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Abstract: Biological pest control is the eco-friendly method of controlling pests using natural

enemies such as predators, pathogens, and parasitoids. It is one of the important components

of IPM. Recent works on biological control focusing on the aspects of controlling economically

damaging pest by introducing non-economically damaging pests as competitors. One of the

ways to enhance the biological control is to provide suitable additional/alternative food to

competitors. In this article, we study the dynamics of controlling the economically damaging

pest species by providing additional food to non-economically damaging competitive pests.

Mathematically these competitive interactions are modelled using Lokta-Volterra model of

competition and with Holling type II functional response towards the additional food. The

conditions on the quality and quantity of additional food under which successful biological

control can be achieved have been obtained. The global dynamics of the systems have studied

by analyzing various bifurcations that are occurring in the system. The study can aid the

eco-managers, on the choice of competitive species and the additional food for accomplishing

successful biological control. The results of the theoretical observations are in agreement with

few field experiments.

AMS Subject Classification: 92D25, 93A30, 93B05, 93B52, 49J30

Key Words: pest, inter-specific competition, biological control, additional food

Received: May 24, 2016

Published: September 10, 2016

c© 2016 Academic Publications, Ltd.

url: www.acadpubl.eu

§Correspondence author



296 M.S. Bhuvaneswari, B.S.R.V. Prasad

1. Introduction

Controlling the economically damaging agricultural pest species, in particularly,
weeds and insects pests, has been attracting lot of attention from the eco-
managers long since. Managing the agricultural pest became a vital task to coup
up with increasing human population [18]. Traditional approaches to control
the pest such as spraying insecticides, pesticides is found to have long-lasting
side affects as they contaminate the environment. It also found that insects
such as diamondback moth, Plutella xylostealla, have developed resistance to all
available chemicals [7, 18]. Due to this hazardous affects of the chemical control,
the eco-managers are moving towards other alternative control strategies such
as bio-remediation and bio-control to safeguard the environment [14].

It has been recognized long back that most of the natural enemies are
omnivores and thus feed on pest as well as other plant-provided food such as
nectar, pollen [23]. Lot of experimental works carried out in this direction and
important conclusions have been derived on the use of non-prey food sources
(viz,. nectar, pollen) to enhance the biological control efficiency of the natural
enemies in the agricultural fields [11, 12, 15, 33]. The conditions on the quality
and quantity of the additional food that is to be provided to be predators for
successful biological control have been analyzed in [28, 29, 30, 31].

The another important aspect, which is common in the biological system
is the competition between the species, which can be either direct or indirect
interaction between two consumers for food, resources, space etc. [13, 22, 20].
The competition can mainly be classified into (i) intra-specific competition, the
competition that is occurring between same taxa and (ii) inter-specific compe-
tition, the type of competition that is occurring between different animal/plant
groups. It is found that in many biological system intra-specific competition
is evident and predominant [3, 6, 19, 20, 24, 25, 32, 35]. Recently, many ecol-
ogists are exploiting this phenomenon and experimenting with controlling the
economically damaging pest species by introducing another non-economically
damaging pest species, which is a competitor for the former species [19, and
refernces there in]. It is pointed out by the authors that although the early
attempts to control the Pacific spider mites by introducing Willamette mites
has been successful, the mechanisms that are involved in this are poorly under-
stood. This motivated us to develop a mathematical model of competing pest
species in which non-economically damaging pest species are provided with
some additional food of constant biomass and examine the conditions under
which the economically damaging pest species can be eradicated/brought down
to the levels at which they are not damaging the crop. By characterizing the
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additional food with respect to its quality and quantity, conditions have been
derived that will lead to eradication of economically damaging pest.

In this article, we consider a modified version of the classical Lokta-Volterra
competitive system [20] to examine the interactions of competing species in
presence of additional food to one of the species. We assume that the additional
food is not reproductive in nature, but is maintained at a constant biomass
either by nature or external agency. This assumption reduces the dimension of
the considered system, by which it is possible to study the role of additional
food using phase plane analysis [29, 28]. We further assume that, the number of
encounters per species (to which additional food is provided) with the additional
food is proportional to the density of the additional food and will not be affected
by the other competing species. By analyzing the dynamics of the proposed
model in a systematic way, the vital parameters that influence the dynamics
have be identified and controllability of the system is discussed. This study
provides the management strategies that are to be followed for the success of
biological pest control in a competitive system in which one of the species is
provided with additional food.

The section division of article is as follows: Section 2 reviews the classi-
cal Lotka-Volterra model of interspecific competitive model. In Section 3, the
model representing the dynamics of competitive system in presence of additional
food is analyzed and equilibrium analysis is presented. The global dynamics of
the considered model are presented in Section 4. The consequences of provid-
ing additional food competitive system and its implications to biological control
has been presented in Section 5 and followed by discussion and conclusions in
Section 6.

2. The Lokta-Volterra Model of Interspecific Competition Model

Let us consider the following Lokta-Volterra model of interspecific competition
between two species N1 and N2. Let us assume that N1 denotes the population
density of economically damaging pest and N2 denotes the population density
of non-economically damaging pest.

dN1

dT
= rN1

(

1−
N1

k

)

− bN1N2, (1)

dN2

dT
= sN2

(

1−
N2

l

)

− cN1N2. (2)

Here r denotes the intrinsic growth rate of economically damaging pest N1 and
s denote the intrinsic growth rate of non-economically damaging pest N2. We
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assume here that, the both species N1 and N2 grows Logistically in the absence
of other with their respective carrying capacities being k, l respectively. b(c)
denotes the interspecific competition affect of N2 (N1) on N1 (N2). The non-
dimensionalized version of the system (1,2) is given by:

dx

dt
= x(1− x)− β1xy, (3)

dy

dt
= Ry(1− y)− β2xy. (4)

The model (3,4) is well studied in the literature and analyzed from various
perspectives [20]. The model (3,4) always admit the trivial equilibrium E0 =
(0, 0) and two axial equilibria E1 = (1, 0), E2 = (0, 1). The existence of interior
equilibrium E∗= (x∗, y∗) where

x∗=
R(1− β1)

R− β1β2
, and y∗=

R− β2

R− β1β2
(5)

for the system is conditional dependent. If the parameters of the system satisfies
any of the following conditions,

Case 1: 1
β1

< 1, R
β2

< 1

Case 2: 1
β1

> 1, R
β2

> 1

then the considered system admits unique interior equilibrium. The considered
system does not admits any interior equilibrium if the parameters of the system
satisfies any of the following condition

Case 3: 1 > 1
β1
, 1 < R

β2

Case 4: 1 < 1
β1
, 1 > R

β2

The following theorems illustrate the nature of the existing equilibria, which
will be useful in our further analysis.

Lemma 1. The trivial equilibrium point (0, 0) is always an unstable node.

Lemma 2. The axial equilibrium point (1, 0) is stable node (saddle) in
nature if R− β2 < (>)0.

Lemma 3. The axial equilibrium point (0, 1) is stable node (saddle) in
nature if 1− β1 < (>)0.

Lemma 4. The interior equilibrium (x∗, y∗) is stable if R− β1β2 > 0 and
is saddle if R− β1β2 < 0.
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3. Model in Presence of Additional Food to
Non-Economically Damaging Pest

Let us now assume that, the non-economically damaging species N2 is provided
with an additional food of constant biomass A, which is distributed uniformly
in the environment. We also assume that the number of encounters of non-
economically damaging species N2 with the additional food is proportional to
the density of the additional food and N2 species are not optimal foragers. We
further assume that the interaction of N2 with additional food does not affect
the competitive interaction rates of N1 over N2 and N2 over N1. With this
assumptions and using the time utilization concept, the functional response
of non-economically damaging species towards the available additional food is
given by

g(N2, A) =
A

η1 + hAA
(6)

where η1 =
1
eA

. Incorporating the above expression for the functional response
of non-economically damaging pest N2 towards additional food, we obtain the
following coupled differential system representing dynamics of two competing
species N1, N2, when the N2−species is provided with additional food.

dN1

dT
= rN1

(

1−
N1

k

)

− bN1N2 (7)

dN2

dT
= sN2

(

1−
N2

l

)

− cN1N2 +
AN2

η1 + hAA
(8)

Here r, s denote the intrinsic growth rate of N1, N2 species respectively. k, l

are the carrying capacities of N1,N2 species. b (c) competitive interaction rate
N2 (N1) over N1 (N2). A denotes the quantity of additional food that is supplied
to N2 species. hA is the handling time of N2 species towards the additional food.

It is easy to observe that the above system reduces to the Lokta-Volterra
system of competing species (1, 2), when A is taken to be zero. We now analyze
the dynamics of the system (7, 8).

Before proceeding to the further analysis, we reduce the number of pa-
rameters in the considered system by the process of non-dimensionalisation.
Introducing the transformation,

x = N1

k
, y = N2

l
, t = rT,

the system (7, 8) gets reduce to

dx

dt
= x(1− x)− β1xy (9)
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dy

dt
= Ry(1− y)− β2xy +

ξy

1 + αξ
(10)

The x−species zero-growth isoclines for the system are given by

x = 0, and y =
1

β1
(1− x). (11)

The y−species zero-growth isoclines for the system are given by

y = 0, and y =
−β2x

R
+

(

1 +
ξ

R(1 + αξ)

)

. (12)

It can be easily observed that the non-trivial x−nullcline is a straight line,
with a negative slope of 1

β1
, which intersects the x−axis at (1, 0) and y−axis at

(

0, 1
β1

)

. The non-trivial y−nullcline is also a straight line with a slope of −β2

R
,

and which is a function of α and ξ. This line intersects x−axis at (x̄, 0) and
y−axis at(0, ȳ) where,

x̄ =
1

β2

(

R+
ξ

1 + αξ

)

, (13)

and,

ȳ =

(

1 +
ξ

R(1 + αξ)

)

. (14)

From the properties of nullclines of the system, it can be easily verified
that the system always admits the trivial equilibrium E0 = (0, 0) and two axial
equilibrium points E1 = (1, 0), E2 = (0, ȳ).

By equating the non-trivial nullclines of the system, we obtain the interior
equilibrium E∗= (x∗, y∗), where

x∗=
R(1 + αξ)(1− β1)− β1ξ

(1 + αξ)(R − β1β2)
, (15)

y∗=
(1 + αξ)(R − β2) + ξ

(1 + αξ)(R − β1β2)
. (16)

From the equations (15), (16), we can infer that the existence of E∗= (x∗, y∗)
is conditional dependent and accordingly, we have the following conditions:

1. The system admits no interior equilibrium if the parameters of the system
satisfies:
(i) R− β1β2 > 0 and x̄ < 1, ȳ < 1

β1
[or] (ii)R − β1β2 < 0 and x̄ > 1,

ȳ > 1
β1
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2. The system admits unique interior equilibrium if the parameters of the
system satisfies:
(i) R− β1β2 > 0 and x̄ > 1, ȳ < 1

β1
[or] (ii) R− β1β2 > 0 and x̄ < 1,

ȳ > 1
β1

The associated community matrix J(x,y) for the considered system is given by,

J(x,y) =

(

1− 2x− β1y −β1x

−β2y R− 2Ry − β2x+ ξ
(1+αξ)

)

. (17)

Evaluating the community matrix at each of the boundary equilibria and an-
alyzing the eigenvalues of the resulting characteristic equation, we obtain the
following results related to the stability of the trivial and axial equilibria.

Lemma 5. The trivial equilibrium E0 = (0, 0) is always unstable node.

Lemma 6. The system undergoes transcritical bifurcation around E1 if
the parameters of the system satisfies (R− β2)(1 + αξ) + ξ = 0.

Lemma 7. The system undergoes transcritical bifurcation around E2 if
the parameters of the system satisfies R(1 + αξ)(1 − β1) + ξ = 0.

4. Global Dynamics

In this section, we analyze the global dynamics of the system and draw con-
clusions regarding the controllability of the system treating α and ξ as control
parameters and treating R, β1, β2 as ecosystem parameters.

The, global dynamics of the additional food provided competitive sys-
tem can be better understood using the following four cases illustrating the
existence/non-existence of interior equilibrium of Lokta-Volterra model and its
stability

Case (ia) R− β1β2 > 0 and β2 > R,

Case (ib) R− β1β2 > 0 and β2 < R,

Case (iia) R− β1β2 < 0 and β1 < 1,

Case (iib) R− β1β2 < 0 and β1 > 1,

along with the transcritical bifurcation curves at (1, 0) and (0, ȳ), given by

(R− β2)(1 + αξ) + ξ = 0 (18)
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Figure 1: Bifurcation diagram in the (α, ξ) space for the case when the
ecosystem parameters satisfy R− β1β2 > 0.

R(1 + αξ)(1 − β1) + ξ = 0 (19)

in positive (α, ξ) space. Note that in the case (ib), the curve (18) does not
exist in the positive (α, ξ) space and in case (iib), the curve (19) does not
exist in the positive (α, ξ). Thus, in these two cases the system dynamics
entirely depends on the transcritical bifurcation that are occurring at (0, ȳ)
and (1, 0) respectively. Observe that each of these curves (18), (19) when exist
in the positive quadrant of (α, ξ) space, divide the positive quadrant into two
regions, characterizing the nature of the associated equilibrium. It can be
further observed that, α = 1

β2− R
and α = β1

R(1− β1)
are asymptotes for the

curves (18), (19) respectively. The dynamics of the system under consideration,
is studied through the curves (18) and (19), presented in the frames (a) and (b)
of Fig. 1.

In Fig. 1a, the parameter space divided into three regions which are given
by (i) 0 < α < β1

R(1− β1)
, (ii) β1

R(1− β1)
< α < 1

β2− R
and (iii) α > 1

β2− R
. Observe

that cases (ii) and (iii) are only possible for β2 > R. When β2 < R, we have
α > β1

R(1− β1)
. In case (i) for a fixed α, as we increase ξ from zero, we enter

into either region C1 or B1 depending on whether β2 > R or β2 < R. In
this region C1, the considered system does not admit any interior equilibrium.
Here, the system admit the axial equilibrium (1, 0) which is stable in nature.
The nature of coexisting axial equilibrium (0, ȳ) is saddle and all the solutions
will be driven to (1, 0). Therefore, the system dominated by the economically
damaging pest. As we increase ξ which satisfies ξ > β2− R

1− α(β2− R) , we move from
the region C1 to region B1, we have emergence of a stable interior equilibrium
(x∗, y∗) due to a transcritical bifurcation taking place at (1, 0). The coexisting
axial equilibria (1, 0) and (0, ȳ) are saddle in nature. Moving from region B1 to
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A, with further increase in ξ satisfying ξ >
R(1− β1)

β1− Rα(1− β1)
, there is an exchange of

stability between (0, ȳ) and (x∗, y∗) due to the transcritical bifurcation taking
place at (0, ȳ). The nature of axial equilibrium (1, 0) remains saddle in this
region and that all the solutions of the system will converge to (0, ȳ).

In case (ii) with β2 > R, as ξ increases from zero, we enter into region
C2. The dynamics of this region is similar to region C1. Further increase
in ξ > β2− R

1− α(β2− R) , we move from the region C2 to B2, with a transcritical

bifurcation occurring at (1, 0), with exchange of stability between (1, 0) and
interior equilibrium (x∗, y∗). The stability of (0, ȳ) remains saddle in this region.

In case (iii) with β2 > R, as ξ increases from zero, we enter into region
C3, and stays there for any ξ > 0. The dynamics of the system in this region
is similar to the dynamics of regions C1 and C2. So, all the solutions will be
driven the state (1, 0) asymptotically.

In Fig. 1b, we divide the parameter space into three cases (i) 0 < α < 1
β2− R

,

(ii) 1
β2− R

< α < β1

R(1− β1)
and (iii) α > β1

R(1− β1)
. Observe that the cases (ii) and

(iii) are valid only for β1 < 1. For β1 > 1 we have these two cases merged into
one single case α > 1

β2− R
. In case(i), we observe that for a fixed α, increasing

ξ from zero, we enter into the region C1 or B1 depending on whether β1 < 1 or
β1 > 1. In this region C1, the system admit axial equilibrium (1, 0), which is
stable in nature and (0, ȳ), which is saddle in nature. In this region the system
does not admit any interior equilibrium. All the solutions will be driven to
(1, 0). Moving from the region C1 to B1 by increasing ξ with ξ >

R(1− β1)
β1− Rα(1− β1)

,

the interior equilibrium (x∗, y∗), which is saddle in nature, comes into existence
with a transcritical bifurcation occurring at (0, ȳ). The nature coexisting axial
equilibrium (1, 0) is remains unchanged. The unstable manifold of (x∗, y∗)
divide the phase space into two regions, such that the solutions starting in
the one region will be converges to (1, 0) and the solutions starting in the other
region will be converges to (0, ȳ). Moving from the region B1 to A, with increase
ξ > β2− R

1− α(β2− R) , a transcritical bifurcation at (1, 0) occurs, due to which there

will be an exchange of stability between (1, 0) and (x∗, y∗). The stability of (0, ȳ)
remains stable in this region. Therefore, all the solutions will be converges to
(0, ȳ).

In case (ii) with β1 < 1, as ξ increases from zero, we enter into region C2,
with similar dynamics as that of region C1. Moving from the region C2 to
B2 through increasing ξ, we have emergence of a saddle interior equilibrium
(x∗, y∗). The coexisting axial equilibria (1, 0) and (0, ȳ) are both stable in
nature.

In case (iii) with β1 < 1, as ξ increases from zero, we enter into region C3
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and stays in the region forever. The dynamics of the system in this region is
similar to the dynamics of regions C1 and C2 i.e., all the solutions will be driven
the state (1, 0) asymptotically.

5. Consequences of Providing Additional Food
the Competitive System

In this section, we study the affect of providing the additional food to non-
economically damaging species and its consequences on system dynamics. As
observed in the global dynamics of the system takes two opposite directions
depending on quality, α and quantity, ξ of the additional food that is provided.

In the case, when the system with out additional food supports the stable
coexistence of both the competing species (i.e., R − β1β2 > 0 and β2 < R),
continuous supply of additional food with quality, α < β1

R(1− β1)
and quantity,

ξ ∈
(

0, R(1− β1)
β1− Rα(1− β1)

)

decreases the equilibrium component of the economically

damaging species from 1− β1

R− β1β2
. Increasing the additional food supply beyond

this interval i.e., ξ >
R(1− β1)

β1− Rα(1− β1)
, leads to eradication of the economically dam-

aging species from the system in a finite time. On the other hand, providing
the additional food with quality, α > β1

R(1− β1)
and quantity ξ > 0, the stable

coexistence of both species continues, with equilibrium component of econom-
ically damaging species decreasing from R(1− β1)

R− β1β2
and that of non-economically

damaging species increasing from R− β2

R− β1β2
.

In the case, when the system with out additional food admits interior equi-
librium with saddle in nature (i.e., R−β1β2 < 0 and β1 > 1), continuous supply

of additional food with quality, α < 1
β2− R

and quantity, ξ ∈
(

0, β2− R
1− α(β2− R)

)

,

increases the equilibrium component of the economically damaging species from
R(β1− 1)
β1β2− R

and thus expanding the region of attraction of (0, ȳ). Increasing the ad-

ditional food supply beyond this interval i.e., ξ > β2− R
1− α(β2− R) , leads to exchange

of stability between the interior equilibrium and axial equilibrium (1, 0). This
exchange of stability leads to eradication of the economically damaging species
from the system in a finite time. On the other hand, providing the additional
food with quality, α > 1

β2− R
and quantity ξ > 0, the saddle coexistence of

both species continues, with equilibrium component of economically damaging
species increasing from R(β1− 1)

β1β2− R
and that of non-economically damaging species

decreasing from β2− R
β1β2− R

and leading to increase in the region of attraction of
(0, ȳ).
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Figure 2: Numerical simulations illustrating the various dynamics and
controllability aspects of the considered model. Frames A,D presents
the case where the solutions will be driven the axial equilibrium (1, 0)
and thus making the system pest dominated. The situation in which
the solutions will be driven to a state, which is free from the econom-
ically damaging pest species is presented in frames B,E. Frames C,F
presents the case where in the system admits an interior equilibrium.
The equilibrium obtained in the case R−β1β2 > 0(< 0) is always stable
(saddle) as noted in the consequences.
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In the case, when the system with out additional food does not support
the coexistence and dominated by economically damaging species, the provi-

sion of additional food of quality α ∈
(

0,max{ 1
β2− R

, β1

R(1− β1)
}
)

and quantity

ξ > min{ R(1− β1)
β1− Rα(1− β1)

, β2− R
1− α(β2− R)} brings the coexistence of the two competing

species. This coexistence will be stable if R−β1β2 > 0 and saddle if R−β1β2 <

0. This coexistence ceases to exist if the quality α < min{ 1
β2− R

, β1

R(1− β1)
} and

ξ > max{ R(1− β1)
β1− Rα(1− β1)

, β2− R
1− α(β2− R)}. In this case all the solutions of the sys-

tem will be driven to the state (0, ȳ), making system free from economically
damaging species.

The key findings of the above discussions are illustrated through the numer-
ical simulations presented in Fig. 2. The frames A,B,C of the Fig. 2 presents
the case where R − β1β2 > 0 and frames D,E,F of the the Fig. 2 presents the
case where R− β1β2 < 0.

6. Discussion and Conclusions

In this article, we have carried out a detailed analysis of dynamics of two com-
petitive species, in presence of additional food to one of the species, with the
assumption that additional food is provided to non-economically damaging pest
species and the uptake of additional food is not affected the presence of eco-
nomically damaging species. The additional food that is assumed to be of non-
reproducing and it is distributed uniformly in the environment. The uptake
of additional food by non-economically is modeled using Holling type II func-
tional response. From the analysis of the model, it is observed that the quality,
characterized by the handling times of non-economically damaging species to-
wards the additional food and quantity of additional food plays a vital role in
controlling system.

When the original system admits coexistence of two competing species (ei-
ther a stable or saddle), providing additional food having specified character-
istics, one can eliminate the economically damaging species from the system,
achieving the needed biological control. In the case when the original system
has non-coexistence of competing species, which is dominated by economically
damaging species, providing additional food has several subcases are possi-
ble. In this case, the coexistence can be brought into the system by providing
the non-economically damaging species with additional food, whose quality
and quantity levels belonging to a specified interval. The co-existence that is
brought can either be stable or saddle depending on the ecosystem parameters.
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Increasing the quantity of the additional food beyond a critical level, with qual-
ity belongs to a specified interval, all the solutions of the system will be driven
to a state without the economically damaging species.

Finally, we conclude that the modified version of additional food provided
Lokta-Volterra competition model exhibits very interesting dynamics. By ma-
nipulating quality and quantity of additional food that is supplied to non-
economically damaging species, it is possible to control the dynamics of the
system. It is possible to drive the levels of both the pest to a desired level
within specified limits. By providing additional food having a specified char-
acteristics, we can, eliminate economically damaging pest by enhancing the
competition by supplying right kind of additional food to the non-economically
damaging species. Finally, it can be concluded that the current study finds
its vital applications in the biological pest control programs using competitive
species for controlling the pest.
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