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This paper deals with singularly perturbed boundary value problem for a linear second
order delay differential equation. It is known that the classical numerical methods are not satisfac-
tory when applied to solve singularly perturbed problems in delay differential equations. In this
paper we present an exponentially fitted finite difference scheme to overcome the drawbacks of
the corresponding classical counter parts. The stability of the scheme is investigated. The proposed
scheme is analyzed for convergence. Several linear singularly perturbed delay differential equations

have been solved and the numerical results are presented to support the theory.
© 2015 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Singular perturbation problems arise very frequently in fluid
dynamics, elasticity, aerodynamics, plasma dynamics, magneto
hydrodynamics, rarefied gas dynamics, oceanography and
other domains of the great world of fluid motion. An overview
of some existence and uniqueness results and applications of
singularly perturbed equations may be obtained from [1-4].
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Various approaches to the design and analysis of approximate
numerical methods for singularly perturbed differential equa-
tions can be found in [5-8] and the references cited in them.
Delay differential equations arise widely in various applica-
tion fields and are also described in technical devices like con-
trol circuits. Nowadays the delay differential equations are
ubiquitous in various branches of bioscience and control
theory: ecology, chemostat systems, epidemiology, immunology,
compartmental studies, neutral network and the navigational
control of ships and aircraft (with respectively large and short
lags) and in more general control problems [9-21]. Any system
involving a feedback control will almost always involve time
delays. These arise because a finite time is required to sense
information and then to react to it. Delay differential equa-
tions are of the retarded type if the delay argument does not
occur in the highest order term. If we restrict this class in which
the highest order term is multiplied by a small parameter, then
we get singularly perturbed delay differential equations of
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retarded type. The numerical study of second order singularly
perturbed differential-difference equation with small shift or
delay has been given in [22-38] and references therein.

Amiraliyev and Cimen [39] have given an exponentially fit-
ted difference scheme on a uniform mesh for singularly per-
turbed boundary value problem for a linear second order
delay differential equation with a large delay in the reaction
term. Subburayan and Ramanujam [40] presented an initial
value technique to solve singularly perturbed boundary value
problem for the second order ordinary differential equations
of convection—diffusion type with a delay. They also developed
an asymptotic initial value technique to solve singularly per-
turbed boundary value problem for the second order ODE
with the discontinuous convection—diffusion coefficient term
[41].

In this paper we present an exponentially fitted finite differ-
ence scheme to solve singularly perturbed delay differential
equation of second order with a large delay. For many singular
perturbation problems a reduced problem is well defined and
known a priori. We used Runge—Kutta method to solve the
reduced problem. A condition at x = 1 is obtained by approx-
imating the solution at x = 1 by the solution of the reduced
problem at the same point. A fitting factor is introduced in a
finite difference scheme and is obtained from the theory of sin-
gular perturbations. The stability of the scheme is investigated.
The proposed scheme is analyzed for convergence. Several lin-
ear singularly perturbed delay differential equations have been
solved and the numerical results are presented to support the
theory.

2. Exponentially fitted finite difference method

To describe the method, we consider a singularly perturbed
boundary value problem for the delay differential equation
of the form:

—&)"(x) + a(x)y'(x) + b(x)y(x — 1) = f(x),x € [0,2] (1)
subject to the interval and boundary conditions,

3(x) = (). x € [1,0]
W2) =B, @)

where 0 < & <<1 and a(x) = o> 0,0 < b(x) < 0,a(x),b(x),
f(x) are given sufficiently smooth functions on [0,2], ¢(x) is
smooth function on [—1,0] and f is a given constant which is
independent of &. For small values of ¢, the boundary value
problem (1) along with (2) exhibits a strong boundary layer
at x =2 (c.f. [12]).

The linear ordinary differential equation (1) cannot, in gen-
eral, be solved analytically because of the dependence of
a(x),b(x) and f(x) on the spatial coordinate x. We divide the
interval [0,2] into 2N equal parts with constant mesh length
h. Let 0= X0y X1yeuey XN = 17)CN+1,XN+2., ey XN = 2 be the
mesh points. Then we have x; = ih;i=0,1,2,...,2N. If we
consider, the interval [x;_;,x;] and the coefficients of Eq.
(1) are evaluated at the midpoint of each interval, then we will
obtain the differential equation

—&)"(x) + @y (x) = f; = biy(x; = 1),
The analytical solution of Eq. (3) is of the form

Xio) < X < Xiyp. (3)

al-y) X
y(x)=A4;+Bie 7 +

—biy(x;— 1)), x1<x<xi1, (4)

where A;, B; are arbitrary constants. We obtain the arbitrary

constants A4; and B; using the conditions y(x._;)=
Viet: V(%) = i ¥(Xi1) = Vg
From (4) we have,
L17A+Be”——U—hﬂ - 1), (5)
Vi = A +B€ + [f b,y( i )} and (6)
yi=Ai+ B, (7)
Now, we have
aih
t+l 2yt+yzl_B(6472+e*)'
Therefore,
2.
B =y (8)
e —2+
Since, 4; =y, — B;, we have
<€ Cte )yi = i1 +2i01)
A= ah aih . (9)
e —2+e=
Substituting (8) and (9) in (4), we get
ajh —ajh aj(x—x;) aj(x—x;)
(eT +ew —2e = )yi + (e - — 1>(yl-+1 + i)
y(x) = il —ah
e —2+e
()C — X,‘) .
+ —_[fi —biy(x; — 1)].
(10)
From (10), we have
(¢ -2 (% 1) +300
y(xi—l) = ah aih
er —24e=
h
——M—hﬂM—UL
aih —aih
er e —2et e'—ly, + )
y(-xi+l) — ( (,I/,) [ — ]( i+1 )
T — 2 -+ eT
h .
+*[fi — biy(xi — 1)]
a;
Therefore, we have
Vien =20t Vi (o w
s =5 =B (2 )
e —2+4e
+;[f;'_biy(xi_ 1)]. (11)

Now, to find the solution in [0, 2], we consider the second order
finite difference scheme

V(xip1) = 29(xi) + p(xio1)
~aalo) . )
y(xip1) — y(xi1)
+ a(x;) <T)
= fx;) = b(x)y(xi — 1)+ O(h), 1 <i<2N—1 (12)

where o(p) is a fitting factor which is to be determined in such
a way that the solution of (12) converges uniformly to the solu-
tion of (1), (2) and p =%
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We consider 4 = O(¢) i.e., L is finite.
Substituting (11) in (12), we get

ea(p) ai (Vo — 20+ Vi ( ah 4)
M 2y 4y, G (L T i (R
hZ (y1+1 yl+.}171)+2h( e#’—zﬁ—e# e e
2h
+;[ﬂ =biy(x; = D] ) =f; = biy(xi — 1)
)
. '7_h—2(yi+] =2y, +yi)

. =2y, ). ah aih
+ Za—;l (yili,lh Y +iﬁl) (eT/ —e /) =0
ev —2+e

which implies

ail —ait
ea(p)  a; er —e
2 T AL aih “ah |
h 2h e — 2+ e

_ap ap _ﬁ
a(p) = > Coth< > ) where p = . (13)

which is the required fitting factor.

2.1. Numerical algorithm

Step 1. We obtain the reduced problem by setting ¢ = 0 in Eq.
(1) with the appropriate interval condition. Let y,(x) be the
solution of the reduced problem of (1), (2), i.e.;

a(x)y(x) + b(x)ye(x — 1) = f(x) (14)

with y,(x) = ¢(x),—1 < x < 0. (15)

We solve (14), (15) by using Runge-Kutta method in
0<x< 1.

We consider y,(1) = y.

Step 2. To obtain the solution in 0 < x < 1, we consider the
numerical scheme from (12) which is of the form

Efyi*liﬂyi+Giyi+l :th <l<N71, (16)
with the boundary conditions

Yo = ¢(O) and Yn=7"

where

&0 a;
Ei_ﬁ—i_ﬂ’

2e0
E:77

&g a;
G,’—h—zfz—h, and

H; = —f; + bip(xin).

Similarly, to obtain the solution in 1 < x < 2, we consider the
numerical scheme from (12) which is of the form

Eiyjfl_Eyi+Giyi+1:Hi7N+l<i<2N_17 (17)

with the boundary conditions
yy=7vand y,y =,

where
&0 a;
Ei =75 PYR
W + 2h

3
2e0
E:77
&0 a; .
G,‘—F—ﬂ, and

H; = ~f; + biy(xi_y).

This gives us the tridiagonal systems which can be solved easily
by Thomas algorithm.

3. Thomas algorithm

We briefly discuss the Thomas algorithm to solve the tridiago-
nal system:

Ey, ,—Fy,+Gy,, =H; i=1273...... ,N—1 (18)
subject to the boundary conditions

yo = ¢(0); (19a)
yy =y(xn) = 7. (19b)

Weset y, =Wy, +Tifori=N—-1,N-2,...,2,1. (20)

where W; = W(x;) and T; = T(x;) which are to be determined.
From (20), we have

Vir = Wi+ Tir. (21)

Substituting (21) in (18), we have

E(Wiiy;+ Tim) — Fiy; + Gy, = H,.

G ET,  — H;
R LA B it 22
RN (F[—E[W,-,])yHI+<F,'—E,'W;71 ( )

By comparing (22) and (20), we get the recurrence relations

G
A 23¢
Wi (F,- —E,-ml) (23a)
ETi . — H;
Ti=—r——]. 2
(F; —E Wi—l) (23b)
To solve these recurrence relations for i =0,1,...,N—1, we

need the initial conditions for W, and T,. For this we have
vo = ¢(0) = Woy, + Tp. If we choose W, =0, then we get
Ty = ¢(0). With these initial values, we compute W; and T;
fori=1,2,...,N—1 from (23) in forward process, and then
obtain y; in the backward process from (20) and (19b).

4. Stability analysis

We will now show that the algorithm is computationally
stable. To check the stability of the proposed scheme, we fol-
low Smith [42] and Turgut Ozis and Utku Erdogan [43]. By
stability, we mean that the effect of an error made in one stage
of the calculation is not propagated into larger errors at later
stages of the calculations. Let us now examine the recurrence
relation given by (23a). Suppose that a small error e;,_; has
been made in the calculation of W,_;; then, we have
Wi_y = Wi_, + ei_; and we are actually calculating

— G,
7 (%), -
Fi— EW,
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From (24) and (23a), we have
o G, B G,
C\FE - E(Wi +ein) Fi— EiWi_,

N ( GiEe; )
(F, — E,-(VV,-,l + €,'71))(Fi - EiVVi—l)

W2E,
=( a3 )e,-,l (25)

under the assumption that the error is small initially. From the
assumptions made earlier that a(x) > 0, we have

|F| > |E+Gl; i=1,23,....... 2N -1

From (23a) we have.

G .
24} =21 1, since F| > Gj.

F

G, G, .

W, = < ; since W < 1
T ER-EW, FE-E e

G, .
<———=1; since F, = E, + G,.
Bt G, E 2 2 2

successively, it follows that

E;
led = Wi G lei-1]
Making use of the condition |W;| < 1,i=0,1,2,....... ,2N

—1 it follows that

|€[| < |€,‘,] |

Therefore the recurrence relation (23a) is stable. Similarly we
can prove that the recurrence relation (23b) is also stable.
Finally the convergence of the Thomas algorithm is ensured
by the condition |W;| <1, i = 1,2,3,....,.2N — 1.

5. Convergence analysis

Multiplying the Eq. (16) by ”I—z we get
(0 wyiy = Qo+ )+ (0 + Wy + g+ T =0 (26)

where
ah aih W
Ui =0 Vi =0, w= 2 gf—?(f;*b[(ls(xiw))

Incorporating the boundary conditions y, = ¢(xy) = ¢(0), yy
=y we obtain the system of equations in the matrix form as

(D+P)y+M+Th)=0 (27)
where
—2¢ o 0 0 7
6 —20 o 0
D =[o,-20,0]=| 0
L 0 0 ¢ 20

rvi w0 ... 0 7
Uy va Wy ... 0
and P = [u,v,w]=| 0
LO ... 0 uyi wvy_il

are  tridiagonal matrices of order N-—1, and

M= [gl + (o + “1)¢(0)>g2yg37 <o 8N-2:8N-1 T (U + WNfl)’/}Ty
T(h)=0(K) and y=[y,py...yx4]", T(h) = [T\, T,

.. TN,I]T,O =[0,0,..., O]T are the associated vectors of
Eq. (27).
Let Y =[Yy, Ys,..., YN,I}T = y which satisfies the equation

(D+P)Y+M=0 (28)

Lete; =Y, —y,i=1,2,...,N—1 be the discretization error
so that

E= [61762,,..8N,|]T: Y—y.
Subtracting Eq. (27) from Eq. (28) we get
(D+ P)E = T(h). (29)

Let |al‘| <K
Let p;; be the (i,j)th element of the matrix P, then

‘pi1i+l‘:‘wf|<h£; i=1,2,...,N=-2 (30a)

\p,-ﬁ,-fl\:\u,-|<hz—li; i=2,3...,N-1 (30b)
Thus for sufficiently small 4 (i.e., as # — 0), we have

o+ |pnl #0,i=1,2,...,N=-2 (31a)

o+ piiq|#0,i=23,...,N—1 (31b)

Hence, the matrix (D + P) is irreducible [44].
Let S; be the sum of absolute values of the elements of the
ith row of the matrix (D + P), then.

Si=|—oa|+|wlfori=1
S = lul + b for =23, N 2
S;=|—a|+|u| fori=N-1

Let K, = min |g,K* = max |4 then 0 < K, < K< K",
1<iKN-1 I<i<KN-1

For sufficiently small A, (D + P) is monotone [44.45]. Hence
(D + P)"" exists and (D + P)”' > 0.

From the error Eq. (29) we have ||E|| < [|(D+ P)""| - ||T].

For sufficiently small 4, we have

K Ko\ K .
S > h(z—s coth <7) +2—8> > hQ, fori=1 (32a)
where O, = £ coth (82) + £

K .

Si>h?>hQ2 fori=2,3,...,N-2 (32b)
where 0, = £

K Kp\ K .
S,' > h(% coth (7) +%) > th fori=N-1 (32C)
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Table 1 Numerical results of Example 1 for different values of perturbation parameter e.

el N — 32 64 128 256 512 1024

P 5.1552e—004 1.4652e—004 3.7888e—005 9.5547e—006 2.3939e—006 5.9883e—007
70 7.5922e—004 2.6637e—004 7.5145e—005 1.9455e—005 4.9061e—006 1.2292e—006
=7 8.3676e—004 3.8575¢—004 1.3534e—004 3.8180e—005 9.8729¢—006 2.4898¢—006
=4 8.4092¢—004 4.2513e—004 1.9441e—004 6.8209¢—005 1.9242e—005 4.9774e—006
Y 8.4093e—004 4.2724e—004 2.1425e—004 9.7588e—005 3.4253e—005 9.6682e—006
2-10 8.4093e—004 4.2725e—004 2.1532e—004 1.0755e—004 4.8915e—005 1.7177e—005
=1l 8.4093¢—004 4.2725¢e—004 2.1532e—004 1.0808e—004 5.3879¢—005 2.4506e—005
o-12 8.4093e—004 4.2725e—004 2.1532e—004 1.0808e—004 5.4147e—005 2.6966e—005
=13 8.4093e—004 4.2725e—004 2.1532e—004 1.0808e—004 5.4148e—005 2.7100e—005
=18 8.4093¢—004 4.2725e—004 2.1532e—004 1.0808e—004 5.4148¢—005 2.7100e—005
EN 8.4093e—004 4.2725e—004 2.1532e—004 1.0808e—004 5.4148e—005 2.7100e—005
RN 9.7692e—001 9.8860e—001 9.9433e—001 9.9717e—001 9.9859¢—001 9.9931e—001

Table 2 Numerical results of Example 2 for different values of perturbation parameter .

e N — 32 64 128 256 512 1024

29 2.0741e—002 5.4962e—003 1.3953e—003 3.5024e—004 8.7651e—005 2.1918e—005
20 3.5344e—002 1.0725¢—002 2.8528e—003 7.2423e—004 1.8177e—004 4.5489e—005
27 4.5585e—002 1.8006e—002 5.4949e—003 1.4561e—003 3.6979e—004 9.2808e—005
= 4.7271e—002 2.3160e—002 9.1484e¢—003 2.7805¢—003 7.3682e—004 1.8705e—004
= 4.7302e—002 2.4016e—002 1.1672e—002 4.6105¢e—003 1.3988e—003 3.7082e—004
P 4.7302e—002 2.4033e—002 1.2104e—002 5.8590e—003 2.3143e—003 7.0214e—004
g1 4.7302e—002 2.4033e—002 1.2112e—002 6.0756e—003 2.9352e—003 1.1594e—003
p=12 4.7302e—002 2.4033e—002 1.2112e—002 6.0797e—003 3.0438e—003 1.4691e—003
2= 4.7302e—002 2.4033e—002 1.2112e—002 6.0797e—003 3.0458e—003 1.5234e—003
= 4.7302e—002 2.4033e—002 1.2112e—002 6.0797¢—003 3.0458e—003 1.5244e—003
EY 4.7302e—002 2.4033e—002 1.2112e—002 6.0797e—003 3.0458e—003 1.5244e—003
RY 9.7692e—001 9.8860e—001 9.9433e—001 9.9717e—001 9.9859¢—001 1.0003e + 000

Let (D+P);kl be the (i,k)th element of (D+ P)”' and we
define
I+ P)'| =  max

<i<KN—-1

i (D+ P and || T(R)] =
max;cicy-1|Ti-

Since (D + P):,\l >0 and SV (D +P)[,(l Sy =1 for
i=1,2,...,N—1, we have,

11
(D+P); <o <7~ fork=1.

Sk hO,
(D+P)ji <4<z fork=N—1.
Further ,]:L:;(D + P),.__’,(1 < ﬁ < ﬁ for i=2,3...,
N_ 2. 2<k<N=-2

From the error Eq. (29), using Eq. (32) we get

1|1 1
Il = ‘Q—l+—+— x O(I*) = O(h). (33)

1

0, 0
This establishes the first order convergence of the finite differ-
ence scheme (16). From Eq. (33) it can be observed that the
proposed method is e-uniformly convergent, since the error
|E|| = C-h, where C is independent of the perturbation
parameter é&.

Remark. A similar analysis for convergence may be carried
out for finite difference scheme (17).

6. Numerical examples

To demonstrate the applicability of the method we consider
four boundary value problems of singularly perturbed linear
differential difference equations exhibiting boundary layer at
the right end of the interval [0,2]. These problems were widely
discussed in the literature. Since the exact solutions of the
problems are not known, the maximum absolute errors for
the examples are calculated using the following double mesh
principle

N _ N __ 2N
EY = max |y} — 3]
For a value of N, the e-uniform maximum absolute error is cal-
culated by the formula
EY = max E}.
The numerical rate of convergence for all the examples has
been calculated by the formula

_ log|EY/E|

RN
log?2

Example 1 [40, p. 247]. Consider the following singularly
perturbed delay differential equation
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Table 3 Numerical results of Example 3 for different values of perturbation parameter &.

e N — 32 64 128 256 512 1024

2= 1.4272e—003 6.2958e—004 2.0947e—004 5.7659e—005 1.4802e—005 3.7252e—006
2= 1.4424e—003 7.2567e—004 3.1741e—004 1.0583e—004 2.9132e—005 7.4754e—006
=7 1.4425e—003 7.3344e—004 3.6586e—004 1.5976e—004 5.3246e—005 1.4646e—005
7= 1.4425e—003 7.3349e—004 3.6978e—004 1.8369e—004 8.0213e—005 2.6706e—005
2= 1.4425e—003 7.3349e—004 3.6981e—004 1.8566e—004 9.2033e—005 4.0190e—005
=11 1.4425¢—003 7.3349¢e—004 3.6981e—004 1.8567e—004 9.3020e—005 4.6064¢—005
p="1 1.4425¢—003 7.3349¢—004 3.6981e—004 1.8567e—004 9.3026e—005 4.6558e—005
=12 1.4425e—003 7.3349e—004 3.6981e—004 1.8567e—004 9.3026e—005 4.6561e—005
O 1.4425e—003 7.3349e—004 3.6981e—004 1.8567e—004 9.3026e—005 4.6561e—005
=1 1.4425e—003 7.3349e—004 3.6981e—004 1.8567e—004 9.3026e—005 4.6561e—005
EN 1.4425e—003 7.3349e—004 3.6981e—004 1.8567e—004 9.3026e—005 4.6561e—005
RV 9.7574e—001 9.8801e—001 9.9404e—001 9.9703e—001 9.9852e—001 9.9926e—001

Table 4 Numerical results of Example 4 for different values of perturbation parameter .

el N — 32 64 128 256 512 1024

2-3 1.9126e—004 6.2523e—005 1.7063e—005 4.3683e—006 1.0987¢—006 2.7510e—007
2-6 2.2400e—004 9.7185e—005 3.1769e—005 8.6781e—006 2.2223e—006 5.5895e—007
27 2.2703e—004 1.1381e—004 4.8981e—005 1.6049¢—005 4.3824e—006 1.1219¢—006
-8 2.2705¢e—004 1.1535¢—004 5.7355e—005 2.4657e—005 8.0719¢—006 2.2029¢—006
279 2.2705e—004 1.1536e—004 5.8131e—005 2.8790e—005 1.2377e—005 4.0479¢—006
2-10 2.2705e—004 1.1536e—004 5.8136e—005 2.9180e—005 1.4423e—005 6.2006e—006
o-1 2.2705e—004 1.1536e—004 5.8136e—005 2.9182e—005 1.4618e—005 7.2188e—006
o-12 2.2705e—004 1.1536e—004 5.8136e—005 2.9182e—005 1.4620e—005 7.3164e—006
13 2.2705¢—004 1.1536e—004 5.8136e—005 2.9182e—005 1.4620e—005 7.3171e—006
n-14 2.2705¢—004 1.1536e—004 5.8136e—005 2.9182e—005 1.4620e—005 7.3171e—006
EN 2.2705e—004 1.1536e—004 5.8136e—005 2.9182¢—005 1.4620e—005 7.3171e—006
RY 9.7692¢—001 9.8860e—001 9.9433e—001 9.9717e—001 9.9859¢—001 9.9930e—001
Table 5 Comparison of maximum error for Example 1.

Method N = 64 N =128 N =256 N =512 N = 1024
Present method 4.2725e—004 2.1532e—004 1.0808¢—004 5.4148e¢—005 2.7100e—005
Subburayan & Ramanujam [40] 7.8585e—004 2.7331e—004 8.5983e—005 2.6631e—005 8.2968e—006

&y (x) =3y (x) + y(x = 1) =0,
y(x)=1,-1<x<0, y(2)=2.

The numerical results are presented in Table 1 for different
values of perturbation parameter .

The exact solution of this problem is given by
1+¢[exp (&) — 1] +%; x€0,1],

02+§+(XI;>_+%—%—%exp (M)

3

yx)=
Fexp <3(xs—2)> [%,%752+%+%exp (@], xe1,2],

where

C1

on () -
o) [ )+ F e () —ew (9]

_I-Rexp(F) +Eexp () -5
1 —exp ()

sl —ent) el

e ()

For this Example, the numerical solution and the exact solu-
tion for ¢ = 27° are plotted in graphs, shown in Fig. 1.

To show the layer behaviour of the solution, the numerical
solution has been plotted for Example 1 for e = 27,2710 2713,
shown in Fig. 2.

It has been observed that the thickness of the boundary
layer reduces to zero as the perturbation parameter ¢ — 0.

Example 2 [40, p. 247]. Consider the following singularly
perturbed delay deferential equation

&)"(x) = 2)/(x) + 5y(x = 1) = 0,
y(x)=1,-1<x<0, y(2)=2.

The numerical results are presented in Table 2 for different
values of perturbation parameter .

Example 3 [40, p.247]. Consider the following singularly
perturbed delay deferential equation

/() — (x -+ 10)(x) + v(x — 1) = —x,
y(x)=x,-1<x<0, y2)=2.
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Table 6 Comparison of maximum error for Example 2.
Method N = 64 N = 128 N = 256 N = 512 N = 1024
Present method 2.4033e—002 1.2112e—002 6.0797e—003 3.0458e—003 1.5244e—003
Subburayan & Ramanujam [40)] 2.0157e—002 7.0103e—003 2.2055e—003 6.8308e—004 2.1281e—004
Table 7 Comparison of maximum error for Example 3.
Method N = 64 N =128 N = 256 N = 512 N = 1024
Present method 7.3349e—004 3.6981e—004 1.8567e—004 9.3026e—005 4.6561e—005
Subburayan & Ramanujam [40] 2.6473e—003 8.3944e—004 2.5834e—004 8.0254e—005 2.4315e—005
Table 8 Comparison of maximum error for Example 4.
Method N = 64 N =128 N = 256 N =512 N = 1024
Present method 1.1536e—004 5.8136e—005 2.9182e—005 1.4620e—005 7.3171e—006
Subburayan & Ramanujam [40] 6.2066e—004 1.9525e—004 6.0439¢—005 1.8797e—005 5.6409¢—006
2 = 2 —e=2"
ey 3y ~y(x-1)=0; — Numerical Solution = T
18l ﬁ;g:flsxg 0: —— Exact Solution g 181 72:;'5 J
2 16} 1 = L6} T
S : 1}
L 14} , 8 14t |
2
1.2} i 2 12} |
1 ! ! ! ! ! ! ! ! !
s 05 " 13 > 0 02 04 06 08 1 12 14 L6 18 2
x-axis X
Fig. 1 Graph of exact solution and numerical solution of Fig. 2 Graph of numerical solution of Example 1 for

Example 1 for ¢ =27,

The numerical results are presented in Table 3 for different
values of perturbation parameter .

Example 4 [40, p. 247]. Consider the following singularly
perturbed delay deferential equation

, L C(-L0<x<1
/() = 5y + gyt - 1) = { ST

y(x)=1,-1<x<0, y(2)=2.

The numerical results are presented in Table 4 for different
values of perturbation parameter e.

We compared our results with the results available in [40]
for Examples 1-4 and are tabulated in Tables 5-8 respectively.
The method that is proposed in [40] is an initial value tech-
nique. It is having slightly higher rate of convergence than
the proposed method, but it is not a uniformly convergent
method with respect to the perturbation parameter &. Our
aim is to propose a numerical scheme which converges uni-
formly with respect to the perturbation parameter ¢ and has
been achieved.

g=2752710 215,

7. Discussion and conclusions

In this paper we present an exponentially fitted finite difference
scheme to solve singularly perturbed delay differential equa-
tion of second order with a large delay. The convergence anal-
ysis of the scheme has been derived and is found that the
present method converges uniformly of order one with respect
to the perturbation parameter ¢. The numerical rate of conver-
gence is also calculated and is found that the theoretical rate of
convergence is matching with that of numerical rate of conver-
gence. We have implemented the present method on four linear
examples with right-end boundary layer by taking different
values ofe. Numerical results are presented in tables. From
the results, it can be observed that as the grid size i decreases,
the maximum absolute errors decrease, which shows the con-
vergence to the computed solution. To show the layer
behaviour of the solution, the numerical solution has been
plotted for Example 1 for =27 27" 2715 It has been
observed that the thickness of the boundary layer reduces to
zero as the perturbation parameter ¢ tends to zero. On the
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basis of the numerical results of a variety of examples, it is
concluded that the present method offers significant advantage
for the linear singularly perturbed differential difference
equations.
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