
Abstract
We introduced certain new subclasses of analytic functions of complex order defined by fractional integrals involving Fox’s 
H-functions in the unit disc and investigate the various properties and characteristics of analytic functions belonging to 
the subclasses Sn(l,b,g). We also defined an another subclass Rn(l,b,g) involving Fox’s H- functions. Apart from deriving 
a set of coefficient bounds for each of these function classes, we establish several inclusion re lationships involving the 
(n, d) — neighbourhoods of analytic functions with negative coefficients belonging to these subclasses.

Analytic Functions of Complex Order Defined by 
Fractional Integrals Involving Fox's H-functions

K. Uma*, G. Murugusundaramoorthy and K. Vijaya

School of Advanced Sciences, VIT University, Vellore - 632014, Tamil Nadu, India; kuma@vit.ac.in, 
gmsmoorthy@yahoo.com, kvijaya@vit.ac.in

Keywords: Convex, Generalized Hypergeometric Functions, Hadamard Product, Inclusion Relations, (n, d)-Neighborhood, 
Starlike, Univalent

1. Introduction
Denote by A (n) the class of functions of the form
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which are analytic and univalent in the open disc U= 
{z: z ∈ C, |z| < 1},note that A(1) = A. Also denote T (n) the 
class of functions of the form
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which are analytic and univalent in the open disc 
U = {z : z ∈ C, |z| < 1}, and note that T(1) = T,20 be the 
 subclass of A(n) of univalent functions in U. For functions 
fj(j = 1,2) given by
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Let f1 * f2 denote the Hadamard product (or convolu-
tion) of f1 and f2 defined by
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Now we briefly recall the definitions of the special 
functions and operators of fractional calculus used in this 
paper. By a Fox's H-function we mean the generalized 
hyper geometric function defined by the Mellin-Barnes 
type contour integral
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here L is a suitable contour in C and the orders (m; n; p; 
q) are integers 0 ≤ m ≤ q, 0 ≤ n ≤ p. For the  conditions 
on the parameters aj ∈ , Aj > 0 (j = 1 , . . . , p ) ,  bk ∈  , 
Bk >  0  ( k =  1 , … ,  q) and the types of contours, for 
existence and analyticity of function (1.4) in disks ⊂ C, 
one can see 14,16 [11, App.], 10 etc. For A1 = …  = Ap = 1, 
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are briefly called as generalized (m-tuple) fractional 
 integrals. The corresponding generalized fractional 
 derivatives are denoted by

 
D
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,
,

and defined by means of explicit differintegral expressions, 
similarly to the idea for the classical  Riemann-Liouville 
derivative (see e.g.15).

We state following lemma due to Kiryakova et al. 12, 13 
to represent the generalized fractional calculus operator 
for functions in A and state some mapping properties 
of operators (1.7) in classes of analytic functions in the 
unit disk U = {z : |z| < 1} based on the H—function 
theory.
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Then the conditions

 δi ≥ 0, αi ≥ –1, βi > 0, i = 1 , . . . , m,  (1.9)

ensure that (1.8) holds for each p ≥ 0. That is including A 
and its subclasses.

In view of (1.8), when working for the classes of 
 functions A, T, and A(n), T(n), it is suitable to consider 
a normalized form of operators (1.7), involving the 
 multiplier constant:
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namely we will work next with the (normalized) GFC 
operators
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From Lemma 1.1 and the more general results in [11  
Ch.5, Sec.5.5], we have the following.

Theorem 1.1 Under the parameters conditions (1.10):

 δ ≥ 0, αi > –1, βi > 0 (i = 1, . . . , m)

B1 = …  = Bq = 1, (1.4) turns into the more popular Meijer’s 
G-function (see [14], [16], [11, App.], [10]). The G— and 
H — functions encompass almost all the elementary 
and special functions. Among them, the Mittag-Leffler 
function, and the Wright’s generalized hypergeometric 
functions pΨq with irrational Aj, Bk > 0, give rather general 
and typical examples of H—functions, not reducible to 
G—functions:
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when A1 = …  = Ap = B1 = …  = Bq = 1; they turn into
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Recently, Kiryakova11, discussed the Generalized 
Fractional Calculus (GFC) with various applications 
to the special functions and integral transforms, to the 
hyper-Bessel operators, ODEs, dual and Volterra integral 
equations, univalent functions, etc. All the classical FC 
operators (see e.g. in 15), and most of their generaliza-
tions by different authors, fall in the GFC as very special 
cases, by taking multiplicities m = 1, 2, and some specific 
parameters.

Let m ≥ 1 be an integer; δi > 0, γi ∈ , βj > 0, i = 1,... m. 
We consider δ = (δ1,..., δm) as a multi-order of fractional 
integration; γ = (γ1, ..., γm) as multi-weight; β = (β1,..., βm) 
as additional paramter. The integral  operators defined 
 follows:
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if di
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1
, and as I f(z) = f(z) if δ1 = δ2 = . . . = δm = 

0, are said to be multiple (m-tuple) Erdélyi-Kober frac-
tional integration operators ([11]). More generally, all the 
 operators of the form
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the generalized fractional integral I
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,  maps the class 

A(n) into itself, and the image of a power series (1.1) has 
the form
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with multipliers’ sequence (k=n+1, n+2, ...):
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In the class A the generalized fractional integral 
(1.7) can be represented by the hadamard product 
I f z h z f z
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,  where h(z) ∈A is expressed by 

the Wright’s hypergeometric function(1.5)
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These functions were extensively studied in6, 5.
The main object of this paper is to define new  subclasses 

of analytic functions of complex order in the unit disc 
and to investigate the various characteristics properties of 
analytic functions belonging to the new subclasses.

A function f ∈ A(n) is starlike of complex order 
b (b ∈  \ {0}), that is STn(b), if it also satisfies the  following 
inequality
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Furthermore, a function f ∈ A(n) is convex of  complex 
order b (b ∈  \ {0}), that is CVn(b), if it also satisfies the 
following inequality
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The classes STn(b) and CVn(b) stem essentially from 
the classes of starlike and convex functions of complex 
order, which were considered earlier by Nasr et.al.17 and 
Wiatrowski23, respectively. Further motivated essentially 

by earlier investigations of 2,8 and 9, and making use of 
Fox's H- functions (the generalized hypergeometric func-
tions), we introduced certain new subclasses of analytic 
functions in the unit disc and investigate the various prop-
erties and characteristics of analytic functions belonging 
to the new subclasses.

For 0 ≤ λ ≤ 1, we let Sn(λ, b, γ) be the subclass of A(n) 
consisting of functions of the form (1.2) and satisfying the 
inequality
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where z ∈ U, b ∈  \ {0}, 0 ≤ l < 1 and If (z) is given by 
(1.11).

Also let Rn(λ, b, g) be the subclass of A(n) consisting of 
functions of the form (1.2) and satisfying the inequality
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where z ∈ U, b ∈ C \ {0}, 0 <γ ≤ 1, 0 ≤ λ < 1 and If (z) is 
given by (1.11).

We deem it proper to mention some of the function 
classes which emerge from the function class Sn(λ, b, γ) 
defined above. It is enough to choose suitable particular 
parameters m, γk, δk, βk. For m = 1, we have the examples

Example 1. We observe that if we specialize that αi = –1 
and δi = 1 with m = 1, βi = 1, in (1.11) gives the Biernaki 

operator I Bf z z f z1 1
1 1 1,
,− = ( ) = − −( )* ( )log  the class Sn(λ, 

b, γ) reduces to the class S bn
l ,g( )  subclass of A(n) con-

sisting of functions of the form (1.2) and  satisfying the 
inequality
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where z ∈ U, b ∈  \ {0}, 0 < γ ≤ 1 and 0 ≤ λ < 1.
Further by taking αi = 0 and δi = 1 with m = 1, βi = 1, 

in (1.11) gives the libera operator

  f z I f z z F z f z( ) = ( ) = ( )* ( )2 1 2 31 1
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, , ; ;

and generalized Libera operator
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Example 2. By taking αi = a – 2 and δi = c – a with 
m = 1, βi = 1, in (1.11) the class Sn(λ, b, γ) reduces to 
the class  S bc

a l g, ,( ) the subclass of A(n) consisting of 

 functions of the form (1.2) and satisfying the inequality
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where z ∈ U, b ∈  \ {0}, 0 < γ ≤ 1,0 ≤ λ < 1 and
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called Carlsons-Shaffer's operator4

Example 3. For Dη f(z) := z2 F1(1, η + 1; 1; z) * f(z), 
(η > –1), with m = 1 and β = 1, in (1.11) the class Sn(λ, b, γ), 
reduces to the class Sn(η, λ, b, γ) the subclass of A(n) con-
sisting of functions of the form (1.2) and satisfying the 
inequality 
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where z ∈ U, b ∈ \ {0}, 0 <γ ≤ 1,0 ≤ λ < 1 and
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Ruscheweyh Derivative operator18

Our definitions of function classes Sn(λ, b, γ) 
and Rn(λ, b, γ) are motivated essentially by earlier  
investigations2 and9, in each of which further details and 
references to other closely related subclasses can be found.

The main object of the present paper is to  investigate 
the various properties and characteristics of analytic 
functions belonging to the subclasses Sn(λ, b, γ) and Rn(λ, 
b, γ) introduced. Apart from deriving a set of coefficient 
bounds for each of these function classes, we establish 
several inclusion relationships involving the (n, δ) — 
negihborhoods of analytic functions with negative and 
missing coefficients belonging to these subclasses. Also 
the special cases of some of these inclusion relations are 
shown to yield known results.

2.   A Set of Coefficient 
Inequalities

In this section we obtain the coefficient inequalities for 
functions in the subclasses Sn(λ, b, γ) and Rn(λ, b, γ).

Theorem 2.1 Let the function f ∈ A(n) be defined by 
(1.2), then f(z) is in the class Sn(λ, b, γ) if and only if
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Proof. Let a function f(z) of the form (1.2) belong to 

the class Sn(λ, b, γ). Then in view of (1.11) and (1.16), we 
obtain the following inequality,
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Thus putting z = r(0 ≤ r < 0),we obtain
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Hence, we observe that the expression in the 
 denominator on the left-hand side of (2.2) is positive for 
r = 0 and also for all r(0 < r < 1). Thus, by letting r → 1– 
through real values, (2.2) leads us to the desired assertion 
(2.1) of Theorem 2.1.

Conversely, by applying (2.1) and setting |z| = 1, we 
find from (1.16) that
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Hence, by the maximum modulus principle, we infer 
that f(z) ∈ Sn(λ, b, γ), which evidently completes the proof 
of Theorem 2.1.
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Similarly, we can prove the following theorem.

Theorem 2.2 Let the function f ∈ A(n) be defined by (1.2), 
then f(z) is in the class Rn(λ, b, γ) if and only if

 1 1
1

+ −( )  ( ) ≤
= +
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∑ l q gk k a bk
k n

 (2.3)

Where θ(k) is as defined in (1.12).

3.  Inclusion Relations Involving 
the (n, δ)-Neighbourhoods

In this section, we establish several inclusion relations for 
the normalized analytic function classes Sn(λ, b, γ) and 
Rn(λ, b, γ) involving the (n, δ)—neighborhood . Following 
Goodman7, Ruscheweyh19, Silverman21 and others1,2,3,9, we 
recall the (n, δ)—neighborhood of a function f ∈ A(n) by
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In particular, for the identity function
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 Sn(λ, b, γ) ⊂ Nn,δ(e). (3.4)

Proof. Let f(z) ∈ Sn(λ, b, γ). Then, in view of the 
 assertion (2.1) of Theorem 2.1, we have
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which, by means of the definition (3.2), establishes the 
inclusion relation (3.4) asserted by Theorem 3.1.

In a similar manner, by applying the assertion (2.3) 
of Theorem 2.2 instead of the asser tion (2.1) of Theorem 
2.1 to functions in the classes Rn(λ, b, γ), we can prove the 
following relationship.

Theorem 3.2 If
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4.  Neighborhoods for the Classes 
aSn(λ, b, γ) 

aRn(λ, b, γ)

In this last section, we determine the neighborhood 
 properties for each the following functions classes 
S bn

a l g, ,( )  and R bn
a l g, ,( ) . Here the class S bn

a l g, ,( )  
consists of functions f(z) ∈ A(n) for which there exists 
another  function g(z) ∈ Sn(λ, b, γ) such that

 
f z
g z

z U
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( ) − < − ∈ ≤ <( )1 1 0 1a a; .  (4.1)

Analogously, the class R bn
a l g, ,( )  consists of func-

tions f(z) ∈ A(n) for which there exists another function 
g(z) ∈ Rn(λ, b, γ) satisfying the inequality (4.1).
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Concluding Remarks: By suitably specializing the 

various parameters involved in the operator I
i

i i
mb

a d
( )
( ) ( )

,
,  and 

choosing λ = 0 and λ = 1 as illustrated in Examples 1, 2 
and 3, we define various subclasses of Sn(λ, b, γ), Rn(λ, b, 
γ). Further from, Theorem 2.1 to Theorem 4.2, we can 
state the corresponding results for the new subclasses 
defined in Example 1 to 3 and also for many relatively 
more  familiar function classes.
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