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Abstract 
 

Automation in plant disease detection and diagnosis is one of the challenging research areas that 
has gained significant attention in the agricultural sector. Traditional disease detection methods rely on 
extracting handcrafted features from the acquired images to identify the type of infection. Also, the 
performance of these works solely depends on the nature of the handcrafted features selected. This can 
be addressed by learning the features automatically with the help of Convolutional Neural Networks 
(CNN). This research presents two different deep architectures for detecting the type of infection in 
tomato leaves. The first architecture applies residual learning to learn significant features for 
classification. The second architecture applies attention mechanism on top of the residual deep network. 
Experiments were conducted using Plant Village Dataset comprising of three diseases namely early 
blight, late blight, and leaf mold. The proposed work exploited the features learned by the CNN at various 
processing hierarchy using the attention mechanism and achieved an overall accuracy of 98% on the 
validation sets in the 5-fold cross-validation.  

 
Keywords: Attention, CNN, Residual Connections, Tomato, Deep Learning.  

 
1. Introduction 
 

Tomato holds an inevitable place in the economy of Indian agriculture. India stands third in the 
production of tomatoes with a yield of 53,00,000 tons and it is harvested around 3,50,000 hectares of 
land. The harvest index of tomato in India is comparatively less than in other countries. One of the major 
reasons for the reduction in yield is due to diseases that occur frequently on the leaves of the plant. 
Tomato crops are highly affected by diseases like bacterial spot, early blight, late blight, and leaf mold. 
The blight is the most prevalent disease among others. 
 The tomato crop is highly susceptible to a wide range of disease at each stage of its growth. This 
is due to different factors based on climatic conditions and environmental parameters. By identifying 
these diseases, tremendous loss in the yield can be alleviated. Also, the final agricultural product obtained 
in terms of quality and quantity can be improved. It is relatively complex in real time to maintain a 
manual record of all the symptoms and signs caused by the diseases. Also, monitoring of plants in a large 
field requires extensive manual effort. Hence, different automation schemes for disease detection were 
presented in the last two decades [1-5]. 

As a part of sustainable agriculture, various measures can be taken by leveraging the technology 
towards automated inspection of diseases. Factors like pathogen development, modification of host 
resistance and wider global transfer of diseases have led to the development of many solutions [6].  
Precision farming was aimed at limiting the employment of expensive methods of farming which uses 
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harmful chemicals. In this type of farming, mobile robotics, remote sensor networks and drones are used 
to advocate controlled and measured amounts of medicine to the infected areas of the plants.  
 

The main challenge of precision farming is that, it had numerous challenges in data collection, 
processing and make expert inferences. Therefore, precision farming incorporated image processing and 
computer vision techniques to process the information in the cultivation field. Image processing was 
quite successful in solving the problems of disease detection, weed detection, understanding the 
symptoms of a disease and even more recently, grading the yield output. As machine learning algorithms 
continued to advance, the accuracy in image processing techniques continued to grow consistently. 
However, these algorithms demand handpicked features to detect diseases which made deep learning 
techniques pertinent. This research places an attempt towards application of deep learning architectures 
for detection of diseases in tomato leaves.  

 
2. Related Works 
 
 Several research works have been presented in the last two decades towards detection of disease 
in different crops. Image processing techniques were applied to extract the features and given as input to 
machine learning algorithms for precise classification. In short, these approaches can be broadly 
classified into (1) Machine learning methods (2) Deep learning methods.  
 
2.1   Machine learning based methods 
 
 Akhtar et al. presented an automated approach for plant disease detection using Gray Level Co-
occurrence Matrix (GLCM) and Wavelet-based features [7]. The features were trained with different 
machine learning algorithms namely K- Nearest Neighbor (KNN), Naïve Bayes Classifier, Support 
Vector Machine (SVM), Decision Tree and Recurrent Neural Networks. An automated approach for 
tomato grading system was presented by Semary et al. [8]. This approach utilized color and texture 
features and classified using SVM. Prasad et al. developed an automated approach for leaf disease 
diagnosis using Gabor Wavelet Features (GWF) and GLCM features. These multi-resolution features 
were trained using weighted KNN [9].  

Ashourloo et al. presented a method to detect leaf disease using hyperspectral measurement [10]. 
An approach to detect the severity of the disease in leaves was proposed in [11]. Statistical features in 
the RGB and HSV color space were utilized for determining the severity level.  H. Sabrol et al. presented 
an approach for leaf disease detection in tomatoes by combining Otsu’s segmentation with decision trees 
for classification. This approach considered color, shape and texture features for learning the 
characteristics of the leaf diseases [12].   

Padol et al. presented an approach to detect leaf diseases using color and texture features. The 
infected region was initially segmented using K-means clustering. Then, features were extracted from 
the required region of interest and trained using SVM for classification [13]. Another approach using K-
means algorithm was proposed for leaf disease detection and classification [14].  T. Mehra et al. employed 
K-means clustering to identify the presence of fungal infections on leaves [15]. One of the major 
challenge in applying the above clustering algorithms is the determination of precise number of clusters 
and fixing of parameters to differentiate each cluster.  
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In the past few years, Scale invariant feature transforms were explored for many image processing 
problems [16-18].  An approach using Scale Invariant Feature Transform (SIFT) for detection of leaf 
disease was presented by Dandawate et al. [19]. In this work, SIFT features were trained using SVM for 
detecting the presence of disease. SIFT based features were combined with Johnson SB distribution for 
effective classification of diseases in tomatoes [20].   
 All the above methods for disease detection were based on hand engineered features extracted 
from the leaf portion of the image. The accuracy of these works solely depends on the nature of the 
handcrafted features selected. Also, it is to be noted that the performance of these works needs to be 
validated against a wide range of datasets. These drawbacks can be addressed by using deep learning 
techniques.  
 
2.2   Deep learning based methods 
 

Unlike machine learning algorithms, deep learning algorithms can be applied directly over the 
input data and does not require any handcrafted features. In today’s world, the computing power delivered 
by High-Performance Computing (HPC) and Graphics Processing Unit (GPU) allows for efficient 
training of deep models while simultaneously implementing parallelism in computing. A number of deep 
learning models have been proposed in order to train leaf images to perform disease detection. 

Most of the researches were based on applying existing deep learning architectures like VGG16, 
AlexNet, ResNet, GoogleNet etc. for detection of infection in tomato leaves.  Jia Shijie et al. presented 
an approach to detect diseases in tomato leaves using VGG16 architecture [21]. Suryawati et al. presented 
another deep CNN using VGG16 architecture to detect infection in tomato leaves [22].  Aravind et al. 
compared the performance of VGG16 with AlexNet architecture for disease detection in tomato leaves. 
It was inferred that the model trained with AlexNet architecture was accurate than VGG16 by a small 
margin [23]. Jayme Garcia et al. utilized a pre-trained GoogleNet CNN architecture for disease detection 
in leaves [24]. Zhang et al. presented a transfer learning approach using AlexNet, GoogleNet, and 
ResNet architectures for disease detection in tomato leaves [25]. Liang et al. presented an approach 
involving the use of Resnet50, Wideresnet50, DPN92 neural networks for classification of plant diseases 
[26]. A deep architecture based on LeNet was proposed to detect the type of disease in tomato leaves in 
[27]. 

Q. H. Cap et al. used two super resolution (SR) models which are based on super resolution 
convolutional neural networks (SRCNN) and enhanced super resolution generative adversarial networks 
(ESRGAN). The SRCNN model is used to identify prominent disease features, whereas, the ESRGAN 
model focuses on high frequency details to obtain a more accurate prediction [28]. Another deep learning 
architecture named ‘PD2SENET’ was proposed to detect and indicate the severity of the disease [29]. In 
this architecture, the shallow layers considered raw pixel values of plant images as input and the 
progressive feature maps are generated with the help of residual learning. Srdjan Sladojevic et al. 
presented a CaffeNet based architecture for detection of leaf diseases. This architecture had eight layers 
for learning the characteristics of the disease patterns and utilized around 30K samples for training the 
model [30].  Alvaro Fuentes et al. presented deep learning meta architectures for disease detection by 
combining Faster Region-based Convolutional Neural Network (Faster R-CNN), Region-based Fully 
Convolutional Network (R-FCN), and Single Shot Multibox Detector (SSD) with ResNet and VGG Jo
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architectures. It was inferred that, R-FCN with ResNet combination outperformed the other two methods 
[31].   
 

In addition to the application of existing CNN architectures, several custom architectures were 
proposed for disease detection in tomato leaves. Ferdouse et al. presented one such CNN to identify 
diseases in tomato leaves [32].  This architecture consists of 15 layers to extract a wide range of features 
for classification.  Ruedeeniraman et al. presented a VegeCare tool that made use of Deep Neural Network 
(DNN) to classify six tomato diseases [33]. Fuentes et. al. presented another deep architecture to identify 
diseases in tomatoes [34].  Melike Sardogan et al. presented a CNN model to identify the type of disease 
in tomato plant [35]. This method considered only 400 images for training, which is relatively less for a 
deep learning model. Pardede et al. presented an unsupervised convolutional auto-encoder for automatic 
detection of plant diseases [36].  

In contrast to the above standalone deep learning applications, few CNN models were also 
presented as mobile applications focusing on disease detection in tomato leaves. A. Elhassouny et al. 
presented a MobileNet CNN model that involves depth-wise separable convolution operations to address 
computational burden of the traditional CNN for real time applications [37]. Another mobile application 
was developed by H. Durmus et al. which used SqueezeNet for classification of tomato leaf diseases 
[38].  

 
2.3 Research gaps and Motivation 
 

 Though several approaches were presented for detection of diseases in tomato leaves, there 
exist some significant challenges in it.  
. 

1. It is quite complex to identify and extract significant features in tomato leaves to 
differentiate the properties of different diseases using traditional image processing 
techniques. As the characteristics of these diseases exhibit huge variation, the properties 
of the disease patterns have to be studied exhaustively with a wide range of datasets in an 
automated way.  

2. The performance of the machine learning based models solely depends on the nature of 
the manually selected handcrafted features. Hence, feature extraction has to be made 
automatic to select and learn an optimal set of features for classification purpose. 

3. Most of the deep learning models give equal weightage to all features derived across 
different levels. But to make the model more sensitive for classification, feature weighting 
has to be done at each stage. By doing so, significant features can be learnt and passed to 
deeper levels of the network for precise classification.  

4. Some of the deep learning models utilize generic and proven architectures like VGG16, 
GoogleNet etc. Hence, it utilizes millions of parameters for classification. For real-time 
deployment of such models, a trade-off has to be achieved between the computational 
burden and accuracy.  

5. Also, the deep learning network has to be trained with a large collection of samples to 
ensure better generalization of features. Jo
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2.4 Research Contributions 
 

To address the above research gaps, the proposed research employed two different deep 
architectures for disease detection in tomato leaves. The following are the major contributions of the 
proposed work.  

1. Two different deep learning architectures were proposed in this research. The first 
architecture employed residual learning to learn a hierarchy of features for better 
classification. The second architecture employed the attention mechanism to specifically 
learn distinctive feature maps and improve the performance of the residual CNN.  

2. To the best of our knowledge, this is the first attempt to develop attention based residual 
deep network for disease detection in tomato leaves. Attention mechanism is employed to 
learn and weight significant features across different levels. Hence, the significant features 
were given more weightage with the help of attention coefficients learnt and passed to 
deeper levels for precise classification.  

3. The proposed architecture was trained with a large collection of samples. 95999 images 
were used for training the model and 24001 images were used for validation purpose. 

3. Proposed Work 
 

This research proposes a novel CNN framework that specializes in the task of infestation 
detection in the tomato plant. The objective of this work is to design a computationally inexpensive and 
accurate learning model for disease detection. Two different deep architectures were proposed in this 
work, to detect disease infestation in tomato leaf. The first architecture integrates residual learning on 
top of a feed-forward CNN. The second architecture integrates the strengths of Attention mechanism and 
Residual Learning on CNN.  
 
3.1 Residual Learning based CNN 
 

The learning pattern of a CNN is generally based on aggregation of feature maps derived at 
multiple levels. As a consequence of this aggregation occurring in the deep layers of the CNN, it tends 
to lose the significance of the fine granular details learnt by the initial layers. The traditional CNN based 
methods for tomato leaf infestation detection focusses on learning the features in an orderly fashion 
starting from basic image level features like edges and move towards complex texture based differences. 
By doing so, few significant details are not passed to the deeper layers of the network.  Hence in this 
method, residual connections are employed to pass those significant features extracted in the initial layers 
to the deeper layers of the network. This supports effective aggregation of feature maps for precise 
classification.  

The architecture of the proposed residual connection based on CNN is presented in Fig. 1. It 
consists of a sequence of three Residual Progressive Feature Extraction (RPFE) blocks, each set to learn 
progressive features. The number of channels increases from 32 to 128 along the depth of the network. 
The first RPFE block has a convolution receptive area of size 7x7, trailed by a 5x5 kernel for the second 
block and finally a 3x3 filter for the third block. Then, it applies the average pooling over the feature 
map. This enables the classifier to model a reduced set of features without much loss of context and also 
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avoids the risk of overfitting. The entire model is followed by a sequence of 1x1 convolutional layers 
after the last RPFE block.  
 

 
Fig. 1. The architecture of the Proposed Residual CNN  

 
3.1.1 Residual Progressive Feature Extraction (RPFE) Block 
 

The Residual Progressive Feature Extraction (RPFE) block consists of a 2D convolutional layer, 
a max pooling layer, and a batch norm layer. In the ‘Conv’ layer, a set of variable filters distinctly 
convolve across the face of the feature map (padded to the same size), one for each channel. The filter 
sizes for the ‘Conv’ layer are receptive to a smaller region of interest along the line of the blocks (7x7 
for the first block, 5x5 for the second, 3x3 for the third and so on). This is followed by a Rectified Linear 
Unit (ReLU) activation layer that rectifies the convolved image, zeroing out negative values. ReLU was 
used because it sustains a steady gradient even for larger activations, thus stabilizing the learning. 
 
The output from the convolutional layers, ‘x’ in the first and second RPFE blocks is directed in two 
functional paths, F(x) and G(x). F(x) denotes the set of operations (max pooling and batch normalization) 
that were applied to take ‘x’, in a simple feed-forward manner to the next block. G(x) indicates the set of 
operations that skip ‘x’ to the next block using convolutional and max-pooling layers. Finally, the 
response from the RPFE blocks, Y(x) are generated by summing the individual responses of F(x) and 
G(x), as given by Eq. 1.  
 
      Y(x) = F(x) + G(x)                (1) 
 
Fig. 2 presents the visual representation of the skip functions, generically to an RPFE block in the 
described Residual CNN. 
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Fig. 2. A representation of the functions F(x) and G(x) that are skipped through the RPFE block 
to generate the output Y(x) from the residual block. 

 
The proposed network was designed end-to-end only with 2D convolution, pooling, batch norm layers, 
with no dense layers. The observed bottleneck in the case of the last layers being fully connected is that 
the model fails to exploit the run entirely in the GPU. With full convolution, the system can now generate 
a spatial map whose correspondences can be tracked to different parts of the input image. This essentially 
translates to sliding a classifier over the input image, making predictions at each window, regardless of 
the input size. This approach towards identifying the infection makes it possible to, 
 

(a) share parameters (significantly at the initial few layers) 
 

(b) exploit spatial locality (when used with a stride less than the filter size) 
 

(c) feature the different parts of the image (matched with the receptive fields of the input layers’ 
filters down to the deep layers) all in one-shot. 

 
Convolutional Layer 
 
The convolutional layer defines a set of filters that perform the convolution operation over the entire 
image. involve a series of convolution operation among an input volume ‘I’ and a set of ‘n’ convolutional 
filters ‘FE’ followed by a non-linear activation. This finally yields an output volume ‘O’ as presented in 
Eq. 2.  
 

𝑂 𝑖, 𝑗 𝑎 ∑ ∑ ∑ 𝐹 𝑢, 𝑣 𝐼 𝑖 𝑢, 𝑗 𝑣 𝑏                                            (2) 

 
where, 
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 ‘2k+1’ is the side of a square with odd convolutional filter 
 ‘a’ refers to the activation function  
 ‘bm’ refers to the bias for the mth feature map 
 
The activation maps produced with the help of above relation are the encoding of the input ‘I’ in a low 
dimensional space i.e. it refers to the parameters used to build every feature map ‘Om’. After ‘Om’ is 
calculated, it is subjected to a max-pooling operation to down-sample it. Intuitively, each convolutional 
layer in this architecture learns the various attributes that capture discriminatory patterns to differentiate 
the type of infection in the tomato leaf. 
 
ReLU Activation  
 
The Rectified Linear Unit (ReLU) is an activation function adopted in the design of most neural 
networks, particularly CNN's. It is the identity function, f(x) = x, for all positive values and zeros out for 
negative values of input ‘x’. ReLU is sparsely activated, which helps to mimic the inactivity of the 
biological neuron to certain impulses.  
 
Max Pooling Layer 
 
This pooling layer maximally activates only a bunch of neurons from the feature map. It is used with a 
stride factor of ‘2’ on a ‘2-by-2’ window, across all the RPFE blocks. This effectively reduces the width 
and height of the feature maps while preserving the number of channels.  
 
Batch Normalization Layer 
 
In Deep Neural Networks each layer sees different feature information from the previous layer after every 
single gradient update on a batch of data. And the data distribution of this input feature map largely 
varies, as the parameter of the previous layers is updated during the training phase. This significantly 
affects the training pace and also calls for various heuristics to decide upon the parameter initialization. 
Batch Normalization is a popular trick used to curtail this problem of Internal Covariate Shift and the 
outputs of the BN layer for a batch ‘x’ is given by Eq. 3. 
 
𝑦

√
𝛽 𝜑                                                                                                                                      (3) 

 
where ‘m’ and ‘s’ are respectively the mean and standard deviation of the batch ‘x’. ‘β’, ‘φ’ are trainable 
parameters, that are updated at each iteration. ‘ε’ is set to a small constant, introduced to increase the 
variance, as well as prevent the denominator from zeroing out. Batch Normalization overcomes the 
vanishing/exploding gradient problem by normalizing the values to a range between -3 to 3, fitting a 
maximum likelihood estimate (along with the line of channel activations, across a batch) for normal 
distribution. 
 
The details of the tensor at each layer of this architecture are tabulated in Table 1.   
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Table 1: A tabulation of the connections between the layers and the dimensions of the output 
tensors at each layer, for the entire Residual CNN. 

 

Layer (type) Output Shape 
No. of 

Parameters 
Connected to the previous 

layer 
input_1 (InputLayer) (None, 256, 256, 3) 0  

conv2d_1 (Conv2D) (None, 256, 256, 32) 4736 input_1 (0,0) 

conv2d_2 (Conv2D) (None, 128, 128, 32) 9248 conv2d_1(0,0) 

max_pooling2d_1 (MaxPooling2D) (None, 128, 128, 32) 0  conv2d_1(0,0) 

max_pooling2d_2 (MaxPooling2D) (None, 128, 128, 32) 0  conv2d_39(0,0) 

batch_normalization_1 (BatchNorm) (None, 128, 128, 32) 128 max_pooling2d_1(0,0) 

add_1 (Add) 
(None, 128, 128, 32) 0 

max_pooling2d_2(0,0),  
batch_normalization_1(0,0) 

conv2d_3 (Conv2D) (None, 64, 64, 64) 51264 add_1(0,0) 

conv2d_4 (Conv2D)  (None, 64, 64, 64) 36928 conv2d_1(0,0) 

conv2d_5 (Conv2D) (None, 64, 64, 64) 18496 max_pooling2d_2(0,0) 

max_pooling2d_3 (MaxPooling2D) (None, 32, 32, 64) 0 conv2d_3(0,0) 

max_pooling2d_4 (MaxPooling2D) (None, 32, 32, 64) 0 conv2d_4(0,0) 

max_pooling2d_5 (MaxPooling2D) (None, 32, 32, 64) 0 conv2d_5(0,0) 

batch_normalization_2 (BatchNorm) (None, 32, 32, 64) 256 max_pooling2d_3(0,0) 

add_2 (Add) 
(None, 32, 32, 64) 0 

max_pooling2d_4(0,0),  
max_pooling2d_5(0,0),  
batch_normalization_2(0,0) 

conv2d_6 (Conv2D) (None, 32, 32, 128) 204928 add_2(0,0) 

max_pooling2d_6 (MaxPooling2D) (None, 16, 16, 128) 0 conv2d_6(0,0) 

batch_normalization_3 (BatchNorm) (None, 16, 16, 128) 512 max_pooling2d_6(0,0) 

average_pooling2d_1(AveragePooling2D) (None, 8, 8, 128) 0 batch_normalization_3(0,0) 

conv2d_7 (Conv2D) (None, 1, 1, 64) 401472 average_pooling2d_1(0,0) 

lambda_1 (Lambda) (None, 1, 1, 64) 0 conv2d_7(0,0) 

conv2d_8 (Conv2D) (None, 1, 1, 4) 260  lambda_1(0,0) 

reshape_1 (Reshape) (None, 4) 0 conv2d_8(0,0) 

 
3.2 Attention-based Residual CNN 
 

The attention model works on top of the RPFE CNN by retaining the context relevant features.  
The previous RPFE based model combines the features extracted in each block with the features derived 
from its preceding layer. In this way, equal importance is given to all features collected from the earlier 
RPFE blocks. For precise feature learning, significant features from the previous blocks need to be 
weighted high relative to other features. Hence, an attention mechanism was introduced on top of the 
RPFE architecture to learn and select prominent features from the previous RPFE blocks. This model 
learns an attention mask that weighs the relative importance of spatial features at that feature map. This 
way it learns attention coefficients for each pixel in the feature map to understand the properties of the Jo
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infestation in an effective manner. The architecture of the proposed attention based on CNN, built on top 
of the described residual architecture in section 2.1. is presented in Fig. 3.  
 

 
Fig. 3. An overview of the architecture employed to integrate attention within the residual net 

framework. 
 
3.2.1 Attention embedded Residual Progressive Feature Extraction (ARPFE) block 
 

This architecture uses the attention mechanism across blocks to learn a weighted function for 
modeling the activations from the preceding blocks. The skip connections from the previous blocks are 
now weighted across the depth axis for each pixel in the spatial expanse of that layer.  
 

The output from the convolutional layers, ‘x’ in the first and second ARPFE blocks is directed in 
two functional paths, F(x) and G’(x). F(x) denotes the set of operations (max pooling and batch 
normalization) that were applied to take ‘x’, in a simple feed-forward manner to the next block. G’(x) 
indicates the attention-aided weighted set of operations that skip ‘x’ through convolutional and max-
pooling layers. As discussed in 3.1.1 the weighted summation is used to generate the output Y(x) from 
an ARPFE block, given by Eq. 3. 
 
           Y(x) = F(x) + G’(x)                 (3) 
 
The functional path G’(x) is computed as  
 
              G’(x) = G(x) * α            (4) 
 
where ‘α’ is the attention weight matrix whose dimensions are the same as the spatial dimensions of G(x). 
The attention weight matrix ‘α’ is point-wise multiplied (broadcasted along the depth) across the 
corresponding cross-section of G(x).  So, ‘α’ is weighted function in G(x) and G’(x) is derived from ‘α’ 
as given by Eq. 4. This process is illustrated in Fig. 4.  
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The method for learning these weights is shown in Fig. 5 The residual feature map G(x) is passed 
through a dense layer (with ReLU activation) that learns a parameter ‘𝛼 ’ for each pixel cross-section 

volume G(x)(i,j) .  
 

The dense matrix is flattened out, to form a feature vector. The activation values from the feature 
vector are passed through a Softmax layer. The weights ‘𝛼 ’ are now computed calculated as a Softmax 

probability distribution, such that summation of ∑ 𝛼 =1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  A visual representation for generating the output Y(x) from an ARPFE block using 
attention based weights. 
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Fig. 5 A generic scheme for learning the attention function ɑij . (a): Feature map G(x) (b): A ReLU-
activated dense layer matrix with one unit for each cross-section (i,j) of G(x)i,j . (c): A softmax 
activation layer following the dense layer from (b) to learn a probability distribution of weights for 
each 𝛼  . The weighted sum of ɑ s over G(x) yields G’(x) (d): Output G’(x) is computed as 
∑ 𝛼 ∗ 𝐺 𝑥  
 
Softmax Classifier 
 
The proposed system uses a k-way softmax classifier to make classify the image to one among k 
categories.  This loss is given by Eq. 5. 
 
     𝐶𝐸 ∑ 𝑡 𝑙𝑜𝑔 𝑓 𝑠                                   (5) 
 
 
where the f(s)i is the output conditional probability P( y = ŷi| si ) for some training example ‘si’,  predicted 
value ŷi . This probability function for softmax activation is given in Eq. 6. 
 

     𝑓 𝑠
∑

                                               (6) 

 
The details of the tensor at each layer of this architecture are tabulated in Table 2.   
 

Table 2: A tabulation of the connections between the layers and the dimensions of the output 
tensors at each layer, for the entire Residual CNN. 

Layer (type) Output Shape 
No. of 

Parameters 
Connected to the previous 

layer 
input_1 (InputLayer) (None, 256, 256, 3) 0  

conv2d_1 (Conv2D) (None, 256, 256, 32) 4736 input_1(0,0) 

conv2d_2 (Conv2D) (None, 128, 128, 32) 9248 conv2d_1(0,0) 

max_pooling2d_1 (MaxPooling2D) (None, 128, 128, 32) 0 conv2d_2(0,0) 

conv2d_3 (Conv2D) (None, 64, 64, 64) 18496 max_pooling2d_1(0,0) 

max_pooling2d_2 (MaxPooling2D) (None, 32, 32, 64) 0 conv2d_3(0,0) 

dense_1 (Dense) multiple 65 max_pooling2d_2(0,0),  
max_pooling2d_4(0,0) 

dense_2 (Dense)  (None, 128, 128, 1) 33 max_pooling2d_1(0,0) 

attention_weights (Activation) multiple 0 dense_2(0,0),  
dense_1(0,0),  
dense_1(0,0) 

max_pooling2d_3 (MaxPooling2D) (None, 128, 128, 32) 0  conv2d_1(0,0) 

multiply_1 (Multiply) multiple 0 attention_weights(0,0),  
max_pooling2d_1(0,0),  
attention_weights(0,0),  
max_pooling2d_2(0,0),  
attention_weights(0,0),  
max_pooling2d_4(0,0) Jo
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batch_normalization_1 (BatchNorm) (None, 128, 128, 32) 128  max_pooling2d_3(0,0) 

add_1 (Add) (None, 128, 128, 32) 0 multiply_1(0,0),  
batch_normalization_1(0,0) 

conv2d_4 (Conv2D) (None, 64, 64, 64) 51264 add_1(0,0) 

conv2d_5 (Conv2D) (None, 64, 64, 64) 36928 conv2d_4(0,0) 

max_pooling2d_4 (MaxPooling2D) (None, 32, 32, 64) 0 conv2d_5(0,0) 

max_pooling2d_5 (MaxPooling2D) (None, 32, 32, 64) 0  conv2d_4(0,0) 

batch_normalization_2 (BatchNorm) (None, 32, 32, 64) 256 max_pooling2d_5(0,0) 

add_2 (Add) (None, 32, 32, 64) 0 multiply_1(0,0),  
multiply_1(0,0),  
batch_normalization_2(0,0) 

conv2d_6 (Conv2D) (None, 32, 32, 128) 204928 add_2(0,0) 

max_pooling2d_6 (MaxPooling2D) (None, 16, 16, 128) 0 conv2d_6(0,0) 

batch_normalization_3 (BatchNorm) (None, 16, 16, 128) 512 max_pooling2d_6(0,0) 

average_pooling2d_1 (AveragePooling) (None, 8, 8, 128) 0 batch_normalization_3(0,0) 

conv2d_7 (Conv2D) (None, 1, 1, 64) 401472 average_pooling2d_1(0,0) 

lambda_1 (Lambda) (None, 1, 1, 64) 0 conv2d_7(0,0) 

conv2d_8 (Conv2D) (None, 1, 1, 4) 260 lambda_1(0,0) 

reshape_1 (Reshape) (None, 4) 0 conv2d_8(0,0) 

 
4. Results and Discussion 
 

The proposed system was trained with the augmented collection of the benchmarked Plant Village 
Dataset. The source code was written in Tensorflow Deep Learning programming framework and 
compiled to run on the NVIDIA Tesla P100 GPU. The model was evaluated on a 5-fold cross validation 
set (of 120K samples) with each fold stratified into roughly equal numbers for each class (by random 
sampling with replacement). The loss function was minimized using the Adaptive Moment Estimation 
(Adam) optimizer. This optimization algorithm uses the running average of both the gradient and the 
second moment.   
 

Three different experiments were conducted. The first experiment applied a baseline model for 
disease detection and classification in tomato. The second experiment used the residual connections 
across the Progressive Feature Extraction blocks. The third experiment integrated both attention and 
residual connections in CNN. 
 
4.1 Dataset 
 

The proposed model for disease detection in Tomato was developed using the Plant Village 
Disease Classification Challenge dataset and further data augmentation techniques were applied to 
increase the size of the dataset. Table 3 presents the distribution of augmented samples for each fold in 
cross-validation process. The dataset used in our experiment includes one healthy class and 3 diseased Jo
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classes. Table 4 shows the samples for each disease class and the effects of the data augmentation 
techniques on them. 
 

Data augmentation techniques have been applied for increasing the data set, thereby reducing the 
overfitting. Central zoom was performed to produce a data set of images that have only the leaf and not 
the background information, random crop & zoom was performed to focus on specific parts of the leaf 
and various contrast levels were used to make the dataset robust to various lighting conditions. The 
stratified 5-fold cross-validation used to evaluate the proposed model and this ensured balance between 
the classes for each of the 5 folds due to random sampling.  
 

Table 3. Details of distribution of samples in cross-validation process 
 

Fold 
Healthy Early Blight Late Blight Leaf Mold 

Training Validation Training Validation Training Validation Training Validation 

1 50402 12601 20590 5148 17600 4400 7407 1852 
2 50402 12601 20590 5148 17600 4400 7407 1852 
3 50402 12601 20590 5148 17600 4400 7407 1852 
4 50403 12600 20591 5147 17600 4400 7407 1852 
5 50403 12600 20591 5147 17600 4400 7408 1851 

 
 

Table 4. Sample results of data augmentation process.  

Category 
Original Image 

 
Contrast 

 

Random Zoom 
and Crop 

 

Central Zoom 
 

Healthy 

 

 

   

Early Blight 

 

 

   Jo
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4.2 Experiment 1: Application of the baseline model 
 

The baseline model was a simple feed-forward CNN with no cross-connections or any learning 
aided mechanisms. It took around 1.5 days for training the model on the GPU. This resulted in an 
accuracy of 84%. 
 
4.3 Experiment 2: Application of Residual CNN 
 

Building on experiment 1, the residual model includes skip connections from one block to the 
other. The skip connections take the feature map from the ReLU activated convolutional layer in RPFE 
block b, onto the convolutional layer in the RPFE block b+1, as described in section 2.1. The dimensions 
at the both ends of the skip connection are matched by filtering the admitted feature maps with 
convolutional layers and trimming with max pooling. 
 

It took around 10 hours for training the model and it took approx. 150 epochs to reach 
convergence. The proposed residual based network is subjected to 5 – fold cross-validation process and 
the resultant observations are presented in Table 5. 
 

Table 5: Observation of the proposed Residual CNN 
 

Folds Accuracy Loss 

Late Blight 

 

 

   

Leaf Mould 
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Fold 1 

  

Fold 2 

  

Fold 3 
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Fold 4 

  

Fold 5 

  

 
It could be observed that the Residual CNN was able to detect the type of disease in tomatoes 

with an accuracy of 90-95%. Also, the loss of the network decays appreciably during the training phase, 
leading to precise classification.  
 
4.4 Experiment 3: Application of Residual CNN with attention 
 

Building on the second experiment, the attention based residual model adds on a weighing scheme 
to the output feature map G(x) from the skip connections. The weighing scheme computes an attention 
matrix ′𝛼  ′ is point-wise multiplied (broadcasted along the depth) across the corresponding cross-section 

of G(x)ij as described in section 2.2. These attention weights ′𝛼 ′ are learnt dynamically upon seeing new 

training batches. 
 

It took around 10 hours for training the model and it took approx. 150 epochs to reach 
convergence. The proposed residual based network is subjected to 5-fold cross-validation process and 
the resultant observations are presented in Table 6. 
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Table 6: Observation of the proposed Attention based Residual CNN 

 

Folds Accuracy Loss 

Fold 1 

  

Fold 2 

  

Fold 3 
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Fold 4 

  

Fold 5 

 . 

 
It was evident that the proposed attention based residual CNN was able to converge better than residual 
CNN.  
 
4.5 Performance Analysis 
 

In this research, three different deep architectures were analyzed to detect the performance of 
disease detection. The first method applied a baseline model for disease detection in tomato leaves. The 
second approach was based on the residual connections across the Progressive Feature Extraction blocks. 
The third approach integrated both attention mechanism and residual connections in CNN. The 
observations of these experiments are tabulated in Table 7. It could be observed that the proposed 
attention based residual CNN performed better in detecting the type of infection with an accuracy of 
98%. 
 

Table 7. Summary of the proposed experiments 
 

S. No Method Accuracy 
(in %) 

1 Baseline CNN model  84 

2 Residual CNN model  95 Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



20 
 

3 Attention embedded Residual 
CNN model  

98 

 
The performance of the proposed attention based residual CNN is compared against the existing 

methods reported in the literature and the resultant observations sorted according to accuracy obtained 
are highlighted in Table 8. 
 

Table 8. Performance comparison of proposed work with other existing works. 
 

S. No Source Type of features Method 
Size of  
dataset 

Accuracy 
(in %) 

1 Ferdouse et al. [32] Automatic CNN 3000 76 
2 Chit Su Hlaing et al. [20] Hand-Crafted features Quadratic SVM 3535 83.5 
3 Melike Sardogan et al. [35] Automatic CNN with LVQ 500 86 
4 P. B. Padol et al [13] Hand-Crafted features SVM classifier 137 88.89 
5 J. Shijie et al. [21] Automatic VGG16 based CNN 7040 89 
6 Azeddine Elhassouny et al. [37] Automatic CNN 7176 90.3 
7 Semary et al. [8] Hand-Crafted features SVM 708 92 
8 P. Tm et al. [27] Automatic LeNet based CNN 54306 95 
9 Suryawati et al. [22] Automatic VGGNet based CNN 18160 95.24 
10 Jayme Garcia et al. [24] Automatic GoogleNet based CNN 40409 96 
11 Sladojevic et al [30] Automatic CNN 30880 96.3 
12 Halil Durmus et al. [38] Automatic SqueezeNet  54309 97.22 
13 Keke Zhang et al. [25] Automatic ResNet 5550 97.28 
14 Sabrol et al. [12] Hand-Crafted features Decision Tree 383 97.3 

15 Proposed approach Automatic 
Attention based  
Residual CNN 95999 98 

 
 

 It could be observed that, an accuracy of 83 to 97% was obtained for machine learning methods that 
employed hand crafted features for disease detection [8,12,13,20]. Also, the model was trained with less than 
4k samples, which is very less to generalize all feature patterns. Recent deep learning researches employed 
well trained architectures like VGG16, ResNet, GoogleNet etc. for disease detection in tomato leaves 
[21,22,24,25,27]. In addition to these works, certain deep-layered CNN architectures were also proposed for 
infestation detection in tomato leaves [30,34,35,37]. Though these works yield appreciable results, the 
accuracy of these works were in the range of 76 to 97%. As the proposed model employed attention mechanism 
to learn and weight significant features, it was able to achieve an accuracy of 98%, which is a significant 
improvement when compared to other works.   

 
5. Conclusion 
 
 This research presents an efficient mechanism to detect the type of infestation in tomato leaves. 
To the best of our knowledge, this is the first attempt to employ the attention gating mechanism in 
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residual CNN for disease detection in tomatoes. The main contribution of this work is the integration of 
attention mechanism on top of the Residual network for effective feature learning. It helps to selectively 
weigh the features different layers at the inception of a single layer. Hence, the receptive field at a layer 
is extended to look at feature maps from different levels of the processing hierarchy. The current layer 
can now process its input with more contextual information. Learning at the layers preceding the current 
layer is now aided by the perception of the features at the current layer. This is due to back propagation 
of the tensors along the skip connections. 

The proposed network learnt around 600K parameters to detect the type of infection, which is 
comparatively less than the existing deep learning approaches reported in the literature. Experimental 
results indicate that the proposed attention based residual network was able to detect the type of infection 
with an accuracy of 98%. It could also be noted that the ARPFE blocks establish the extensibility of the 
design of the proposed system to any input size.  
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HIGHLIGHTS 

 An attention based deep residual network is proposed in this research to detect the type of 

infection in tomato leaves.  

 This enhanced deep learning architecture is the first of its kind developed for automatic 

detection of infection in tomato leaves.  

 95999 images were used for training the model and 24001 images were used for 

validation purpose. 

 Experimental results indicate that the proposed attention based residual network was able 

to detect the type of infection with an accuracy of 98%. 
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