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Abstract This paper presents an order level inventory system with time dependent Weibull

deterioration and quadratic demand rate where holding costs as a linear function of time.

The proposed model considered here to allows for shortages, and the demand is partially

backlogged. The model is solved analytically by minimizing the total inventory cost. The

implementation of the proposed model is illustrated using some numerical examples. Sensi-

tivity analysis is performed to show the effect of changes in the parameters on the optimum

solution.

Keywords EOQ · Webull deterioration · Shortage · Demand · Holding cost

Introduction

In the traditional inventory model, the demand rate is assumed to be constant. This happens

very rarely in realistic situations same inventory model have been developed for dealing

with the time varying demand. The quadratic demand technique is applied to control the

problem in order to determine the optimal production policy. Quadratic demand seems to be

a better representation of time varying market demands. Some researchers suggest that rapidly

increasing demand can be represented by an exponential function of time. The assumption

of an exponential rate of change in demand is high and the fluctuation or variation of any

commodity in the real market cannot be so high. Thus, this accelerated growth in demand

rate in the situations like demands of computer chips of computerized machines, spare parts

of new aeroplanes etc. is changing the demand more rapidly. Therefore, this situation can

be best represented by a quadratic function of time. Some researchers consider the demand

rate functions in the form of linear demand as D(t) = a + bt, a ≥ 0, b �= 0 or exponential

type demand rate like D(t) = αeβt , α > 0, β �= 0. The linear type demand show steady
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increase (b > 0) or decrease (b < 0) in the demand rate, which is rarely seen in real market.

Also the exponential rate is being very high, i.e. it increases (β > 0) or decreases (β < 0)

exponentially with the demand rate. Therefore the real market demand of any product may

rise or fall exponentially. The demand rate functions of the form D(t) = a + bt + ct2, a ≥

0, b �= 0, c �= 0, d D(t)
dt

= b + 2ct,
d2 D(t)

dt2 = 2c.

Then we have the following cases depending on

(a) For b > 0 and c > 0, the rate of increase of demand rate D(t) is itself an increasing

function of time which is termed as accelerated growth in demand.

(b) For b > 0 and c < 0, there is retarded growth in demand for all time.

(c) For b < 0 and c < 0, the demand rateD(t) decreases at a decreasing rate which we may

call it as accelerated decline demand. This case usually happens to the spare parts of an

obsolete aircraft model or microcomputer chip of high technology products substituted

by another.

(d) For b < 0 and c > 0, the demand rate falls at an increasing rate for t >
(

− b
2c

)

.

Thus we may have different types of realistic demand patterns from the functional form

D(t) = a + bt + ct2 depending on the signs of b and c. Therefore the quadratic time-

dependence of demand is more realistic than its linear or exponential time-dependent

demand. Time-dependent quadratic demand Khanra and Chaudhuri [9], explains the accel-

erated growth/decline in the demand patterns. Depending on the signs of b and c we

may explain different types of realistic demand patterns. Demands for spare parts of

new aeroplanes, computer chips of advanced computer machines, etc. increased widely

while the demands for spare parts of the obsolete aircrafts, computer chips etc. decreased

very rapidly with time. These concepts addressed well in the inventory models with

quadratic demand rate, like ([1,6,10,18,20,24,25] etc.) have been devoted to incorporat-

ing a quadratic demand rate into their models with or without shortages under a variety of

circumstances.

In formulating inventory models, the deterioration of items should not be neglected for

all items. For example, items like foodstuff, pharmaceuticals, chemicals, etc., deteriorate

significantly. Many researchers like ([2,5,17,22,23,26] etc.), assumed, for simplicity, that

items deteriorate at a constant rate. The assumption of constant deterioration rate was relaxed

by Covert and Philip [3]. They used a two parameter Weibull distribution to represent the

distribution of time to deteriorate. This model was further generalized by Philip [15], by

taking three-parameter Weibull distribution [14] adopted a two parameter Weibull distrib-

ution deterioration to develop an inventory model with finite rate of replenishment. These

investigations were followed by ([4,8,19] etc.), where the deterioration rate was considered

to be time-proportional.

In the above mentioned references, most researchers assumed that shortages are com-

pletely backlogging. In practice, some customers would like to wait for backlogging during

the shortage period, but the other would not. Consequently, the opportunity cost due to lost

sales should be considered in the model. Taking these concepts many research works ([7,11–

13,16,21] etc.).

The work of the researchers who used quadratic demand function and various forms

of deterioration with shortages (allowed/not allowed), for developing the economic order

quantity (EOQ) models are summarized below:

The above Table 1 shows that all the researchers developed EOQ models by tak-

ing quadratic demand, deterioration (Constant/Linear/Weibull distribution) and shortages

(allowed/not allowed), and holding costs as constant. But holding cost may not be constant

over time, as there is a change in time value of money and change in the price index. The
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motivation behind developing an inventory model in the present article is to prepare a more

general inventory model, which includes; (a) Holding cost as a linearly increasing function

of time, (b) Deterioration rate as a two parameter Weibull distribution. The main reason for

choosing the Weibull distribution deterioration lies in its convenient generalized properties.

The novelty we will be taking into consideration in this research is that the time of deteriora-

tion is a random variable following the two parameter Weibull distribution. Two-parameter

Weibull distribution deterioration is a generalized form of exponentially decaying functions.

This distribution can be used to model either increasing or decreasing rate of deterioration,

according to the choice of the parameters. Many inventory models have been developed

using backlogging rate to be an exponential function of waiting time of the customers, but in

real practice, backlogging rate never varies as high as exponential. Therefore, in the present

paper considering the backlogging rate to be 1
1+δx

, δ > 0, where x is the waiting time of the

customers for receiving their goods which seems to be better. This model can be applied to

optimize the total inventory cost for the business enterprises where both the holding cost and

deterioration rate are time dependent.

In this paper, a new economic order quantity (EOQ) models for deteriorating items which

are time dependent and the demand rate is a quadratic. Shortages are allowed and partially

backlogged here. The assumptions and notations of the model are introduced in “Nota-

tions and Assumption” section. In “Mathematical Formulation and Solution Procedure”

section, a mathematical model is established and solution procedure is discussed for min-

imizing the total cost. Numerical examples are provided to illustrate the proposed model

in “Numerical Example” section. The model proved that the total cost function is con-

vex in “Graphical Proof for the Convexity of the Total Cost Function” section. Total cost

changes by changing for different values of parameters for the Weibull distribution pro-

vided in “Case Study” section. Sensitivity analysis of the optimal solution with respect to

major parameters of the system is carried out, and their results are discussed in “Sensitiv-

ity Analysis” section. The article ends with some concluding remarks and scope of future

research.

Notations and Assumption

This inventory model is developed on the basis of the following notations and assumption:

Notations

i. T = t1 + t2 : Length of the cycle.

ii. t1 : the time at which the inventory level reaches zero.

iii. t2 : the length of period during which shortages are allowed.

iv. I (t): the level of positive inventory at time t .

v. A: Ordering cost per order.

vi. Q: Order quantity of one cycle.

vii. c1: Unit cost of an item.

viii. c2: Shortage cost per unit per unit time.

ix. s: Lost sale cost per unit.

x. Q0 = IM: Maximum inventory level during (0, t1).

xi. IB: Maximum inventory level during the shortage period.

xii. TAC = Total average cost.
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Fig. 1 Rate of deterioration θ(t) versus time t for a two-parameter Weibull distribution

Assumptions

i. Lead time is zero.

ii. D(t) = a + bt + ct2, a ≥ 0, b �= 0, c �= 0 : Demand rate is time dependent, where

a is initial rate of demand, b is the rate with which the demand rate increases. The

rate of change in the demand rate itself increases at a rate c.

iii. h(t) = h + γ t : Holding cost h(t) per unit time is time dependent, where h > 0 and

γ > 0.

iv. θ(t) = αβtβ−1: Deterioration rate which follows a two parameter Weibull distrib-

ution, where 0 ≤ α << 1 is the scale parameter, β > 0 is the shape parameter and

0 ≤ θ(t) << 1. If 0 < β < 1 then θ(t) decreases with time; e.g. a light bulb where

the initial deterioration rate may be higher due to irregular voltages and handling.

If β = 1, then it is constant, e.g. electronic products, and when β > 1, then it

increases with time, e.g. volatile liquids and drugs. Rate of deterioration θ(t) versus

time t for this two parameter Weibull distribution is as shown in Fig. 1. It is seen in

Fig. 1 that the two-parameter Weibull distribution is appropriate for an item with a

decreasing rate of deterioration only if the initial rate of deterioration is extremely

high. Similarly, this distribution can also be used for an item with an increasing rate

of deterioration only if the initial rate is approximately zero. This deterioration may

also lead to a constant rate of deterioration. However, the case of the increasing rate

of deterioration with time is usually seen to hold in all the products and we have

considered this case in “Case Study” section.

v. Shortages are allowed. Unsatisfied demand is backlogged, and the fraction of short-

ages backordered is 1
1+δx

, where x is the waiting time up to the next replenishment

and δ is a positive constant. Therefore, if customers do not need to wait, then no

sales are lost, and all sales are lost if customers are faced with an infinite wait.

Mathematical Formulation and Solution Procedure

Given the assumptions mentioned before, the inventory level follows the pattern depicted in

Fig. 2. To establish the total relevant cost function, we consider the following time intervals
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Fig. 2 Graphical representation of the state of inventory system

separately, [0, t1) and [t1, t1 + t2). During the interval [0, t1), the inventory is depleted due

to the combined effects of demand and deterioration.

Hence, the inventory level is governed by the following differential equation:

d Q1(t)

dt
+ θ(t)Q1(t) = −D(t), 0 ≤ t ≤ t1. (1)

with the initial and boundary condition Q1(0) = Q0 and Q1(t1) = 0.

At time t1, the inventory level reaches zero and shortage occurs. During the stock out

period, some customers may be willing to wait for a shipping delay while others will leave

for another seller because of urgent need. For a customer who desires to purchase the goods at

the time t2 ∈ [t1, t1+t2), (t1+t2−t) represents the waiting time up to the next replenishment.

Hence, over the time interval [t1, t1+t2), the inventory level depends only on demand, some of

which is lost while a fraction 1
1+δ(t1+t2−t)

of the demand is backlogged, where t ∈ [t1, t1+t2).

The inventory level is governed by the following differential equation:

d Q2(t)

dt
= −

D(t)

1 + δ(t1 + t2 − t)
, t1 ≤ t ≤ t1 + t2. (2)

with the boundary condition Q2(t1) = 0.

The solutions of Eq. 1 can be written as follows:

Q1(t) = −e−αtβ

t1
∫

t

eαtβ
(

a + bt + ct2
)

dt + ce−αtβ , 0 ≤ t ≤ t1. (3)

Using boundary condition and expanding by Taylor’s series and neglecting small quantities

above the rest order, because α << 1 we get,
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c = Q0

=

(

at1+
bt2

1

2
+

ct3
1

3
+

aαt
β+1
1

β + 1
+

bαt
β+2
1

β + 2
+

cαt
β+3
1

β + 3
+ 2aαt

β+1
1 + bαt

β+2
1 +

2cαt
β+3
1

3

)

.

(4)

Similarly the solution of Eq. (2) can be written as:

Q2(t) =

[

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

]

log

[

1 + δ(t1 + t2 − t)

1 + δt2

]

×
b(t − t1)

δ
+

c(t − t1)

δ2

[

1 +
3δ(t1 + t2)

2

]

, t1 ≤ t ≤ t1 + t2. (5)

The maximum positive inventory is:

IM = Q0

=

(

at1+
bt2

1

2
+

ct3
1

3
+

aαt
β+1
1

β + 1
+

bαt
β+2
1

β + 2
+

cαt
β+3
1

β + 3
+2aαt

β+1
1 +bαt

β+2
1 +

2cαt
β+3
1

3

)

.

(6)

The maximum backordered units are:

IB = −I2(t1 + t2) = −

[{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

× log

[

1

1 + δt2

]

+
bt2

δ
+

3ct2
2

2δ
+

2ct1t2

δ
+

ct2

δ2

]

. (7)

Hence, the order size during [0, t1 + t2] is:

Q = IM + IB

=

[

at1+
bt2

1

2
+

ct3
1

3
+

aαt
β+1
1

β + 1
+

bαt
β+2
1

β + 2
+

cαt
β+3
1

β + 3
+ 2aαt

β+1
1 + bαt

β+2
1 +

2cαt
β+3
1

3

]

−

[{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

× log

[

1

1 + δt2

]

+
bt2

δ
+

3ct2
2

2δ
+

2ct1t2

δ
+

ct2

δ2

]

. (8)

The Holding cost during the time interval [0, t1] is:

HC =

t1
∫

0

h(t)Q1(t)dt =

t1
∫

0

(h + γ t)Q1(t)dt

⇒ HC =

t1
∫

0

(h + γ t)e−αtβ

t1
∫

t

(a + bu + cu2)e−αuβ

dudt.
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Since, α << 1 so taking the first two terms from the series expansion of the exponential

function and then integrating we get:

HC = aht2
1 +

bht3
1

2
+

cht4
1

3
+

ahαt
β+2
1

β + 1
+

bhαt
β+3
1

β + 2

+
chαt

β+4
1

β + 3
+

γ at3
1

2
+

γ bt4
1

2
+

γ ct5
1

3
+

γ aαt
β+3
1

β + 1

+
γ bαt

β+4
1

β + 2
+

γ cαt
β+5
1

β + 3
−

haαt
β+2
1

β + 1
−

hbαt
β+3
1

2

−
hcαt

β+4
1

3
−

γ aαt
β+3
1

β + 2
−

γ bαt
β+4
1

2(β + 2)
−

γ cαt
β+5
1

3(β + 2)
. (9)

The total shortage cost during interval [t1, t1 + t2] is:

SC = c2

t1+t2
∫

t1

−Q2(t)dt

⇒ SC = c2

[{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

×

{

t2 +
1

δ
log

[

1

1 + δt2

]}

−
t2
2

6δ2
[3bδ + 2cδ(3t1 + 2t2) + c]

]

. (10)

Due to stock out during (t1, t1 +t2), shortage is accumulated, but not all customers are willing

to wait for the next lot size to arrive. Hence, this results in some loss of sale which accounts

to loss in profit.

Lost sale cost is calculated as follows:

L SC = s

T
∫

t1

[

1 −
1

1 + δ(t1 + t2 − t)

]

(a + bt + ct2)dt

= s

[

δt2 + b

(

t1t2 +
t2
2

2
+

t2

δ

)

+ c

(

t2
1 t2 + t1t2

2 +
t3
2

2
+

2t1t2

δ
+

t2

δ2

)

+

{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

×

{

1

δ
log

[

1

1 + δt2

]}

. (11)

Purchase cost is as follows:

PC = c1 Q = c1

[

at1 +
bt2

1

2
+

ct3
1

3
+

aαt
β+1
1

β + 1
+

bαt
β+2
1

β + 2
+

cαt
β+3
1

β + 3

+2aαt
β+1
1 + bαt

β+2
1 +

2cαt
β+3
1

3

]

−c1

[{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

× log

[

1

1 + δt2

]

+
bt2

δ
+

3ct2
2

2δ
+

2ct1t2

δ
+

ct2

δ2

]

. (12)
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Total average cost is as follows:

TAC =
1

T
[OC + HC + SC + L SC + PC]

=
1

t1 + t2

[

A +

[

aht2
1 +

bht3
1

2
+

cht4
1

3
+

ahαt
β+2
1

β + 1
+

bhαt
β+3
1

β + 2

+
chαt

β+4
1

β + 3
+

γ at3
1

2
+

γ bt4
1

2
+

γ ct5
1

3

+
γ aαt

β+3
1

β + 1
+

γ bαt
β+4
1

β + 2
+

γ cαt
β+5
1

β + 3
−

haαt
β+2
1

β + 1
−

hbαt
β+3
1

2

−
hcαt

β+4
1

3
−

γ aαt
β+3
1

β + 2
−

γ bαt
β+4
1

2(β + 2)

−
γ cαt

β+5
1

3(β + 2)

]

+ c2

[{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

×

{

t2 +
1

δ
log

[

1

1 + δt2

]}

−
t2
2

6δ2
[3bδ + 2cδ(3t1 + 2t2) + c]

]

+ s

[

δt2 + b

(

t1t2 +
t2
2

2
+

t2

δ

)

+ c

(

t2
1 t2 + t1t2

2 +
t3
2

2
+

2t1t2

δ
+

t2

δ2

)

+

{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

×

{

1

δ
log

[

1

1 + δt2

]}]

+ c1

[

at1 +
bt2

1

2
+

ct3
1

3
+

aαt
β+1
1

β + 1
+

bαt
β+2
1

β + 2

+
cαt

β+3
1

β + 3
+ 2aαt

β+1
1 + bαt

β+2
1 +

2cαt
β+3
1

3

]

− c1

[{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

× log

[

1

1 + δt2

]

+
bt2

δ
+

3ct2
2

2δ
+

2ct1t2

δ
+

ct2

δ2

]

. (13)

To minimize the total cost TAC per unit time, the optimal value of t1 and t2 can be obtained

by solving the following equations:

∂(TAC)

∂t1
= 0

⇒ −
1

(t1 + t2)2

[

A +

[

aht2
1 +

bht3
1

2
+

aγ t3
1

2
+

cht4
1

3

+
bγ t4

1

2
+

cγ t5
1

3
−

bhαt
β+3
1

2
+

bhαt
β+3
1

β + 2
+

aαγ t
β+3
1

β + 1
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−
aαγ t

β+3
1

β + 2

chαt
β+4
1

3
+

chαt
β+4
1

β + 3
+

bαγ t
β+4
1

2(β + 2)
−

cαγ t
β+5
1

3(β + 2)
+

dαγ t
β+5
1

β + 3

]

+
1

t1 + t2

[

2aht1 +
3bht2

1

2
+

3aγ t2
1

2

+
4cht3

1

3
+ 2bγ t3

1 +
5cγ t4

1

3
−

bhα(β + 3)t
β+2
1

2
+

bhα(β + 3)t
β+2
1

β + 2

+
aα(β + 3)γ t

β+2
1

β + 1
−

aα(β + 3)γ t
β+2
1

β + 2
−

chα(β + 4)t
β+3
1

3

+
chα(β + 4)t

β+3
1

β + 3
+

bα(β + 4)t
β+3
1

2(β + 2)
−

cα(β + 5)γ t
β+4
1

3(β + 2)
+

cα(β + 5)γ t
β+4
1

β + 3

]

+
c1

t1+t2
[a+bt1 + ct2

1 + aαt
β
1 + 2aαt

β
1 + 2aα(β + 1)t

β
1 + bαt

β+1
1 + bα(β + 2)t

β+1
1

+ cαt
β+2
1 +

2cα(β + 3)t
β+2
1

3
−

2ct2

δ
− log

[

1

1 + δt2

] [

b

δ
+

2c(1 + δ(t1 + t2)

δ2

]

]

+
s

t1 + t2

[

bt2 + c

(

2t2

δ
+ 2t1t2 + t2

1

)

+ log

[

1

1 + δt2

] {

b

δ
+

2c[1 + δ(t1 + t2)]

δ2

}]

−
c1

(t1 + t2)
2

[

at1 +
bt2

1

2
+

ct3
1

3
+ 2aαt

β+1
1 +

aαt
β+1
1

β + 1
+ bαt

β+2
1 +

bαt
β+2
1

β + 2
+

+
2cαt

β+3
1

3
+

cαt
β+3
1

β + 3
−

ct2

δ2
−

bt2

δ
−

2ct1t2

δ
−

3ct2
1

2δ

− log

[

1

1 + δt2

] {

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}]

−
s

(t1 + t2)2

[

δt2 + b

(

t1t2 +
t2
2

2
+

t2

δ

)

+ c

(

t2
1 t2 + t1t2

2 +
t3
2

2
+

2t1t2

δ
+

t2

δ2

)

+

{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

×

{

1

δ
log

[

1

1+δt2

]}]

−
c2

(t1+t2)2

×

[

−
t2
2 (c + 3bδ + 2bδ(3t1 + 2t2))

6δ2
+

[

t2 +
a

δ
log

[

1

1 + δ

]]

×

{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}

= 0 (14)

and

∂(TAC)

∂t2
= 0

⇒ −
1

(t1 + t2)
2

[

A +

[

aht2
1 +

bht3
1

2
+

cht4
1

3
+

ahαt
β+2
1

β + 1
+

bhαt
β+3
1

β + 2

+
chαt

β+4
1

β + 3
+

γ at3
1

2
+

γ bt4
1

2
+

γ ct5
1

3
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+
γ aαt

β+3
1

β + 1
+

γ bαt
β+4
1

β + 2
+

γ cαt
β+5
1

β + 3
−

haαt
β+2
1

β + 1
−
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β+3
1

2

−
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1

3
−
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β+3
1
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γ bαt
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1

2(β + 2)
−

γ cαt
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1
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]

−
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2

[

at1 +
bt2

1

2
+

ct3
1

3
+ 2aαt

β+1
1 +

aαt
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1

β + 1

+ bαt
β+2
1 +

bαt
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1
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+

cαt
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1
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+
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1
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−
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−

bt2

δ
−
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δ
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2
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−
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a
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+
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+
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+
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+ c
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+
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+
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+
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a
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+
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δ2
+
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2

δ3
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a

δ
log

[

1

1 + δt2
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6δ2

]

×
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[
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)
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1

δ2
+
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[
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]

+
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δ
+

1

δ2
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−
δ

1 + δt2

{

a

δ
+
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δ2
+
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2
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+
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t1 + t2
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−
c

δ2
−

b

δ
−
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δ
−

3ct2

δ

− log

[

1

1 + δt2

]

+
b

δ
+

1

δ2
(2c(1 + δ(t1 + t2))
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+
δ
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{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3
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+
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t1 + t2
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−
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2

3δ
−

t2(c + 3bδ + 2cδ(3t1 + 2t2))

3δ2
+

[

a

δ
log

[

1

1 + δt2

]

+ t2

]

×

[

b

δ
+

2c[1 + δ(t1 + t2)]

δ2

]

+

(

1 −
a

1 + δt2

)

×

{

a

δ
+

b[1 + δ(t1 + t2)]

δ2
+

c[1 + δ(t1 + t2)]
2

δ3

}]

= 0 (15)
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Providing that Eqs. (14) and (15) satisfies the following conditions:
(

∂2(TAC)

∂t2
1

)

(

∂2(TAC)

∂T 2

)

−

(

∂2(TAC)

∂t1∂T

)2

>0,

(

∂2(TAC)

∂t2
1

)

> 0 and
∂2(TAC)

∂T 2
> 0.

The Eqs. (14) and (15) are highly nonlinear. They can be solved by Mathematica-9.0

software for a given set of known parameters. The obtained values of t1 and t2 must satisfy

the Eq. (13) to minimize the total average cost per time unit of the inventory system. The

total average cost function is highly nonlinear, thus the convexity of the function is shown

graphically in “Graphical Proof for the Convexity of the Total Cost Function” section. To

illustrate this we have given a numerical example and a sensitivity analysis in the following

sections.

Numerical Example

The proposed models are illustrated below by considering the following examples.

Example 1 The following numerical values of the parameter in proper unit were considered

as input for numerical and graphical analysis of the model, A = 80, a = 0.8, b = 0.6, c =

0.4, c1 = 0.2, c2 = 0.4, α = 0.4, β = 4, γ = 0.4, δ = 0.3, s = 0.3 and h = 0.6. The

values of different parameters considered here are realistic, though these are not taken from

any case study. Then the optimal solution is t∗1 = 1.16952, t∗2 = 4.72713. For these values

of t1 and t2, the second order derivative found to be ∂2(T AC)

∂t2
1

= 3.02049 > 0 and ∂2(T AC)

∂t2
2

=

1.08052 > 0,
∂2(T AC)

∂t1∂t2
= 1.00194 and ∂2(T AC)

∂t2
1

×
∂2(T AC)

∂t2
2

−

(

∂2(T AC)
∂t1∂T

)2
= 2.02246 > 0.

So the values of t∗1 and t∗2 are minimize the total average cost. Based on these input data, the

computed outputs Q∗ = 1.12811 and T AC∗ = 23.4766.

Graphical Proof for the Convexity of the Total Cost Function

If we plot the total cost function (13) with some values of t1 and t2 such that t1 is 0.6–1.7

and t2 is 2–9 then we get strictly convex graph of total cost function TAC given by the Fig. 5.

From Fig. 5, we observe that the optimal replenishment schedule uniquely exists and the

total average cost to the inventory system is a convex function. The convexity of the total

cost function TAC is shown in Fig. 3 with respect to t1 fixed at t2 = 4.72713. The convexity

of the total cost function TAC is shown in Fig. 4 with respect to t2 fixed at t1 = 1.16952. The

observation from Figs. 3 and 4, the total average cost function is a strictly convex function.

Thus, the optimum value of t1 and t2 can be obtained with the help of the total average cost

function of the model provided that the total inventory cost per unit time of the inventory

system is minimized (Fig. 5).

Case Study

From Example 1, When α = 0, i.e. the deterioration of the item is not considered and the

values of all other parameters remain the same, t∗1 = 1.137932, t∗2 = 4.51788 and the

minimum total cost T AC∗ = 23.38 is 0.4115 % less than that value when α = 0.4. If β = 1,
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Fig. 3 TAC vs. t1 at t2 = 4.72713
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Fig. 4 TAC vs. t2 at t1 = 1.16952

Fig. 5 TAC vs. t1 and t2
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Table 2 Sensitivity analysis based on changes of parameters

Parameter % Change t∗1 t∗2 TAC∗ (%) Change in TAC∗

A +50 1.20223 5.61633 29.758 26.756

+25 1.18745 5.20233 26.7306 13.8606

−25 1.14662 4.16204 19.9098 −15.193

−50 1.11466 3.4482 15.8644 −32.4246

a +50 1.73806 2.87735 31.9081 35.9145

+25 0.48494 3.69917 30.2394 28.8066

−25 0.479443 6.35384 17.6235 −24.9316

−50 0.443298 8.70754 10.8644 −54.4606

b +50 1.15017 4.59613 24.4408 4.1071

+25 1.15947 4.66079 23.9619 2.0659

−25 1.18039 4.79515 22.9846 −2.0957

−50 1.19217 4.8649 22.4859 −4.2199

c +50 1.2364 3.95645 26.7354 13.8811

+25 1.20697 4.29596 25.1888 7.2932

−25 1.12053 5.30585 21.5394 −8.2516

−50 1.05385 6.15705 19.2445 −18.0271

c1 +50 1.07844 4.71734 24.0251 2.3364

+25 1.11887 4.72656 23.7544 1.1833

−25 1.23782 4.71189 23.1891 −1.2246

−50 1.3451 4.66044 22.8858 −2.5165

c2 +50 1.45187 3.58315 27.9021 18.8507

+25 1.33784 4.07269 25.8522 10.119

−25 0.837062 5.7293 20.6314 −12.1193

−50 0.0863749 7.48302 16.9027 −28.0019

α +50 1.11131 4.78563 23.5052 0.1218

+25 1.13836 4.75842 23.4918 0.0647

−25 1.20612 4.69043 23.4589 −0.0754

−50 1.25029 4.64626 23.4381 −0.164

β +50 1.11981 4.77419 23.4826 0.0256

+25 1.14328 4.75196 23.4797 0.0132

−25 1.19688 4.70133 23.4738 −0.0119

−50 1.22254 4.6774 23.4728 −0.0162

γ +50 1.08896 4.80946 23.5248 0.2053

+25 1.12593 4.77163 23.5024 0.1099

−25 1.22308 4.67267 23.4458 −0.1312

−50 1.29394 4.6011 23.4076 −0.2939

δ +50 0.473094 6.26416 19.2566 −17.9753

+25 0.863775 5.2178 20.8957 −10.9858

−25 1.49917 3.64649 28.3627 20.8126

−50 1.90379 1.91037 38.9295 65.8226

s +50 0.811419 5.24758 22.4984 −4.1667

+25 1.03932 4.93388 23.0115 −1.9811
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Table 2 continued

Parameter % Change t∗1 t∗2 TAC∗ (%) Change in TAC∗

−25 1.26297 4.5619 23.9097 1.8448

−50 1.33615 4.42032 24.3181 3.5844

h +50 1.43374 4.75677 23.6752 0.8459

+25 1.14582 4.75492 23.5136 0.1576

−25 1.18917 4.70293 23.4385 −0.1623

−50 1.20539 4.6818 23.3997 −0.3276
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Fig. 6 Behaviour of optimal average total cost

i.e. the deterioration of the item is constant and the values of all other parameters remain

the same, t1∗ = 1.24232, t∗2 = 4.65972 and the minimum total cost T AC∗ = 23.4769

is 0.0013 % higher than that value when β = 4. If β = 0.4, i.e. the deterioration of the

item is decreasing and the values of all other parameters remain the same, t∗1 = 1.24784,

t∗2 = 4.65602 and the minimum total cost T AC∗ = 23.4859 is 0.396 % higher than that

value when β = 4. It is noted that when α = 0 (i.e. deterioration of the item is not considered

at all), the total average cost of the system is less than that under a two parameter Weibull

distribution deterioration. But when β = 1 (i.e. deterioration rate of the item is constant), the

total average cost of the system is greater than that under a two parameter Weibull distribution

deterioration. Therefore, Weibull distribution deterioration is more applicable than constant

deterioration.

Sensitivity Analysis

Based on above Example 1, we have performed sensitivity analysis by changing one parameter

at a time by ±25 and ±50, and keeping the remaining parameters at their original values.

Table 2 summarize the results.

Based on the results of Table 2, the following observations can be made.
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Fig. 7 Behaviour of optimal average total cost

Fig. 8 Q vs. t1 and t2

(i) An increase on the values of the parameters A, a, b, c, c1 and c2 will result to an increase

on TAC∗ (Fig. 6).

(ii) An increase in the values of the parameter δ and s will result to an decrease on TAC∗

(Fig. 7).

(iii) An increase in the values of the parameters α, β, γ s and h will result in slightly increase

in TAC∗.

The graphical representation of Q vs. t1 and t2 of the Example 1 is shown in Fig. 8. From

Fig. 8, we can observe, when t1 and t2 increases then Q increase.
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Conclusion

This paper presents an inventory model of direct application to the business enterprises that

consider the fact that the storage item is deteriorated during storage periods and in which

the demand, deterioration, and holding cost depend upon the time. In the present paper

an economic ordered quantity model has been developed for an item with two parameter

Weibull deterioration where shortages are allowed and the demand are partially backlogged.

The optimal cycle time and total optimal average cost have been derived from the model.

It can be concluded that to minimize the total average cost, it is required to minimize the

ordering cost, purchase cost, holding cost, shortage cost, the cost of lost sales per unit,

the demand rate, backlogging parameter, scale parameter and shape parameter. From “Case

Study” section, it can be observed that Weibull distribution deterioration is more applicable

than constant deterioration. From this paper the outcomes show that, (i) Weibull distribution

deterioration is more applicable than constant deterioration and makes the scope of its broader

application. (ii) When the value of demand factor a, b and c increases and other parameters’

values are fixed, it can be observed that the optimal total cost per unit time increase. This

implies that when the demand factor a, b and c is increasing, the market demand rate will

increase, which in turn make the enterprises increase the order quantity pre replenishment

cycle and shorten the replenishment cycle to meet the increasing market need. Moreover the

enterprises will make the selling price higher to obtain more profit. (iii) If the backlogging

parameter δ is increased then the total cost will be decreased. That is, in order to minimize

the cost, the retailer should increase the backlogging parameter. Sensitivity analysis shows

how the different parameters affect the optimal cycle time and total optimal average cost.

Finally, the proposed model has been verified by the numerical and graphical analysis. The

obtained results indicate the validity and stability of the model. The proposed model can

further be enriched by taking more realistic assumptions, such as finite replenishment rate,

demand can be considered as a ramp type or trapezoidal type or probabilistic, multi-item

inventory models, deterioration can be considered as a three parameter Weibull distribution,

etc.
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