Header menu link for other important links
X
An Integrated Computational Framework to Assess the Mutational Landscape of α-L-Iduronidase IDUA Gene
Published in Wiley
2018
PMID: 28608934
Volume: 119
   
Issue: 1
Pages: 555 - 565
Abstract
Mucopolysaccharidosis type I is a lysosomal genetic disorder caused due to the deficiency of the α-L-iduronidase enzyme (IDUA). Mutations associated with IDUA lead to mild to severe forms of diseases characterized by different clinical features. In the present study, we first performed a comprehensive analysis using various in silico prediction tools to screen and prioritize the missense mutations or nonsynonymous SNPs (nsSNPs) associated with IDUA. Subsequently, statistical analysis was empowered to examine the predictive ability and accuracy of the in silico prediction tool results supporting the disease phenotype ranging from mild to severe. Till date, no study has been carried out in IDUA in analyzing the impact of the nsSNPs at the structural level. In this context with the aid of pathogenic and stability prediction in silico tools, we identified nsSNPs R89Q, R89W, and P533R to be most deleterious and disease-causing having impact on the function of the protein. Extensive molecular dynamics analysis was performed using Gromacs to understand the deleterious nature of the mutants. Variations observed between the trajectory files of native and mutants R89Q, R89W, and P533R using Gromacs utilities enabled us to measure the adverse effects on the protein and could be the underlying reasons for the disease pathogenesis. These findings may be helpful in understanding the genotype-phenotype relationship and molecular basis of the disease to design drugs for better treatment. J. Cell. Biochem. 119: 555–565, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
About the journal
JournalData powered by TypesetJournal of Cellular Biochemistry
PublisherData powered by TypesetWiley
ISSN0730-2312
Open AccessNo