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INTERVAL INTEGER TRANSPORTATION PROBLEMS
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Abstract: A new method namely, the mid-width method, is psgmb herein for finding the
optimal interval solution to an interval biomeditansportation problem in which shipping cost,
supply and demand parameters are real intervais niiti-width method is an exact method and
is developed on two independent transportationlpro® which are obtained from a fully integer
transportation problem. A numerical example inftalel of pharmaceutical logistics is presented
for understanding the solution procedure of thegested method. Furthermore, the proposed
method is extended to fuzzy transportation problems

Keywords. Transportation problem, Real intervals, Mid-widthethnod, Optimal interval
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1. Introduction

Solving the interval transportation problem, reskars have divided the problem into
two sub-problems namely, upper and lower levekthir the upper level problem is solved and
after that, the lower level problem with upper bowonstraints on the decision variables is
solved. This concept motivated us to develop tlp@sed methodology.

Several well-organized techniques for solving tpam&ation problems with the
assumption of precise source, destination paramate penalty factors were established. In
real-life models, these conditions may not always folfiled. To deal with imprecise
coefficients in transportation problems, many redears [4-6,8-10,18,20] have proposed fuzzy
and interval programming techniques for solvingrthé new method viz., the fuzzy technique
is used to solve an interval transportation problém considering the right bound and the
midpoint of the intervals was proposed by Das ¢6jalSengupta and Pal [18] presented a new
fuzzy orientation method for solving interval trapstation problems by considering the
midpoint and width of the interval in the objectiftenction. Palmer et al. [11] demonstrated an
efficient method for solving optimal stopping prebs with a probabilistic constraint, in to
which they have optimized the expected cumulatog,dout constrained by an upper bound on
the probability that the cost exceeds a specifiedshold. A new method called, the separation
method was developed to solve integer intervalspartation problems based on the zero-point
method [13] by Pandian and Natarajan [14].

Cuenca Mira et al. [1] studied the multi-objectioptimization problems. For this they were
concerned with the parametric decomposition theor€mou et al. [2] determined that the
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disease evolution was a semi-Markov process, faliriig the optimal timing to initiate a medical
treatment. Ramesh, Kumar and Murugesan [16] recordetea fuzzy interval method to find an
optimal solution for fuzzy transportation problends.determined solution method for solving
transportation problems considers the unit costasfsportation from a source to a destination as
a rough integer interval was discussed by Subhakddash and Mohanty [19]. Recently,
Akilbasha et al. [3] proposed a new method nantély,split and separation method for finding
an optimal solution for integer transportation peohs with a rough environment. An advanced
method namely, the slice-sum method is used fargehing an optimal solution, to fully rough
interval integer transportation problems and hagnbeeveloped by Pandian et al. for
pharmaceutical sciences [15]. Singh et al. [17]cuised the multi-objective geometry
optimization of a gas cyclone; there they charamtdrthe gas cyclone into two performance
parameters, namely the Euler and Stokes numbers.

This paper is structured as follows: In SectiorsBme basic definitions and results were
related to real intervals and fuzzy numbers arsgmted. A fully interval transportation problem
is discussed, and a theorem that connects a relagbween an optimal solution of a fully
interval integer transportation problem and a pdirits induced transportation problems is
derived in Section 3. In Section 4., a new methathely, the mid-width method is used for
solving fully interval integer transportation prebi is proposed, and a numerical example is
given for understanding the solution procedure fed proposed method. In Section 5., the
developed new method is extended to fully fuzzyngpertation problems and finally, the
conclusion is given in Section 6.

2. Priminaries
We need the following definitions and fésuelated to real intervals and fuzzy numbers
which can be found in [7,12,14,18,21].
Let D denote the set of all closed bounded intervah the real line R. That is,

D ={[a,b]: a<b,a and b are irR}.

Definition 2.1: Let A=[a,b] andB =[c,d] be inD. Then,
() AUB=[a+c, b+d] and
(i) AUB=[p.dl,
Wherep = minimum {ac,ad ,bc,bd } and q = maximum{ac,ad ,bc bd }.

Definition 2.2: Let A=[a,b]and B =[c,d] be in D. Then,
() A<Bifand onlyif a<c andb<dand
(i) A=Bifand only if a=c andb=d.
Definition 2.3; Let A=[a,b] be in D. Then,A is said to be positive denoted Ag 0if a=0.
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Definition 2.4: Let A=[a,b] in D. ThenA is said to be integer & andb are integers.

Now, the mid-value of an intervah=[a,b], m(A) is defined asm(A):%b and the half

width-value of an intervaA =[a,b], w(A) is defined asvA) :b;za_

Definition 2.5: Let A=[a,bJand B =[c,d] be in D. Then,
(i) A=B ifand only if m(A) =m(B)
(i) A > B ifand onlyif m(A) >m(B) and
(i) A < B if and onlyif m(A)<m(B).

Definition 2.6: Let A=[a,b] and B =[c,d] be in D. Then,
(i) A<Bifand only if m(A) <m(B)and w(A) <w(B)
(i) A=Bif and only if m(A)=m(B)and w(A) =w(B) and
(i) A=Bif and only if m(A) = m(B) andw(A) =w(B).

Now, from the definitions of mid-value and half-whdof an interval number, we establish
the following results.

Result 2.1: If m(A)=m andw(A) =w,, then A=[m —w,, m, +w,]

Result 2.2: LetA=[a,b]and B =[c, d] be in D andp andq are real numbeThen,
(i) m(pA+gB) = pm(A) +gm(B) and (i) W(pA+gB) =|pW(A) +|q|W(B) .

Definition 2.7: Let A be a classical set and (x) be a membership function from A to [0,1]. A
fuzzy setA” with the membership functigma (X) is defined by
A7 ={ (% 1a(¥) 1 xO A and pa(x) 0 [01]}.

Definition 2.8: A real fuzzy numbe& =(ay, a5, a3, a4) is a fuzzy subset from the real life
with the membership functiop , (x) satisfying the following conditions

(i) ¢, (x)is a continuous mapping froRto the closed interval [0, 1],

(i) p,(x) =0for everyal (-, a ],

(iif) ¢, (x)is strictly increasing and continuous ¢a,, a,],

(iv) 1, (x)=1foreveryal [a, , &,] ,

(v) £, (x)is strictly decreasing and continuous|@, a,] and
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(vi) £, (x) =Ofor everyal [a, ,+).

Definition 2.9: A fuzzy numbera is a triangular fuzzy number denoted (ay,a,,a,) where
a,,a, anda, are real numbers and its membership funcfion x ig given below

e : _ (x-a) . .
U.(x)=0ifx<a; y,(x)=—= ifa <x<a,
. (a,-a)

M (X) = (8 =) ifa,<x<a,and i, k)= Oifx=a,.

(3, a)
Let F(R) be a set of all triangular fuzzy numbers oRea set of real numbers.

Definition 2.10: Let 4=(a,,a,,8,) andb = (b,b,,b,) be inF(R). Then

() a0 b= (a +b,a,+b,a,+b, and

(i) a0 b=(t,t,t,)

Wheret, = minimun{ab,,ab,ap,ab}; t, =ab, andt, = maximun{aj,,ap,ap,ap}.

Definition 2.11: Let 4=(a,,a,,a,)and b = (b, b,,b,)be in F(R). Then,
(i) a andb are said to be equal # =b,i=1,23, and
(ii) & is said to be less than or equmlf a <b,i=123.

Definition 2.12: Let &= (a,a,,a,) be in F(R). & is said to be positive i, 2 0.

Definition 2.13: Let 4=(a,a,,a;) be inF(R). & is said to be integer i& =0, i =1,2,3 are
integers.

3. Fully Interval Integer Transportation Problems

Consider the following fully interval integer trgy@tation problem (P):

(P) Minimizez:[zl,zz]zi n [c; di] L %, ¥l

izl j=1
Subject to

n

_Zl[xij')’ij] =[a, p], i=1,2,..m )
J:

m .

'21 [%, Vil =[05,951, j=1,2,...n @
1=



X >0, Yij 2 0,i=1,2,..mandj=1,2,..nand are integers 3)
Wherec; and d;; are positive real numbers for all i ancgj, and p; are positive real numbers

for all i andbj and g; are positive real numbers for all j.

Definition 3.1: The set {X;, y;;], foralli=1,2,...m and j=1,2,...n} is said to be a feasible
solution of (P) if they satisfy the equations (), and (3).

Definition 3.2: A feasible solution [, y;], fori=1,2,...m andj=1,2,...n} of the problem

(P) is said to be an optimal solution of (P) if

Zl 21 [Gij. dij] O [ il < Z Z [cij. o] O [uij, vif1,
= J_

for all feasible {u;,v;] for i =1,2,...m and j =1,2,..., }.

Now, let bem(Z) = m([z, z,]) ; W(Z) =W([z, z)]) ; m([c;, dy]) =t; ; W([c;, d]) =5 ;
m(Dx;, ¥y 1) = My WX, 1) =wg; m[a, pl) =u; W&, pl) =v;; m(b;,q]) =k
andw (b, g, )=h, .

Now, the following theorem which finds a relatioetlween an optimal solution of a fully
interval integer transportation problem and a paiirinduced transportation problems is
established and also, is used in the proposed ihetho

Theorem 3.1: If the set {m;, for all i and j} is an optimal solution of the divalue
transportation problem (M) of (P) where

(M)  Minimize m(Z) = Z Z t,m
Subject to

> om=y,i=12,..m;
=L

z mj :ls ' j=1!2!"-!n1
i=1
m, 20,i=12,..mandj=12,..n
and the set {, for all i and j} is an optimal solution of the IRavidth transportation problem

(W) of (P) where



n

(W)  Minimize w(2) :Zm: SW,

il j=1
Subject to

> ow=v,i=12,.m;

=1

z - ] J_12

i=1
w;20,i=1.2,..mandj=12,..n,

then the set of intervald ), —w;, m‘; +W”?] , foralliand j} is an optimal solution to thegblem
(P) providedm; —w, mj +w], foralli=1,2,.m and j=1,2,...n are integers.
Proof: Now, since {m;, for all i and j } and {w; , for all i and j } are feasible solutions to the
problems (M) and (W) respectively and from the diggi@onditions of two intervals, we can
conclude that the set of intervalp, —wj, m; +w], for all i and j} is a feasible solution to the
problem (P).

Let the set {x;,y;], for alli=1,2,..m andj=1,2,..n} be a feasible solution to the
problem (P).
Then, by the equality relation conditions, we camaiude that the setrfi([x;, y;]), for all
i=12,..mandj=1.2,.n}is a feasible solution to the problem (M) and tes {w([x;, y;]) ,
foralli=1,2,..m andj=1,2,...n}is a feasible solution to the problem (W).
Now, since the setry, for all i and j} and the set\ , for all i and j} are optimal solution to
the problem (M) and the problem (W) respectivalymiplies that

Z Z tlJm([)gJ le]) >Z Z tl]mj (4)

o and Cr
i Zn: W%, ¥ D) Zi i SV - (5)
Iilf(l)wj,:lusing (4), we ha\l/:cla "
m(Z)=m(§ > (69,1005, yﬂ}i IECENLERTED WD T AC

Now, using (5), we get

W(z) = w(z 3 [c,.d,1 0%, ¥, ] > i wie, 4 DwWix, ) 2> > sw. ()

B i1 j= =1 A
Now, from (6) and (7), we can obtain that



m n m n
X T [ dil Olxg vl 2 ),

[Clj’dij] D[m, _\Ni}’ m, +W.j]
=1 =1 =L j=l

This implies that the set of intervalpnf; —w;, m, +w;] , for all i and j} is an optimal solution of

the problem (P).
Hence, the theorem is proved.

4. Mid-Width Method
We, now introduce a new algorithm namely, mid-widtkthod for finding an optimal
solution to a fully interval integer transportatiproblem (P).

The proposed method proceeds as follows.

Step 1. Construct two independent transportation problem@iged, mid-value transportation
problem (M) and half-width transportation problevi)(from the given problem (P).

Step 2. Solve the problem (M) using a transportation atgar. Let {my, for all i and j} be an
optimal solution of the problem (M).

Step 3. Solve the problem (W) using any transportation aigm. Let {w; , for all i and j} be an
optimal solution of the problem (W).

Step 4. The optimal solution of the given problem (P) fsrf —wj, m; +w,], for all i and j} if
[m; —wj, m; +w/], for all i and j are integers (by the Theorem 3.1)

The mid-width method for solving fully integer tigortation problem is illustrated by
the following example.

Example 4.1: A pharmaceutical company produces a product ithite factories F1, F2 and F3.
The product will be sent to four destinations D12, 3 and D4 from the three factories.
Determine a shipping plan for the company frometeetories to four destinations such that the
total shipping cost should be minimum using thdofeing numerical data obtained from the
company:

The minimum supply from F1, F2 and F3 are 7, 17 Bhdespectively and the maximum
supply from F1, F2 and F3 are 9, 21 and 18 respygtiThe minimum demand for D1, D2, D3
and D4 are 10, 2, 13 and 15 respectively and themoan demand for D1, D2, D3 and D4 are
12, 4, 15 and 17 respectively.

The unit shipping cost range from each supply ptineach demand point is given
below:



D1 D2 D3 D4

F1 [1,2] [1,3] [5,9] [4,8]
F2 [1,2] [7,10] [2,6] [3,5]
F3 [7,9] [7,11] [3,5] [5,7]

Table 1: Unit shipping cost range from supply points to dachpoints

The given problem can be modeled as an intervagerttransportation problem as follows:

D1 D2 D3 D4 Supply
F1 1,21  [L,3] [59] [4.8]  [7.,9]
F2 [1,2] [7,10] [26]  [35]  [17,21]
F3 791 [711] [35] [57] [16,18]

Demand [10,12] [2,4] [13,15] [15,17] [40,48]
Table 2: 3X4 fully interval integer transportation problem

Now, by the Step 1., the mid-value transportatioobfem (M) of the given problem is given
below:

D1 D2 D3 D4 Supply
F1 15 2 7 6 8
F2 15 8.5 4 4 19
F3 8 9 4 6 17
Demand 11 3 14 16 44

Table 3: Mid-value transportation problem (M) of the prabléP)

Now, by the Step 2., an optimal solution to thebpem (M) is
m, =5; m,=3; m,, = 6;m,,= 13;m’,,= 14 andn’,=

Now, by the Step 1., the half-width transportatmoblem (W) of the given problem is given
below:

D1 D2 D3 D4 Supply
F1 0.5 1 2 3.5 1
F2 0.5 1.5 2 1 2
F3 1 1 1 1 1
Demand 1 1 1 1 4

Table 4: Half-width transportation problem (W) of the prebi (P)

Now, by the Step 3., an optimal solution to the bem (W) is
W, =1 w,, =L w,,=1andw,,= 1



Now, by the Step 4., an optimal solution to theegiwransportation problem is given below:
(% Yol =[5,8]5 [X15 Yad =[2,4]; [X,5,Y 1 =[5,7] [X Y J=[12,14];
[Xssr Vaal =[13,15] and K, Y 5,1 =[3,3with minimum interval transportation cost [102,202]

5. Fully Fuzzy Integer Transportation Problems

Consider the following fuzzy integer transportatmoblem (FP) where
(FP) Minimizez=3 3 ¢ %

Subject to

%j 2 0,i=1,2,..mandj=1,2,...n and are integers
where the decision variablé?g , for all i and j are triangular fuzzy numbers mutameters’.ﬁ-j ,

Y andf)j are positive triangular fuzzy numbers for all dgn

A triangular fuzzy numbega,b,c) can be represented as an interval number as fllow
(a,b,c)=[a+(b-a)a,c—(c-b)a] ; 0sa <l 8)

Using the relation (8), the given fully fuzzy traastation problem (FP) can be made into a fully
interval transportation problem (ITP). Using thedraiidth method, an optimal interval solution

to the interval transportation problem is determdinEhen, using the relation (8), we can obtain
an optimal fuzzy solution to the given fully fuzzsansportation problem (FP). The solving

procedure is demonstrated using the following nicakexample.

Example 5.1: A pharmaceuticaiompany has three plants at three locations SAn8253 which
supply to three warehouses D1, D2 and D3. Monthdpntpcapacities are (1,6,11), (2,3,4) and
(3,4,5) triangular fuzzy units respectively. Montlbarehouse requirements are (3,7,11), (1,3,5)
and (2,3,4) triangular fuzzy units respectively.tdmine an optimal distribution for the
company in order to minimize the total shippingtogisen that the unit transportation costs in
triangular fuzzy parameters are given below:

D1 D2 D3




S1 (1,2,3) (10,11,12) (4,7,10)
S2 (0,1,2) (1,6,112) (0,1,2)
S3 (1,5,9) (5,15,25)  (3,9,15)
Table 5: Unit transportation costs in triangular fuzzy paeters

The given problem can be modeled as a fuzzy trateggm problem as follows:

D1 D2 D3 Supply
S1 (1,2,3) (10,11,12) (4,7,10) (1,6,11)
S2 (0,1,2) (1,6,11) 0,1,2) (2,3,4)
S3 (1,5,9) (5,15,25)  (3,9,15) (3,4)5)

Demand (3,7,11) (1,3,5) (2,3,4) (6,13,20)
Table 6: 3X3 fully fuzzy transportation problem

Now, the interval form of the given fully fuzzy treportation problem (ITP) is given as follows:

D1 D2 D3 Supply
S1 l+a,3-a] [10+a,12-a] [4+30,10-3r] [1+5a,11- 51 ]
S2 [a,2-a] [1+5a,11- 57 ] [a,2-a] [2+a,4-a]
S3 [1+4a,9- 4] [5+10a,25 1@ [3+6a,15- Gr ] [3+a,5-a]
Demand [3+4a,11- 4] [1+2a,5-20] [2+a,4-a] [6+7a,20- Ta]

Table 7: Interval form of the given fully fuzzy transpoiitat problem (ITP)

Now, by the Step 1., the mid-value transportatioobfem (M) of the problem (ITP) is given
below:

D1 D2 D3 Supply
S1 2 11 7 6
S2 1 6 1 3
S3 5 15 9 4
Demand 7 3 3 13

Table 8 Mid-value transportation problem (M) of the prabl€ITP)

Now, by the Step 2., an optimal
m; =3; m, =3;m,= 3 andmy= ¢

Now, by the Step 1., the half-width transportatmoblem (W) of the problem (ITP) is given

below:

solution

the bbem

D1 D2

D3

Supply

S1 1-a 1-a

3-3a

5-5ax
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S2 1-a 5-5¢0 1-a 1-a
S3 4- A 10-1Qx 6—6a 1-a
Demand 4-4a 2-20 l1-a 7-Ta

Table 9: Half-width transportation problem (W) of the prebi (ITP)

Now, by the Step 3., an optimal solution to the b (W) is
W, =3-30;W,=2- 2r;W,,= Fa andw, = %a

Now, by the Step 4., an optimal solution to thasgortation problem (ITP) is given below:

[x X5 =[3a,6-3a]; [x;, X] =[1+2a,5-20]; [x;,X;]=[2+a,4-a] anc

[Xs Xa] =[3+0a,5-a]

Now, by using the relation (8), we obtain that aptimal solution to the given fuzzy
transportation problem is given below:

%,=(0,3,6);%,= (1,3,5) X,= (2,3,4) ard,= (3,4 with minimum fuzzy transportation
cost (19,86,183).

Remark 5.1: The mid-width method can be also used to solveyfurmnsportation problems
having trapezoidal fuzzy number parameters sineeptioposed method is initiated from real
interval number.

6. Conclusion

A new method namely, mid-width method for computarg optimal solution to fully integer
transportation problems has been proposed in #pemp The proposed method is based on two
independent transportation problems which are pbthirom the given interval transportation
problem and not based on decision variable uppanded conditions and also, it is an exact
method. A numerical example has been presentedeimonstrating the solution procedure of
the proposed method. Further, the proposed metboéxiended to fuzzy transportation
problems. Logistics can be seen as a link betweemanufacturing and marketing operations of
a company. The mid-width method is potentially gndicant tool for decision makers when
they are handling various types of pharmaceutiogistic problems having interval or fuzzy
parameters.
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