IOP Conference Series: Materials Science and Engineering

PAPER » OPEN ACCESS Related content

H . . . - General bulk service queueing system wi
Analysis of bulk queueing system with single N poliy.mul plevacaiions seiup tme and

server breakdown without interruption

service and single vacation S Sasikala, K Indfira and V M

Chandrasekaran

- Analysis on preemptive priority retrial
queue with two types of customers
balking, optional re-service, single
vacation and service interruption
S Yuvarani and M C Saravanarajan

To cite this article: M Thangaraj and P Rajendran 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263 042106

- An unreliable group arrival queue with k
stages of service, retrial under variant
vacation policy
J Radha, K Indhiraand VM
Chandrasekaran

View the article online for updates and enhancements.

IES Ltd. develops the Virtual Environment (VE), the world-
leading building simulation software which enables clients to

INTEG RATED design innovative buildings while minimising the impact on the

ENVI RO NMENTAL environment. The VE is the only tool which allows designers to
SO LUTI ONS simulate the full performance of their design.

The successful candidate will join a team developing state-of-the art code for advanced building and district physics simulation.
The team employs mathematical modelling techniques to analyse heat transfer mechanisms, air conditioning, renewable energy systems,
natural ventilation, lighting, thermal comfort, energy consumption, carbon emissions and climate, and assess building performance
against regulatory codes and standards in different countries.

careers@iesve.com

This content was downloaded from IP address 47.18.219.18 on 06/03/2018 at 09:29



https://doi.org/10.1088/1757-899X/263/4/042106
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042154
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042154
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042154
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042158
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042158
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042158
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042158
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042147
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042147
http://iopscience.iop.org/article/10.1088/1757-899X/263/4/042147
http://oas.iop.org/5c/iopscience.iop.org/226415426/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?

14th ICSET-2017 IOP Publishing
IOP Conlf. Series: Materials Science and Engineering 263 (2017) 042106 doi:10.1088/1757-899X/263/4/042106

Analysis of bulk queueing system with single service and
single vacation
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Abstract. A batch arrival queueing system with two types of service pattern with single
vacation is considered. If the queue length is more than or equal to the minimum of batch size
‘a’, the bulk service can be provided otherwise the single service or single vacation is provided.
After completing the bulk service, if the queue length is less than ‘a’ then the server leaves for
single vacation. After completing the single vacation, if the queue length is greater than or
equal to ‘a’ then the server will provide the bulk service, otherwise, the server goes to single
service. The queue size distribution of the developed model is obtained and the performance
measures of the developed queueing model are established. The particular cases of the
proposed queuing model are also discussed.

1. Introduction

Queueing theory was introduced by Erlang [4]. Single server priority queue was proposed by Miller
[15]. Chaudhry and Templeton [2] explained detail study of bulk queueing models. Queueing models
with the server vacations model have been examined by various authors. Stochastic Models in
Queueing Theory introduced by Medhi [14]. In vacation queueing model, the server utilizes the idle
time for the different purpose. A literature survey on the server vacation models was proposed by Ke
et al. [10].A literature survey on the server vacation models and priority systems was proposed by
Takagi [20].Supplementary variables technique(SVT) proposed for convert a non-Markovian model
into Markovian models. The SVT was first initiated by Cox [1] and then followed by Lee [12].
Krishna Reddy et al. [18] analyzed bulk service queueing system with N-policy.

Jeyakumar and Senthilnathan [7] studied the behaviour of the queueing system with server
breakdown without interruption. Haridass and Arumuganathan [5] analyzed a queueing system under a
restricted admissibility policy. Madhu Jain and Anamika Jain [8] proposed a priority queueing model
to analyze the reliability characteristics. Ke [9] proposed the batch arrival queueing system under
various vacation policies. Wang et al. [22] studied the different kinds of system performance measures
for the T policy. Sanjeet Singh and Naveen Kapil [19] studied a single removable and non-reliable
server queuing system under steady-state conditions.

Takine and Sengupta [21] worked on the queue-length and the waiting time distribution of a single-
server queue when it is stopped for a short period. Maurya [13] studied when the arrivals and service
are in batches with two states.Haridass and Nithya [6] analyzed a batch arrival bulk service (BABS)
queueing system with server failure and vacation intrusion. Pukazhenthi and Ezhilvanan [17]
presented a vacation queueing model with bulk service rule. Kumar et al. [11] investigated the state
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dependent, not able to be trusted or believed bulk queueing model with two phase of service and m
phase of repair.

This paper is systematized as follows: the Mathematical model is discussed in Section 2. In Section
3, notations used are presented. A queue size distribution for the developed queueing model is
obtained in Section 4. The probability generating function (PGF) of the queue size distribution is
established in Section 5. In Section 6, the performance measures for the developed queueing models
are determined and the particular cases of the model are discussed. The conclusion is given in Section
7.

2. Mathematical Model

A Dbatch arrival queueing system with two types of service pattern with single vacation is considered.
The server begins the service at least ‘a’ customers are waiting in the queue. If the queue length
reaches a threshold value ‘a’, then the server chooses batch service with a minimum of ‘a’ customers
and maximum of ‘b’ customers. After completing the batch service, if the queue length is greater than
or equal to the minimum of batch size ‘a’ then the server will continue the batch service according to
Neuts [16] general bulk service rule otherwise the server leaves for single vacation. After completing
the single vacation, if the queue length is greater than or equal to ‘a’ then the server will provide the
batch service, otherwise, the server goes to single service. After completing the single service, if the
gueue length is greater than or equal to ‘a’ then the server will provide batch service, otherwise, the
server goes to single vacation. The proposed model is represented schematically in Figure 2.1.

Qzxa Qza
Bulk Q<a Single Q<g Singl_e
Service Vacation Service
Qza Q=a

Q-Queue length
Figure 2.1 Schematic representation of the queueing model.

3. Notation

A Poisson Arrival rate

Y Group size random variable of the arrival
Ok Pr(Y=Kk)

Hq(t) Number of customers waiting for service at time t
Hs(t) Number of customers under the service at time t

Let LEO[1(x)]{ L(8) }L (t)) denotes the Cumulative Distribution Function(CDF)
[Probability Density Function(PDF)] {Laplace-Stieltjes transform (LST)}(remaining time) of single
service. Let M(x)[m(x)]{ M(&) }(M°(t)) denotes the CDF[PDF]{LST}(remaining time) of batch
service. Let N(x)[n(x)]{ N(&) }(N°(t)) denotes the CDF[PDF]{LST} (remaining time) of the vacation
time.
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[0] —if theserverisonsingleservice
C(t) =4[1] —if theserverison batch service

[2]—if theserverisonsingle vacation
Now, the state probabilities are established as follows
T;(xt)ot=Pr{H () =L H () = j,x< L°(t) < x+6t,C(t) =0}, j<a-1
G;(x,t)ot=Pr{H () =i,H (t) = ], x<M ‘()< x+ot,Ct)=1},a<i<h,j>0
D, (x,t)6t =Pr{H, (1) = j,x<N°(t) <x+6t,C(t)=2},0< j<a-1
4. Queue size distributions

Now, from the above state probabilities, considering all possibilities and using SVT, we get the
following steady state system difference-differential equations for the queueing models.

~Tyo (%) = =AT, (X) + D, (0) 1(x) 1)
i
—le‘(X) = _lle (X) + Dj (O) I(X) +)“Zle7k (X)gk , j =12..,a-1 (2)
k=1
j
—le'(X) :_ﬂ“le(X)"—ﬂ’lej—k (X9, j=a (3)
k=1
—G;, (X) =—AG,(X) + Zb:Gmi (0) m(x) + D, (0) m(x) + T,(0)m(x),a<i<b 4)
—Gij'(x) =-AG; (x) +/12J:Gi(jfk)gk,a <i<b-1j>1 (5)
-Gy; (X) =-4G; (x) + ZGmb+j (0) m(x) + /Iz Gy 9 M(x) + D, ;(0) m(x) ©)
m=a k=1
+T,,;(0)m(x), j =1
D, () =D, (0 + . Gy (0)N() + T,y ()G @
s
—D, (x) ==AD;(X) + Y Dy (¥)Ag, + D_G,; (0)n(x) +T,;(0)n(x),1< j<a-1 (8)
k=1 m=a
LST of the above equations from (1) to (8) computes as follows
OT1,4(0) =Ty (0) = AT, (8) — D, (0) L(9) )
. . . . i
a1,;,(8)—T,;(0) = 2T,;(8) — D;(0) L(0) —&ZT“;k 9., 1=12,..,a-1 (10)
k=1
. - i
g1,;(0) =T,;(0) = AT, (0) - 2D T, , (9)g,. i > a (11)
k=1

6G,,(0) — G,y (0) = 4G, (6) — iem (0)M(6)-T,(0) M(6) )

~D.(0)M(0),a<i<h
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G, (0)-G;(0) = 4G, (6) -1 iéi(j_k)(e)gk,asisb—l,j21

0G,;(0) =Gy (0) = 2Gy;(0) = 2. Gy (O M(O) - 73 Gysy(©)9, - D, O M)

b+j

O)M(9), j 21

6D, (6) — D, (0) = 2D, () - ZGmO(O) N(6) ~T,, (0) N(6)

m=a

05,(6)-D,(0)= 4D,(0) - Y. B, (0)A5, - 3Gy (0) N(O) -

In order to find the system size distribution, we define the following PGF:

ﬂ(z,@):ile(H)zj and
G(2.6)=3G,(6) and
D(z,e)zioj(e)zi and

T(20)= 3T, ()7

G,(2,0)= .G, (0)2',a<i<b

i=0

D(Z,O):iDj (0)2

Now, from equations (9), (10), (11) and (17), we obtain

(O—A+2Y(2))T,(2,0) =T,(2,0) - E(e)[ai D,(0)z']

j=0

Now, from equations (12), (13) and (17), we find

(0—i+ﬂY(z))(~3i(z,9)=Gi(z,0)—l\7l(6?){zb:G (0)+T(0)+D(0)} a<i<b-1

m=a

Now, from equations (12), (14) and (17), we establish
2°(0-21+AY(2))G,(z,0) = 2°G,(2,0)

~M(6)

{bzl: [G,,(z.0)]+G, (z, O)} EGW(O)ZJ}
+{T1(z,0)-Zle(0)zi}+{D(z,0)—§Dj(0)zi

Now, from equations (15), (16) and (17), we have

(0 -4+ AY(2))D(z,0) = D(z,0) - N(e)i{iemj (0) +le(0)}zj

j=0 Um=a

Now, substituting & = A —AY (z) in equations (18)-(21), we conclude that

T.(2,0)= E(ﬂ—/lY(z))i D, (0)z’

T,0)N(9) 1< j<a-1

%,_J

(13)

(14)

(15)

(16)

(17

(18)

(19)

(20)

(21)

(22)



14th ICSET-2017

IOP Publishing

IOP Conlf. Series: Materials Science and Engineering 263 (2017) 042106 doi:10.1088/1757-899X/263/4/042106

G.(z,0)=M (z—zv(z)){(iemi (0)+T,(0) + D, (O)},a <i<b-1

M (A—AY (2)) f (2)

G,(z,0)= |:Zb N (,1—/1Y(Z))]

where f (z) = biem (2,0)+D(z,0)+T(z,0)- > {G,; (0)+T,;(0) + D;(0) 2’

b-1

j=0

D(z,0) = N(/l—zv(z))i{zb: G, (0)+T, (O)}zj

j=0 {m=a

Now, using (18) and (22), we have
(C(a-2Y(2)- E(a))ai D,(0)z’
j=0
(6-1+AY(2))
Now, using (19) and (23), we obtain

(M(A-2Y (2))-M(9)) {Zb: G, (0)+T,;(0) + D, (0)}
m=a ,a<i<b-1
(0— A+ Y (2))

Now, using (20) and (24), we find

T.(z,0) =

éi(zie):

(M(2-2Y (2)) -M(9) f (2)

SO )] o1+ @)

where f (2) = biem (z,0)+ D(z,0)+T(z,0) —bi{emj (0)+T,;(0) + D;(0) 2’

m=a j=0

Now, using (21) and (25), we determine

(N(-2Y(2))- N(a))i{z% 0)+T, (0)} 7}

D(z.6)= 02 :zYT;))

5. PGF of queue size
Now, the PGF of the queue size at an arbitrary time epoch is obtained as,

P(z) = tiéi (z,0)+G, (z,0)+T,(z,0)+ D(z,0)

Now, using the equations (26)-(29) with #=0 in (30), we conclude that
b
Substitute &, = > G,;(0)+T,(0) and f, =T,(0)

(23)

(24)

(25)

(26)

(@7)

(28)

(29)

(30)
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b-1

(MA-2Y (2)-1) 3" (& + F)(2° = 2') +(L(A -2 (2)) -1)(2° —1)_32 f z

i=a

+(N@-2Y (2)-1) (2" —1)jdjei 7'

P(z)= ——
(—A+AY (2)(Z° —M (1 - 2Y (2)))

(31)

Equation (39) involving b unknowns ey, €;... ey and fo, f1,..., fb;. Using the following result we can
express f; in terms of ;. Now, the above equation contains only ‘b’ unknown’s €o, €;... €p.1.

Results: fj = Zloziej_i ,n=0,1,2,...,a-1 where ¢; s the probability of i customers arrive during
i=0

avocation.

6. Performance measures
6.1 Expected queue length (EQL)
The EQL is obtained by differentiating the above equation(31) and put z = 1 is represented by

limP(2) =E(Q)
a-1

(3052 +30S1"+30(b~1)S1+6biS1] Y , +[30V 22 +30V1"+3b(b -1V 1
i=0

(2bAE(X)-2B1) +61c>iv1]aiei +[3B2? +3B1"]§(ei+ £)(b-i)

i=0 i=0

-3B13 [b(b-1)-i(i-Die+ )

E(Q)=

12[2bAE(X) - BI2J

Where

AE(B)E(X)=B1,AE(V)E(X) =V1,AE(S)E(X) =S1, A*E(B?*)[E(X)]? =B2?,
APE(VAH[E(X)F =V 22, A*E(SH[E(X))? =S2°, AE(B)E(X)X "(1) = B1",
AE(V)E(X)X "(1) =V1", AE(S)E(X) X "(1) = S1", A*E(B)[E(X)]* = B1?,
AEBHENX) =B2%, A*E(B)E(X) X "(1) = B1"

6.2 Expected length of idle period
Let | be the Random Variable (RV) of “idle period”. Let U be a RVdefined by
3 {0, if the queue length is at least ‘@’ after the vacation. }

1, if the queue length is less than ‘@’ after the single service.
The expected length of idle period, E(l) is given by
E(1)=E(V)P(U=0)+[E(V)+E(1)]P(U =1)
where E(V) is the mean vacation time
From equation (25), we have

o0

D(z,0) = N(&—M(z))aiejzj :Zajz"eiejzj

j=0 j=0
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That is,

312 =330 a0z |3 Sea |
j=0 j=0L i=0 j=al i=0
Equating the coefficient of " (n—O 1,2...a-1) on both sides, we get

P(U=0)=1- Zle 1- ZZeJ 2]

Now, E(I) i |sg|venas o
ey=_EV) __EW)
PU=0) 1-F'3 e a7
j=0 i=0

6.3 Expected length of busy period
Let B be the RV of “busy period”. Let J be RV defined by

|0, if the queue lenght is less than a after single vacation
| 1, if the queue length is at least a_after the batch service
ES) __ EO)

P(J=0) le(eﬁ f)

Where E(S) is the mean service time

E(B)=

6.4 Probability that the server is on vacation, single service and batch service
Now, from the equation (29), we have

a-1
P(V)=E(V)D e,
j=0
Now, from the equation (26), we have
a-1
P(S)=E(S))f,
j=0

Now, from the equation (27) and (28), we have

P(B):IZiLnl(Zl:Gi(z,O)+Gb(z,O)):E(B)ti(eﬁ f,)+ (E(B)) f'(2)
where f'(1) = ﬂE(X)E(B)bZl:(e + f,)z’ +/1E(X)E(V)Ze 7! +/1E(X)E(S)Zf 7!
_;(ej+ fj)zj’p:w

Particular Cases

In this section, some of the existing models are deduced as a particular case of the proposed
model.
Case-1

When a=b=1(*“no bulk service”), the equation (31) reduces to
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) (E( =AY (2))-1)(z-D) T, +(N(A - 2Y (2) -1) (D¢,

P(z) = =
(@) A+ AY (D)) (z—M (A-2Y (2)))
Which is coincides with the results of Choudhury [3].

Case-2
When L(A—AY (z)) =1(“no single service”), the equation (31) reduces to

(M(A-4Y(2)-1)(2" —1)i(ei+ f)z +(N(,1—zv(z)) —1)(zb —1)_azfei z

(A+AY (2))(2° =M (1 - AY (2)))
Which is coincides with the results of Krishna Reddy et al.[18].

P(z)=

7. Conclusion

The batch arrival queueing systems with two types of service pattern with single vacation have
been studied in this paper. In the proposed model, if the queue length is more than or equal to the
minimum of batch size ‘a’, the bulk service can be provided otherwise the single service or single
vacation is provided. So, the service will not be stopped during service except the vacation period. We
have established the system size distribution of the proposed model and the performance measures of
the given queueing model by using PGF technique.
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