Header menu link for other important links
An optimal data placement strategy for improving system performance of massive data applications using graph clustering
Published in IGI Global
Volume: 9
Issue: 3
Pages: 15 - 30
This article describes how the time taken to execute a query and return the results, increase exponentially as the data size increases, leading to more waiting times of the user. Hadoop with its distributed processing capability is considered as an efficient solution for processing such large data. Hadoop’s Default Data Placement Strategy (HDDPS) allocates the data blocks randomly across the cluster of nodes without considering any of the execution parameters. This result in non-availability of the blocks required for execution in local machine so that the data has to be transferred across the network for execution, leading to data locality issue. Also, it is commonly observed that most of the data intensive applications show grouping semantics. Hence during query execution, only a part of the Big-Data set is utilized. Since such execution parameters and grouping behavior are not considered, the default placement does not perform well resulting in several lacunas such as decreased local map task execution, increased query execution time, query latency, etc. In order to overcome such issues, an Optimal Data Placement Strategy (ODPS) based on grouping semantics is proposed. Initially, user history log is dynamically analyzed for identifying access pattern which is depicted as a graph. Markov clustering, a Graph clustering algorithm is applied to identify groupings among the dataset. Then, an Optimal Data Placement Algorithm (ODPA) is proposed based on the statistical measures estimated from the clustered graph. This in turn re-organizes the default data layouts in HDFS to achieve improved performance for Big-Data sets in heterogeneous distributed environment. Our proposed strategy is tested in a 15 node cluster placed in a single rack topology. The result has proved to be more efficient for massive datasets, reducing query execution time by 26% and significantly improves the data locality by 38% compared to HDDPS. Copyright © 2018, IGI Global.
About the journal
JournalInternational Journal of Ambient Computing and Intelligence
PublisherIGI Global