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a b s t r a c t

Groundwater is a vital source of freshwater in both urban and rural regions of the world. However, its

injudicious abstraction and rapidly increasing contamination are posing a severe threat for sustainable

water supply worldwide. Geographical Information System (GIS)-based groundwater quality evaluation

using Groundwater Quality Index (GQI) has been proved to be a cost-effective tool for assessing

groundwater quality and its variability at a larger scale. However, the conventional GQI approach is

unable to deal with uncertainties involved in the assessment of environmental problems. To overcome

this limitation, a novel hybrid framework integrating Fuzzy Logic with the GIS-based GQI is proposed in

this study for assessing groundwater quality and its spatial variability. The proposed hybrid framework is

demonstrated through a case study in a hard-rock terrain of Southern India using ten prominent

groundwater-quality parameters measured during pre-monsoon and post-monsoon seasons. Two con-

ventional GIS-based GQI models GQI-10 (using all the ten groundwater-quality parameters) and GQI-7

(using seven ‘concerned/critical’ groundwater-quality parameters) as well as hybrid Fuzzy-GIS-based

GQI (FGQI) models (using seven critical parameters) were developed for the two seasons and the re-

sults were compared. The Trapezoidal membership functions classified the model input parameters into

‘desirable’, ‘acceptable’ and ‘unacceptable’ classes based on the experts’ knowledge and water quality

standards for drinking purposes. The concentrations of Ca2þ, Mg2þ, and SO4
2� in groundwater were found

within the WHO desirable limits for drinking water throughout the year, while the concentrations of

seven parameters (TDS, NO3
�-N, Naþ, Cl�, Kþ, F� and Hardness) exceed their permissible limits during

pre-monsoon and post-monsoon seasons. A comparative evaluation of GQI models revealed that the FGQI

model predicts groundwater quality better than the conventional GQI-10 and GQI-7 models. GQI

modeling results suggest that the groundwater of most of eastern and southern parts (~60% in pre-

monsoon season; ~90% in post-monsoon season) of the study area is unsuitable for drinking. Further, the

groundwater quality deteriorates during post-monsoon seasons compared to pre-monsoon seasons, which

indicates an increased influx of contaminants from different industries, mining areas, waste disposal sites

and agricultural fields during monsoon seasons. This finding calls for the strict enforcement of regula-

tions for proper handling of effluents from various contamination sources in the study area. It is

concluded that the fuzzy logic-based decision-making approach (FGQI) is more reliable and pragmatic

for groundwater-quality assessment and analysis at a larger scale. It can serve as a useful tool for the

water planners and decision makers in efficiently monitoring and managing groundwater quality at

watershed or basin scales.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Water quality is inherently linked with human health, poverty

reduction, gender equality, food security, livelihoods and the

preservation of ecosystems, as well as economic growth and social

development of our societies (IAH, 2008; UNESCO, 2015). Increase
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in urbanization, industrialization and agricultural activities have

adversely affected the quality of both surface water and ground-

water across the globe. Groundwater being more reliable source of

freshwater is under enormous pressure to fulfill water demands for

increasing global population, especially in developing countries

including India. According toWorld Bank (2010), India is the largest

consumer of groundwater in the world, with an estimated annual

groundwater use of about 230 km3. India is facing groundwater

crisis in the 21st century due to its overexploitation (CGWB, 2017)

as well as growing contamination from point and non-point sour-

ces of pollution (SoE, 2009). Contrary to surface water contamina-

tion, groundwater contamination is difficult to detect because of

being hidden and once contaminated, the groundwater can remain

so for decades or even for hundreds of years due to relatively slow

movement of water and contaminants in the subsurface environ-

ment. Therefore, there is an urgent need to develop efficient

management strategies for the sustainable utilization and protec-

tion of vital groundwater resources. To this end, it is imperative to

have a suitable tool/technique for effective monitoring and

assessment of groundwater quality at a larger scale, which in turn

can serve as an effective tool for improved management and

development of vital groundwater resources.

One possible management alternative is through the develop-

ment of water quality indices to provide a comprehensive assess-

ment of surface water and groundwater quality. Water Quality

Indices (WQI) is a simple mathematical tool that can provide a

distinct picture of overall water quality status over an area based on

important water quality parameters (Abbasi and Abbasi, 2012). The

WQI-based maps are easily understandable and aid in creating

public awareness on groundwater/surface water pollution as well

as in enforcing regulations for proper managements of wastes

released from various sources and imposing restrictions on

groundwater extraction, which in turn can help formulate effective

management strategies for protecting aquifers from contamination

(e.g., Saeedi et al., 2010; Vadiati et al., 2016). In past few decades,

the WQI approach was followed by many researchers worldwide

(e.g., Bolton et al., 1978; Babiker et al., 2007; Nasiri et al., 2007;

Machiwal et al., 2011; Vicente et al., 2011; Zhao et al., 2013; Jasmin

and Mallikarjuna, 2014; Boateng et al., 2016; Selvaganapathi et al.,

2017). Lumb et al. (2011) provided a comprehensive review on the

evolution of WQI over the years and highlighted major limitations

embedded in the process of index development and provided

recommendations to overcome the drawbacks.

Many of the past researches on WQI focused particularly on

surface water with very limited number of studies dealing with

groundwater. It is important to mention that biological properties

(bacteria, algae, etc.) and physico-chemical properties (tempera-

ture, turbidity, color, dissolved oxygen, pH, etc.) are important pa-

rameters for surface water quality evaluation, whereas hydro-

chemical properties (major cations and anions) are important pa-

rameters for groundwater quality evaluation (Vadiati et al., 2016).

Thus, a variety of water-quality parameters are involved in the

evaluation of groundwater quality and data constraints often

impede the process of Groundwater Quality Index (GQI) develop-

ment. Probably, Tiwari and Mishra (1985) were the first to formu-

late a methodology for drinking water suitability using surface

water quality index (Lumb et al., 2011; Vadiati et al., 2016).

Adopting their procedure, several studies were carried out dealing

with GQI development in different parts of the world (Lumb et al.,

2011). In the recent past, several researchers have also employed

GIS-based GQI to evaluate groundwater quality and analyze spatial

variability of groundwater-quality parameters. Babiker et al. (2007)

was pioneer in proposing the development of GIS-based GQI using

a statistical procedure to calculate an index based on the World

Health Organization (WHO) standards for drinking water. This

methodology has beenwidely employed by subsequent researchers

to assess groundwater quality and its spatial variability (e.g., Nas

and Ali, 2010; Machiwal et al., 2011; El-Fadel et al., 2014; Vadiati

et al., 2016). Apart from analyzing the drinking water suitability

using GQI, a few studies have also been carried out for assessing

irrigation water suitability using GQI. For example, Soltan (1999)

evaluated groundwater quality of artesian wells in Egypt for irri-

gation water suitability based on GQI, whereas Stigter et al. (2006)

used groundwater GQI as an assessment tool for the agricultural

regions of Portugal.

Groundwater Quality Index (GQI) is easy to calculate using the

threshold values of different groundwater quality parameters and

the results are very convenient to interpret. However, one of the

major issues with the traditional WQIs (for both surface water and

groundwater) is that they fail to deal with the uncertainty and

subjectivity that are inherent in the assessment of environmental

problems (Silvert, 2000), especially while classifying water quality

near the parameter-threshold boundary (Chang et al., 2001). To

overcome this subjectivity and to incorporate environmental un-

certainty in the groundwater quality evaluation process, the

application of Artificial Intelligence (AI) based computational

methods are highly recommended (Maiti et al., 2013; Araghinejad,

2013; Patki et al., 2015; Bagherzadeh et al., 2018; Salari et al., 2018).

The available AI methods can be classified into two broad cate-

gories: (a) Symbolic AI, and (b) Computational AI. The former

mainly deals with the development of knowledge-based system,

while the latter deals with the development of behavior-based

system (Chau, 2006). The computational AI includes Neural Net-

works, Genetic Algorithm, Fuzzy systems, etc. Among various

computational AI methods, Fuzzy Logic (FL) is extensively used to

deal with complex water-related environmental problems

(McKone and Deshpande, 2005; Ghosh andMujumdar, 2006; Chau,

2006; Mohebbi Tafreshi et al., 2018), owing to its capability to deal

with non-linearity and uncertainty involved in environmental

systems (Chanapathi et al., 2019). In addition to this, FL serves as an

effective tool for conveying the results to the public and benefi-

ciaries in a much understandable linguistic format (Li et al., 2018).

The Fuzzy Logic was introduced by Zadeh (1965) and is based on

‘fuzzy’ set-theory in contrast to the classical mathematics which is

based on the ‘crisp’ set-theory. Ocampo-Duque et al. (2006) first

used fuzzy inference system (FIS) to evaluate river water quality in

Spain and identified the fuzzy WQI to be more robust compared to

the traditionalWQI. A few studies have used Fuzzy Logic to evaluate

groundwater quality (Dahiya et al., 2007; Jinturkar et al., 2010;

Hosseini-Moghari et al., 2015; Mohamed et al., 2019) and it has

been recommended for the evaluation of complex water quality

problems. All of these studies implemented Fuzzy Logic based GQI

for point-based groundwater samples collected from open/bore

wells (Dahiya et al., 2007; Hosseini-Moghari et al., 2015; Gorai et al.,

2016; Vadiati et al., 2016; Agoubi et al., 2016; Mohamed et al., 2019)

or from hand pumps (Jinturkar et al., 2010) and did not map the

spatial variation of groundwater quality. Furthermore, a general

difficulty has been reported in validating Fuzzy-based GQI owing to

the linguistic subjectivity involved in the construction of Fuzzy-

based indices (Ocampo-Duque et al., 2013).

It is evident from the review of literature presented above that

the application of Fuzzy Logic for developing GIS-based GQI is in its

infancy and little attention has been given to employ Fuzzy Logic to

address the non-linearity and uncertainty involved in the spatial

mapping of GQI (Machiwal et al., 2018). Also, the issue involved in

the validation of Fuzzy-based GQI has not been addressed to date.

Considering these research gaps and the need for an efficient

methodology for evaluating groundwater quality at larger scales,

the goal of this study is to develop a novel hybrid framework by

integrating Fuzzy Logic with the GIS-based GQI to assess
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groundwater quality and its spatial variability at larger scales. This

hybrid framework is named Fuzzy-GIS-based Groundwater Quality

Index (henceforth called “FGQI”), and its efficacy and applicability

are demonstrated through a case study in a hard-rock terrain of

Tamil Nadu state, South India. Also, for the first time, the issue

concerning validation of the developed FGQI has been addressed in

this study. Two recent studies conducted in a few parts of Tir-

uchirappalli District (Selvakumar et al., 2017; Rajendran et al., 2019)

deal with the basic geochemical analysis of groundwater at limited

locations using statistical and/or graphical methods, which also

indicate the necessity for an efficient methodology to assess

groundwater quality at a larger scale.

2. Materials and methods

2.1. Overview of study area

2.1.1. Location and climate

The study area selected for this study is Tiruchirappalli district

(also known as ‘Trichy), which is situated in the central position of

Tamil Nadu state in the southern part of India (Fig. 1). It is located

between 10�160 and 11�220 North latitude and 78�150 and 79�160

East longitude and encompasses an area of approximately

4403.83 km2. It is sub-divided into 14 administrative units (known

as ‘blocks’) namely, Anthanallur, Lalgudi, Manachanallur, Mana-

pparai, Manikandam, Marungapuri, Musiri, Pullambadi, Tattayan-

garpettai, Tiruverumbur, Thottiyam, Thuraiyur, Uppliyapuram and

Vaiyampatti (Fig. 1). The main source of surface water is the

Cauvery River and its tributaries (Ayyar, Uppar and Koraiyar rivers)

which flow through the center of the study area.

The area is characterized by ‘Tropical wet and dry climate’ with

hot and dry summer from March to May, normal to moderate

monsoon rainfall from June to December, followed bymild cold and

moist winter during January and February. The monsoon season in

the study area occurs in two phases: June to September from the

Southwest Monsoon and October to December from the Northeast

Monsoon, with the former contributing 32% to the annual rainfall

and the latter being the major rainy season contributing 48%.

Owing to the Cauvery River dispute, the surface water reserves are

not sufficient during the non-monsoon season, resulting in heavy

dependency on groundwater reserves for drinking and irrigation

purposes. This situation calls for proper groundwater management

in the river basin.

2.1.2. Hydrogeology and land characteristics

The study area predominantly consists of three geological

groups: (i) the Bhavani group of formations comprising of Fissile

hornblende gneiss of Archaean age in the North covering 30% of the

study area, (ii) the Migmatite complexes made up of Hornblende

biotite gneiss of Archaean age extending in the South occupying

about 37% of the study area, and (iii) the Quaternary formations of

Alluvium belonging to the Cainozoic age underlying the Cauvery

River in the central region covering 10% of the area (Fig. S1).

Additionally, patches of limestone of the Trichinopoly group and

sandstone of the Gondwana group of Mesozoic age are confined to

the East of the study area (Jenifer and Jha, 2017). A massive stretch

of Charnockite of Charnockite group is found in the extreme North

and South of the study area. Granite prevailing in the Central and

Western portions of the study area is mostly hard and easily

weathered. The Anorthosite (intrusive igneous rocks) of the

Sathayamangalam group are exposed in the southwestern part of

the study area aremainly comprised of calcium-rich coarse crystals.

The hard-rocks in the study area possess negligible primary

porosity but are rendered porous and permeable due to secondary

porosity by fracturing and weathering. Groundwater yields from

granite and gneiss formation are better than charnockite forma-

tions. Shale, sandstone, clay and alluvium act as unconfined or

leaky confined aquifers in some parts of the study area. The aquifer

is highly heterogeneous due to changes in the lithology, texture and

structural features within a short span of distance. Groundwater in

the study area is usually found at depths of 2e20 m below the

ground in the weathered formations (unconfined aquifers) and it is

tapped mostly through dug wells. Deeper fractured formations

(leaky confined or confined aquifers) occur at depths of 20e40 m

which are tapped through bore wells or dug-cum-bore wells

(CGWB, 2008).

The land use/land cover map of the study area is shown in

Fig. 2(a). Major portion of the study area (66.53%) has agricultural

land wherein crops like paddy, cereals, fruits, vegetables, oil seeds,

and fiber crops such as cotton, sugarcane and pulses are grown.

Fallow land covers 11.45%, forest 9.98%, water bodies 6.34% and

settlement covers 3.62%. Mining activities are limited to about 2% of

the study area, mostly concentrated near the Cauvery River where

sand and sandstonemining is prevalent. A fewmining sites are also

located in the eastern and southern parts of the study area where

predominantly limestone is excavated. On the other hand, a variety

of industries and some gasoline stations are present in different

parts of the study area [Fig. 2(b)], with the cluster of industries

located in the central portion of the study area. These industries

and gasoline stations coupled with mining and agricultural activ-

ities constitute potential sources of contamination for surfacewater

bodies and groundwater (Jenifer, 2018; Jenifer and Jha, 2018).

2.1.3. Data acquisition

For the groundwater-quality assessment of the unconfined

aquifer system underlying the study area, groundwater-quality

data of 24 observation wells during pre-monsoon season (July

2013) and 37 observation wells during post-monsoon season

(January 2014) (Fig. 1) were obtained from Institute of Water

Studies, Chennai, Tamil Nadu. Both the pre-monsoon and post-

monsoon seasons’ groundwater-quality datawere used in this study

to investigate seasonal variation in the groundwater quality and the

influence of the rainfall on the quality of groundwater. The obtained

groundwater quality parameters consisted of major anions and

cations including Total dissolved solids (TDS), Nitrate-Nitrogen

(NO3
�-N), Calcium (Ca2þ), Magnesium (Mg2þ), Sodium (Naþ),

Chloride (Cl�), Potassium (Kþ), Fluoride (F�), Sulphate (SO4
2�) and

Hardness (measured as CaCO3). These ten groundwater-quality

parameters were employed for developing GQI for assessing the

suitability of groundwater for drinking water supply in the study

area. In this study, only prominent water-quality parameters were

considered based on their importance in affecting groundwater

quality as reported in the earlier studies conducted in some parts of

Tiruchirappalli district (e.g., Jameel and Sirajudeen, 2006;

Venkatesan et al., 2013; Selvakumar et al., 2017; Rajendran et al.,

2019), and their impacts on human health. Also, another reason

for considering only important water-quality parameters is due to

the fact that the inclusion of more parameters (less prominent

water-quality parameters) in the groundwater-quality model un-

necessarily increases uncertainty. Thus, the consideration of less

important/unimportant water-quality parameters is neither tech-

nically sound nor practically useful/significant.

2.2. Development of GIS-based groundwater quality index (GQI)

models

The hybrid framework adopted in this study for developing

Fuzzy-GIS-based Groundwater Quality index (FGQI) is illustrated in

Fig. 3. The complete procedure can be segregated into three major

steps viz., geostatistical analysis, development of traditional GIS-

M.K. Jha et al. / Water Research 179 (2020) 115867 3



based GQI models and development of Fuzzy-GIS-based GQI (FGQI)

models.

2.2.1. Geostatistical analysis

Geostatistical analysis, especially spatial interpolation of point

data is the first and foremost step for developing GQI, because

further model development depends heavily on it. Since it is nearly

impossible to obtain field data for each point throughout the study

area, spatial interpolation techniques were used to estimate the

data at un-sampled points using the data from sampled points.

Inverse distance weighting (IDW), Kriging and Co-kriging are most

widely used spatial interpolation methods. IDW is a deterministic

interpolation technique that estimates value at unmeasured points

on the basis of its closeness to the measured points. On other hand,

Kriging is a geostatistical interpolation technique which uses

spatial statistics of the measured points to estimate values at un-

measured points, whereas Co-Kriging is an extension of Kriging in

which an auxiliary variable is used to help the Kriging estimator.

The auxiliary variable is the one which is highly correlated with the

primary variable.

Kriging/Co-Kriging performs better than the IDWmethod when

the data are near normally distributed (Kerry and Oliver, 2007a)

and have no extreme values (Kerry and Oliver, 2007b). Among the

Kriging and Co-Kriging methods, Co-Kriging is found to be superior

Fig. 1. Location map of the study area with the location of groundwater sampling sites.

M.K. Jha et al. / Water Research 179 (2020) 1158674



when the correlation coefficient between the primary and auxiliary

variable is more than 0.5 (Yates and Warrick, 1987). Tables S1 and

S2 show correlation between all the ten groundwater-quality pa-

rameters during pre-monsoon season and post-monsoon season,

respectively. Finally, groundwater-quality parameters following

near-normal distribution were interpolated by employing Kriging/

Co-Kriging considering correlation coefficient values of the pa-

rameters (Tables S1 and S2). The choice between Kriging and Co-

Kriging was finally decided based on the least value of root mean

square error (RMSE). On the other hand, the groundwater-quality

parameters having no near-normal distribution were interpolated

using IDW, which efficiently captures the extreme values that are

most likely in case of groundwater-quality data (Mueller et al.,

2004). Thus, the interpolation methods used to prepare concen-

tration maps of individual groundwater-quality parameters for pre-

monsoon and post-monsoon seasons are shown in Table 1. Using

suitable interpolation methods, concentration maps of

50 m � 50 m pixel size were prepared using GIS for all the

groundwater-quality parameters for both the seasons and a sum-

mary of the basic statistics of the concentrations of individual pa-

rameters during pre-monsoon and post-monsoon seasons is

presented in Table 1. Further, these maps were used for analyzing

spatial variability of the concentration of individual groundwater-

quality parameters.

2.2.2. Traditional GIS-based groundwater quality index (GQI)

models

The concentration maps were employed to compute GIS-based

GQI following the procedure proposed by Babiker et al. (2007).

Firstly, the concentration maps of each parameter were used to

create normalized maps, also known as Concentration Index maps

(CI), by comparing the parameter concentration value (X) with its

Fig. 2a. Land Use/Land Cover in the study area (modified from Jenifer and Jha, 2018).
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standard threshold (T) using Eqn. (1). The WHO Standards for

drinking water (WHO, 2004) and the Indian Standards (IS) for

drinking water provided by the Bureau of Indian Standards (BIS,

2012) were used as shown in Table 1. Thereafter, the rank (R)

maps of all the parameters were generated using Eqn. (2).

CI¼
X � T

X þ T
(1)

R¼0:5*CI2 þ 4:5*CI þ 5 (2)

W ¼

(

meanðRÞ; for TDS;Ca2þ;Mg2þ; SO2�
4 ; Kþ

; F�; Hardness

meanðRÞþ2; for NO�
3 �N;Naþ;Cl�

(3)

GQI¼100�
R1*W1 þ R2*W2 þ :::: þ Rn*Wn

n
(4)

Furthermore, the weights (W) for each parameter were deter-

mined as mean of the respective rank values. However, as sug-

gested by Babiker et al. (2007), the potential parameters were given

higher weights as shown in Eqn. (3). In this study, Nitrate-Nitrogen

(NO3
�-N), Sodium (Naþ) and Chloride (Cl�) were identified as po-

tential health-risk parameters for the study area. Excess levels of

Nitrate are known to cause ‘blue baby’ syndrome, whereas excess

Chloride levels are known to increase colon cancer risk (Aieta and

Berg, 1986). Although higher sodium levels do not pose a serious

threat to the human health, it creates a risk to the people under low

sodium diet which is usually recommended for hypertension (high

blood pressure) and congestive heart failure patients. Finally, the

GQI values were calculated using Eqn. (4), which lie between 0 and

Fig. 2b. Distribution of different industries and gasoline stations over the study area.
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100. Two traditional/conventional GQI models of the study area for

pre-monsoon and post-monsoon seasons were prepared using all

the ten groundwater-quality parameters, and are denoted as GQI-

10 models [using total dissolved solids (TDS), Nitrate-Nitrogen

(NO3
�-N)), Calcium (Ca2þ), Magnesium (Mg2þ), Sodium (Naþ),

Chloride (Cl�), Potassium (Kþ), Fluoride (F�), Sulphate (SO4
2�) and

Hardness (measured as CaCO3)]. Similarly, twomore traditional GQI

maps were prepared for pre-monsoon and post-monsoon seasons

using only the parameters whose concentration values exceed their

permissible limits (henceforth called ‘concerned/critical parame-

ters’ in this study), and are denoted as GQI-7 models [using seven

‘concerned/critical parameters’ namely total dissolved solids (TDS),

Nitrate-Nitrogen (NO3
�-N), Sodium (Naþ), Chloride (Cl�), Potassium

(Kþ), Fluoride (F�), and Hardness]. The computed index values in

each case were categorized into suitable classes to generate four

traditional GQI maps based on the classification scheme proposed

by Babiker et al. (2007).

2.2.3. Fuzzy-GIS-based groundwater quality index (FGQI) model

Since its inception by Zadeh (1965), Fuzzy Logic (FL) has helped

researchers to induce human knowledge and experience to deal

with the uncertainty and vagueness involved while assessing nat-

ural systems. Fuzzy Logic maps input to output using Fuzzy Infer-

ence System (FIS) that combines FL and experts’ knowledge via four

main components viz., fuzzification, fuzzy inference rules, aggre-

gation and defuzzification. Two most important fuzzy inference

systems areMamdani FIS (Mamdani,1976) and Sugeno FIS (Sugeno,

1985). Mamdani FIS is most widely used for environmental

Fig. 3. Flowchart depicting the methodology for developing traditional and Fuzzy GIS-based GQI models.
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applications due to its simplicity and practical application (Icaga,

2007; Scannapieco et al., 2012) and it has been employed in this

study for the development of FGQI.

2.2.3.1. Fuzzification. The fuzzification of the input and output is

done by constructing Membership Functions (MFs). Membership

Function (MF) is a curve which shows the degree of belongingness

(membership value) of the data to a particular class. The mem-

bership value was determined using experts’ knowledge and

drinking water quality standards of WHO (WHO, 2004) and BIS

(BIS, 2012) as shown in Table 1 and S3. Fig. 4(a-h) show the chosen

MFs for the input and output variables. Trapezoidal MFs were

adopted in this study as they are the most commonly used func-

tions in many studies (Kosko, 1993). The inputs to the FIS were the

concentration maps of the ‘concerned parameters’ similar to the

traditional GQI-7 map so as to reduce the uncertainty. The trape-

zoidal membership functions of all the seven groundwater-quality

parameters and FGQI were constructed using following equation

(Hosseini-Moghari et al., 2015):

f ðx; a; b; c; dÞ¼

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 x< a or d< x

a� x

a� b
a � x � b

1 b � x � c

d� x

d� c
c � x � d

(5)

Where, x is the parameter to be fuzzified and ‘a’, ‘b’, ‘c’, and ‘d’ are

the linguistic variables used to divide the parameters into different

classes (Table S4). The input parameters were divided into three

classes: ‘desirable’ (concentration value less than or equal to the

desirable limit), ‘acceptable’ (concentration value between desir-

able and permissible limits), and ‘unacceptable’ (concentration

value more than the permissible limit) based on the WHO and BIS

standards for drinking water [Fig. 4(a-g) and Table S4]. The outputs

(values of FGQI) were classified into five classes namely ‘unac-

ceptable’, ‘poor’, ‘moderate’, ‘good’ and ‘excellent’ [Fig. 4(h) and

Table S5].

2.2.3.2. Fuzzy inference rules. The fuzzy inference rules are in the

form of ‘if-then’ format. They map the input class categories to the

output class categories. The ‘if’ part is called an antecedent and the

‘then’ part is called a consequent. For example, ‘If the concentration

of a parameter (e.g., TDS) is desirable, then the water quality (FGQI)

is excellent’. Fuzzy rules for the study area were designed by using

experts’ knowledge and carefully considering the parameters

having potential health risk (i.e., NO3
�-N, Cl� and Naþ). An outline

showing the design of fuzzy inference rules is depicted in Fig. 5. The

main premise while designing the fuzzy inference rules was: “even

if one water-quality parameter exceeds the permissible limit for

drinking water, then the water is not suitable for direct consumption

by the people”. All the fuzzy inference rules were designed keeping

this main premise in mind. Moreover, while designing the fuzzy

inference rules, three potential health risk parameters NO3
�-N, Cl�

and Naþ were also taken into special consideration. This main

premise ensures the practicality of the developed water quality

index in judging drinking water suitability. This is important to

emphasize here as this knowledge helps to inculcate human un-

derstanding in the Fuzzy Logic assessment of groundwater quality.

2.2.3.3. Aggregation of fuzzy rules. Once the fuzzy inference rules

were designed, the next step was combining all the designed fuzzy

inference rules. The aggregation of the consequent part of the fuzzy

inference rules is needed to calculate a single fuzzy output, which is

FGQI in this study. Maximum method (Ross, 2004) was used as an

aggregation procedure in this study, which applies union operation

on all the truncated output fuzzy sets.

2.2.3.4. Defuzzification. Finally, defuzzifying the aggregated output

value was carried out to convert the fuzzy sets to a numeric value.

The final numeric score obtained is “Fuzzy Groundwater Quality

Index (FGQI)”. The most commonly used Centroid of Area (COA)

method (Ross, 2004) was employed for defuzzification of the fuzzy

sets. The detailed description of all the fuzzy set operations and FIS

can be found in Ross (2004). All the FL operations were carried out

in Matlab R2014a (Mathworks, 2014), whereas the GIS operations

were carried out in ArcGIS 10.2.2 (ESRI, 2014). Thus, Fuzzy-GIS-

based Groundwater Quality Index (FGQI) maps of the study area

were prepared for pre-monsoon and post-monsoon seasons using

seven ‘concerned parameters’.

Table 1

Basic statistics of seasonal groundwater quality, threshold values of water quality parameters, and interpolation method used for concentration mapping.

M.K. Jha et al. / Water Research 179 (2020) 1158678



2.3. Validation of the developed GQI models

For the first time, the validation of FGQI has been attempted in

this study because it is a difficult task. It is important to emphasize

that FGQI is developed based on linguistic terminology in the form

of fuzzy rules. Equations are only used to map the parameters

which reduce the non-linearity of the fuzzy model. The best

method to validate an index is to use impact factors or indicators

(Ocampo-Duque et al., 2006). However, relating an impact factor to

groundwater quality is furthermore challenging and it is not

possible in some situations. In this study, the FGQI and traditional

GQI models developed for pre-monsoon and post-monsoon seasons

were validated qualitatively using land use/land cover and industry

location maps [Fig. 2(a and b)] as well as quantitatively using site-

specific groundwater-quality data obtained from the analysis of

groundwater samples collected from different observation wells

over the study area; these water-quality data indicate the status of

groundwater quality with minimum uncertainty. Since unaccept-

able concentration of even one parameter renders the water un-

suitable for drinking and other domestic proposes, the score of a

given groundwater quality index was examined for the observation

well with respect to its number of unsafe parameters (parameters

exceeding their acceptable/permissible limits).

3. Results and discussion

3.1. Variability of groundwater-quality parameter concentration in

the study area

The concentration maps created using spatial interpolation of

the point values of the concentrations of ten groundwater-quality

parameters for pre-monsoon and post-monsoon seasons are shown

in Fig. 6(a and b). The concentrationmaps are categorized into three

classes on the basis of the desirable and permissible limits of WHO

and BIS for drinking water (Table S3). As it can be seen from Fig. 6(a

and b) that Calcium, Magnesium and Sulphate are the ‘safe pa-

rameters’ as they arewell within the desirable limits throughout the

study area during both pre-monsoon and post-monsoon seasons.

However, the remaining 7 parameters, i.e., TDS, NO3
�-N, Naþ, Cl�,

Kþ, F� and Hardness exceed their permissible limits in some parts

Fig. 4. (aeh). Fuzzy Membership Functions (MFs) of the input and output variables: (a) TDS; (b) Nitrate-Nitrogen; (c) Chloride; (d) Potassium; (e) Hardness; (f) Sodium; (g)

Fluoride; (h) FGQI.
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of the study area and hence, they are considered as ‘critical/con-

cerned parameters’ for assessing the suitability of groundwater for

drinking purpose. The spatial variability of groundwater quality

during pre-monsoon and post-monsoon seasons is discussed in the

subsequent sub-sections.

3.1.1. Concentration maps of groundwater-quality parameters for

the pre-monsoon season

It is apparent from Fig. 6(a) that in the pre-monsoon season,

groundwater in theunconfinedaquiferunderlying the south-western

part of the study area (Vaiyampatti block) has unacceptable

Fig. 5. Methodology for designing Fuzzy inference rules to evaluate groundwater quality based on FGQI.

Fig. 6a. Concentration maps of the groundwater-quality parameters during pre-monsoon season.
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concentrations of all the critical/concerned groundwater-quality pa-

rameters except Potassium. This is mainly due to the fact that

Vaiyampatti block lies at the downstream end of the Cauvery River

and a significant amount of surface pollutants from the upstream

portion are deposited in this block,which gradually percolate into the

unconfined aquifer. The concentration of TDS in groundwater ranges

from 157 to 3202mg/L (Table 1) and exceeds its permissible limit for

drinking in 5% of the study area. Further, the NO3
�
eN concentration

exceeds its permissible limit in 8% of the study area, which is mainly

due to anthropogenic sources like chemical fertilizer application in

the agricultural fields. Other non-agricultural sources of Nitrate

include seepage from septic tanks and cesspools, heap of cattle dung,

etc. Less than 2% of the area has unacceptable concentration of So-

dium in groundwater in Vaiyampatti block. The Chloride concentra-

tion in groundwater is relatively higher in parts of Lalgudi,

Thiruverumbur, Thottiyam, andVaiyampatti blocks. Themajor source

of Chloride is the effluent molasses from paper and pulp industries

[Fig. 2(b)]. Potassium concentration in the groundwater exceeds the

WHOprescribed limitof12mg/L in10%of the studyarea. The increase

in Fluoride concentration is mainly due to the geogenic source, i.e.,

dissolution of natural minerals like Apatite, Biotite, Cryolite, Fluorite,

etc. From the igneous rocks. Fig. 6(a) shows that the total hardness of

groundwater is relatively high in the study area which can be attrib-

uted to considerable limestone deposits in this region.

3.1.2. Concentration maps of groundwater-quality parameters for

the post-monsoon season

Although some similar patterns of pre-monsoon can be observed

in the post-monsoon season, the concentrations of groundwater-

quality parameters significantly differ in the post-monsoon season

[Fig. 6(b)]. The TDS concentration in groundwater during the post-

monsoon season ranges from 190 to 3028 mg/L. The area under the

‘desirable concentration’ region has considerably decreased from

24.6% in the pre-monsoon season to 7.37% in the post-monsoon

season. In case of NO3
�-N concentration in the area, unacceptable

groundwater quality region has reduced to 5.7% in the post-

monsoon season due to the dilution of pollutant in groundwater

during monsoon season. Fig. 6(b) reveals that the concentrations of

Calcium, Magnesium and Sulphate are within their prescribed

limits in both the seasons. Unacceptable concentration of Sodium is

found in some parts of Marungapuri block in the post-monsoon

season in addition to Vaiyampatti block which suffers from high

sodium concentration in the pre-monsoon season as well. Although

only 5% of the study area shows unacceptable Chloride concen-

tration in groundwater during the post-monsoon season, the area

under desirable groundwater quality region has reduced from

44.41% in the pre-monsoon season to 27.6% in the post-monsoon

season. The spatial distribution of Potassium concentration in

groundwater shows that the unacceptable concentration occurs in

many blocks viz., Manapparai, Manachanallur, Musiri, Vaiyampatti,

Lalgudi and Pullambadi covering 13% of the study area. Further-

more, the concentration of Fluoride in groundwater exceeds its

prescribed limit in less than 1% of the study area which is confined

to the southernmost part of Marungapuri Block. The total hardness

of groundwater ranging between 95 and 880 mg/L (Table 1) in the

pre-monsoon has increased drastically to 150e1500 mg/L in the

postmonsoon season. The area under the unacceptable level of

hardness increased to 7.73% in the post-monsoon season compared

to the pre-monsoon season.

Generally, the dilution of pollutants occurs during the rainy/

monsoon season and hence, groundwater quality is expected to

improve in the post-monsoon season as compared to the pre-

Fig. 6b. Concentration maps of the groundwater quality parameters during post-monsoon season.
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monsoon season. However, the spatial variability of the concen-

trations of different groundwater-quality parameters in the study

area during pre-monsoon and post-monsoon seasons clearly reveals

that the effect of pollutant dilution is very less in the study area.

Consequently, unlike common observations in many past studies

on groundwater-quality evaluation, the groundwater quality de-

teriorates in the post-monsoon season, thereby indicating that the

concentration of groundwater-quality parameters in the study area

is significantly increased by the recharge during the rainy/monsoon

season.

3.2. Traditional GIS-based GWQI maps

The GQI-10 and GQI-7 maps for the pre-monsoon season are

shown in [Fig. 7(a)] and [Fig. 7(b)], respectively. The values of GQI-

10 vary from 65.15 to 89.58 with a mean value of 76.33 (Table 2).

According to the values of indices obtained, the GQI-10 map of the

study area was classified into two classes ‘medium quality’ (GQI-

10 ¼ 60e80) and ‘high quality’ (GQI-10 > 80) for drinking water

(Babiker et al., 2007), with the northern portion of the study area

belonging to the ‘high quality’ groundwater [Fig. 7(a)]. The GQI-7

map [Fig. 7(b)] significantly differs from the GQI-10 map, with

GQI-7 values always lower than GQI-10 values. The GQI-7 values

range from 52.84 to 86.73, with a mean value of 68.26 (Table 2). The

southwest (Vaiyampatti block), eastern (Lalgudi block) and south-

east (Thiruverumbur block) parts of the study area have ‘lower

quality’ (GQI-7 <60) groundwater for drinking. However, the

Fig. 7. (aef). Groundwater-Quality Index (GQI) maps for the pre-monsoon season: (a) based on all 10 parameters (GQI-10); (b) based on 7 ‘concerned’ parameters (GQI-7); (c) Fuzzy

GIS-based Groundwater Quality Index (FGQI); and for the post-monsoon season: (d) based on all 10 parameters (GQI-10); (e) based on 7 ‘concerned’ parameters (GQI-7); (f) Fuzzy

GIS-based Groundwater Quality Index (FGQI).

Table 2

Basic statistics of the developed GQIs and FGQI.

Type of Index GQI Values for Pre-monsoon

Season

GQI Values for Post-monsoon

Season

Minimum Maximum Mean Minimum Maximum Mean

GQI-10 65.15 89.58 76.33 61.90 88.48 73.05

GQI-7 52.84 86.73 68.26 48.95 85.28 63.92

FGQI 12.18 86.42 59.80 13.81 86.42 55.22

Note: GQI-10 ¼ Groundwater Quality Index using all 10 parameters; GQI-

7 ¼ Groundwater Quality Index using 7 ‘concerned’ parameters; FGQI ¼ Fuzzy

Groundwater Quality Index using 7 ‘concerned’ parameters.
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northwest part of the study area (western portion of Uppliyapuram

block) has ‘high quality’ groundwater, while the central portion of

the study area has ‘medium quality’ groundwater for the drinking

purpose [Fig. 7(b)].

Moreover, GQI-10 and GQI-7 maps of the study area for the post-

monsoon season are shown in Fig. 7(d and e). The GQI-10 values

range from 61.90 to 88.48 with a mean of 73.05 (Table 2). The

classification of GQI-10 map for the post-monsoon season is similar

to that of the pre-monsoon season and only the northern part of the

study area has ‘high quality’ groundwater [Fig. 7(d)]. The GQI-7

map [Fig. 7(e)] for the post-monsoon season differs largely

compared to the GQI-10 map, with the GQI-7 values varying from

48.95 to 85.28 (mean ¼ 63.92) (Table 2). It evident that the

southwest (Vaiyampatti block), southern (Manapparai block) and

southern-east (Thiruverumbur block) parts of the study area have

‘low quality’ groundwater [Fig. 7(e)], but the northern part

(Uppliyapuram block) has ‘high quality’ groundwater.

Based on the above discussion, it is emphasized that the GQI-7

values are always lower than GQI-10 values and the GQI-7 map is

more practical and reliable than the GQI-10 map. The GQI-7 is able

to successfully map the polluted blocks (Vaiyampatti, Lalgudi,

Thiruverumbur, and Manapparai blocks) under the ‘low quality’

category, while the GQI-10 maps them under ‘medium quality’

category. Further, as GQI-10 uses more number of water-quality

parameters compared to GQI-7, it introduces more uncertainty

and high computation demand.

3.3. Fuzzy-GIS-based GQI (FGQI) maps

Fuzzy Logic was applied to the GIS-based concentration maps

for the ‘concerned parameters’ to generate Fuzzy-GIS-based

Groundwater Quality Index (FGQI) maps of the study area for pre-

monsoon and post-monsoon seasons [Fig. 7(c and f)]. The FGQI was

developed bearing in mind the inherent uncertainty associated

with environmental systems.

The FGQI values for the pre-monsoon season range from 12.18 to

86.42 with a mean of 59.80 (Table 2) based onwhich FGQI map was

prepared as shown in Fig. 7(c). It is apparent from this figure that

except the northern (Uppliyapuram block) and central (Thuraiyur

and Musiri blocks) parts of the study area, other parts of the area

has ‘low quality’ (FGQI <60) groundwater for drinking. Extremely

low values of FGQI (<20) can be seen in the southwest part of the

study area [Fig. 7(c)]. On the other hand, the FGQI values for the

post-monsoon season vary from 13.81 to 86.42 with a mean of 55.22

(Table 2). Based on the FGQI, most of the regions of the study area

fall under the category of ‘low quality’ (FGQI<60) groundwater in

the post-monsoon season, whereas the northern part of the study

area falls under the category of ‘high quality’ (FGQI >80) ground-

water [Fig. 7(f)]. A few locations (scattered patches) in the central

and southern parts of the study area have ‘medium quality’

(60 < FGQI < 80) groundwater for drinking.

3.4. Comparison of traditional and fuzzy GIS-based GWQI models

and validation

A comparative evaluation of the GQI-10, GQI-7 and FGQI models

was performed to examine the relative performance of these

models in predicting actual groundwater quality status during pre-

monsoon and post-monsoon seasons in the study area as illustrated

in Fig. 8(a and b). It is clear from these figures that the GQI-10

values are always higher than GQI-7 values. This is expected as

the safe parameters increase the values of GQI. Further, for most of

the observationwells, the FGQI values are much lower than GQI-10

and GQI-7 values. However, for the observation wells having con-

centrations of all the groundwater-quality parameters much lower

than their permissible limits, the FGQI values are almost equal to or

more than the values of GQI-10 and GQI-7 as evident in case of

observation well numbers 6, 10, 15 and 20 in the pre-monsoon

season [Fig. 8(a)] as well as observation well numbers 3, 5, 19, 31

and 33 in the post-monsoon season [Fig. 8(b)].

Moreover, the validation of traditional and Fuzzy GIS-based

GWQI models for pre-monsoon and post-monsoon seasons is illus-

trated in Fig. 8(c and d). During the pre-monsoon season, it is

obvious from Fig. 8(c) that the FGQI model predicts ‘low quality’

(GWQI<60) groundwater for drinking when the number of critical

parameters is more than one, whereas the GQI-10 and GQI-7

models predict ‘medium quality’ (60<GWQI<80) groundwater for

the same observation wells. Similar trend can be seen for the post-

monsoon season as well [Fig. 8(d)]. These findings along with the

findings of qualitative validation using land use/land cover and

industry location maps clearly highlight the superiority of FGQI

models and emphasize the need for using Fuzzy Logic in developing

GIS-based groundwater-quality models for assessing groundwater

quality at larger scales. The FGQI model evidently predicts

groundwater drinking quality status as per the practical logic and

correctly indicate the safe groundwater as ‘high quality’ (i.e., it can

be directly consumed for drinking) and unsafe groundwater as ‘low

quality’ (i.e., no direct consumption or domestic use).

One of the important findings while comparing the developed

groundwater quality indices is that the post-monsoon groundwater

quality is lower than the pre-monsoon groundwater quality, thereby

indicating that the dilution effect in the monsoon season is not

prevalent in the study area. The groundwater quality of the

northern part of the study area which is occupied by mostly hilly

forest is almost the same during pre-monsoon and post-monsoon

seasons. In the remaining parts of the study area, the groundwater

quality deteriorates in the monsoon/post-monsoon season, which

is attributed to the improper management of effluents from in-

dustrial, mining and waste dumping areas as well as leaching of

chemical fertilizers and pesticides in agricultural fields during

monsoon seasons. There is a large decrease in FGQI and GQI values

in the southwest part of the study area in the post-monsoon season

[Fig. 7(d-f)]. This may be due to chemical, iron and steel industries

located in this part of the study area [Fig. 2(b)]. Moreover, the

central and southern parts of the study area seem to have lower

FGQI and GQI values in the post-monsoon season because of nitrate

and potassium pollution in the monsoon season due to agricultural

activities. This calls for proper management of solid and liquid

wastes, and efficient application of fertilizers and pesticides in the

study area.

4. Conclusions

In this paper, a novel hybrid framework considering Fuzzy Logic

and GIS-based Groundwater Quality Index (GQI) is proposed to

evaluate and analyze groundwater quality at larger scales. The

proposed hybrid approach is named “Fuzzy-GIS-based Ground-

water Quality Index” (henceforth denoted as “FGQI”), and it is

demonstrated through a case study in an unconfined aquifer sys-

tem of Southern India using salient groundwater-quality parame-

ters measured at multiple sites during pre-monsoon and post-

monsoon seasons. Fuzzy Logic was applied to deal with non-

linearity and uncertainty inherent in natural/environmental sys-

tems. Traditional GIS-based Groundwater Quality Index (GQI)

models and hybrid GIS-based GQI models using Fuzzy Logic were

developed for both the seasons following the drinking water

guidelines of World Health Organization (WHO, 2004) and Bureau

of Indian Standards (BIS, 2012). For the first time, the developed

GQI models were rigorously evaluated in this study through inter-

comparison and validation.

M.K. Jha et al. / Water Research 179 (2020) 115867 13



Initially, a geostatistical analysis was carried out to prepare

concentration maps of different groundwater-quality parameters,

and analyze their spatial and seasonal variability. Basic statistical

analysis revealed that Ca2þ, Mg2þ and SO4
2� are safe parameters

(concentration values well within the WHO desirable limits for

drinking water) during both pre-monsoon and post-monsoon sea-

sons. However, the remaining seven parameters (TDS, NO3
�-N, Naþ,

Cl�, Kþ, F� and Hardness) are critical with concentration values

greater than their permissible limits for drinking during both the

seasons. Hence, traditional GIS-based GQI models were developed

for pre-monsoon and post-monsoon seasons using all the ten

groundwater-quality parameters (denoted as ‘GQI-10’) as well as

using only seven ‘concerned/critical parameters’ (denoted as ‘GQI-

7’). In addition, FGQI models for both the seasons were developed

using seven ‘concerned/critical parameters’ Experts’ knowledge

along with the WHO and BIS guidelines for drinking water were

employed to design fuzzy inference rules. A comparative evaluation

of the traditional GQI models and FGQI models indicated that the

FGQI models predict groundwater-quality status more realistically

than the traditional GQI models because the former incorporate

human thinking and handle uncertainty involved in the natural

system analysis efficiently. It also emphasizes that only critical/

prominent water-quality parameters should be used for developing

GIS-based GQI models in order to ensure reliable and useful results.

Thus, the proposed fuzzy-based decision-making approach along

with GIS-based GQI (FGQI) is more reliable for assessing ground-

water quality at larger scales. GQI modeling results suggest that the

groundwater of eastern and southern parts of the study area is

unsuitable for drinking/domestic usage during both pre-monsoon

and post-monsoon seasons. Moreover, the post-monsoon water

quality status in the study area is lower than that of the pre-

monsoon season, which indicates increased influx of pollutants

from industrial, mining, agricultural and waste dumping areas

during monsoon seasons.

The hybrid framework proposed in this study can easily be

replicated in other regions of the world for evaluating the suit-

ability of groundwater or surface water quality for domestic and/or

agricultural purposes. Particularly, it is strongly recommended for

the assessment and monitoring of groundwater quality at water-

shed/basin scales in other agro-climatic regions and hydrogeologic

settings of India and the world. Based on the findings of this study,

it is recommended that concerned water planners and decision-

makers must formulate improved and comprehensive strategies

for the efficient management of effluents from different industries,

mining areas, waste disposal sites and agricultural fields so as to

avoid groundwater contamination by anthropogenic sources in the

region. Prevention of aquifer/surface water contamination is

indispensable for protecting crucial groundwater and surface water

resources so as to ensure sustainable utilization and management

of available water resources. It is worth mentioning that the pro-

tection of groundwater resources and prevention or reduction of

harmful hazards is more feasible and less expensive options than

the remediation of polluted groundwater resources due to physical

inaccessibility, complex processes and huge expenses. Therefore,

future studies should focus on the efficient assessment of

groundwater-contamination risk at basin/regional scales for the

planning, decision-making, and policy perspectives of groundwater

protection and recharge programs.
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