve of the ASA-NN for

the population size 50, 100, 150. It can be seen that as the

population size of an optimization algorithm increases, it con-

verges towards better solution, i.e. minimum error deviation.

But increasing population size to a very large value can increase

the computational time during the training phase.

Similarly Figures 27–31 shows the convergence curve

for the PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN, and

Conventional-NN, respectively. From these figures, it can be

inferred that the population size enhances performance of an

optimization algorithm.

The combined comparative analysis of the convergence

curve of each algorithm for the population size = 150 is shown

in Figure 32. Each algorithm is then analytically viewed via

Table 8.

FIGURE 29 Convergence curve of ABC-NN for population size 50, 100,

150

From Figure 32 and Table 8 it can be seen that the ASA-

NN has shown significant improvement as compared to the

existing PSOGSA-NN, PSO-NN, ABC-NN, GSA-NN and

Conventional-NN. ASA-NN has shown 96.8% improvement as

compared to PSOGSA-NN for the population size 50.

10 DISCUSSION

In this work, NN is used for spectrum prediction, and from

the best of our knowledge ASA has been employed for the first

time for training the NN. The question arises on the use of

the NN for spectrum prediction. In Section 2, the drawbacks

associated with the conventional spectrum sensing have been

discussed, which pointed towards enhancing the performance

FIGURE 30 Convergence curve of GSA-NN for population size 50, 100,

150



1348 EAPPEN ET AL.

FIGURE 31 Convergence curve of the

Conventional-NN for population size 50, 100, 150

TABLE 8 Converged error deviation for different population size of each

training algorithm

S.No. Training algorithm Population size Error deviation

1 ASA-NN 50 3.13 × 10−6

100 1.02 × 10−20

150 3.92 × 10−27

2 PSOGSA-NN 50 9.78 × 10−5

100 1.04 × 10−16

150 2.05 × 10−24

3 PSO-NN 50 1.30 × 10−3

100 1.24 × 10−10

150 2.55 × 10−23

4 ABC-NN 50 1.40 × 10−3

100 6.78 × 10−7

150 2.32 × 10−18

5 GSA-NN 50 1.20 × 10−2

100 4.02 × 10−5

150 2.62 × 10−13

6 Conventional-NN 50 2.10 × 10−2

100 3.07 × 10−3

150 9.34 × 10−6

of the conventional spectrum sensing. Therefore, the NN is

employed to enhance the performance of conventional energy

detector. The conventional energy detector has very poor per-

formance in low SNR. The other spectrum sensing techniques

like the MF and cyclostationary detector are highly complex,

so it is not preferred to employ NN on those techniques [17].

The NN once trained using ASA in the training period, can

efficiently be employed for spectrum prediction during the

working period. This can reduce processing delays and improve

the efficiency of spectrum utilization.

Another important question arises, why NN-based spectrum

prediction should be preferred over conventional spectrum

sensing with optimized parameters? The different optimiza-

tion algorithms have been employed for improving the con-

ventional spectrum sensing techniques [40, 62, 63]. In addition

to that, the joint optimization scheme has also been employed

for improving the energy detection-based spectrum sensing [64,

65]. These optimization schemes can only optimize the param-

eters of spectrum sensing technique but cannot completely mit-

igate the drawbacks associated with it, and NN has better con-

vergence towards the desired solution as compared to optimiza-

tion algorithms [66].

The Conventional-NN using gradient descent-based BP

scheme has the tendency of stucking to the local optima solu-

tion [22–24]. Therefore, the ASA-NN, because of its excel-

lent exploitation and exploration abilities has been employed

for the efficient spectrum prediction. The spectrum prediction

performed by ASA-NN has outperformed the PSOGSA-NN,

PSO-NN, ABC-NN, GSA-NN and Conventional-NN in terms

of improved ROC (Figure 12), high detection probability with

respect to sensing time (Figure 13), improved detection proba-

bility with respect to SNR (Figure 14), better BER (Figures 20–

22), and better opportunistic throughput (Figures 23–25).

11 CONCLUSION

The issue of spectrum congestion during air traffic control

has been investigated, and 3D NCSS and cooperative spec-

trum sensing have been proposed in this article. To overcome

the drawbacks associated with conventional spectrum sensing,

the novel Advanced Squirrel Search Algorithm-trained NN has
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FIGURE 32 Combined convergence curve of

different algorithm for population size 150

been proposed for efficient spectrum prediction in CRN-based

air traffic control. The efficiency of ASA-NN during train-

ing phase is evaluated in terms the ROC and probability of

detection with respect to sensing time and SNR(PU+PMSE).

The proposed ASA-NN has shown high detection probability

and spectrum hole prediction as compared to the PSOGSA-

NN, PSO-NN, ABC-NN, GSA-NN, and Conventional-NN.

The efficacy of the proposed scheme for the real-time sce-

nario is checked via implementing ASA-NN-based spectrum

sensing via USRP N210 B210, LabVIEW 2018, and MATLAB

2019. The proposed ASA-NN has effectively detected the pres-

ence and the absence of the PU in real-time scenario. The pro-

posed scheme has shown high opportunistic throughput and

better BER (evaluated post-detection of the spectrum holes and

transferring data) as compared to the PSOGSA-NN, PSO-NN,

ABC-NN, GSA-NN, and Conventional-NN. The proposed

spectrum sensing scheme with ASA-NN can be employed for

efficiently detecting the spectrum holes for Air Traffic Control

and thus overcoming the problem of spectrum congestion.
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